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Abstract

Neural Machine Translation (NMT)
systems require a lot of data to be com-
petitive. For this reason, data selec-
tion techniques are used only for fine-
tuning systems that have been trained
with larger amounts of data. In this
work we aim to use Feature Decay Al-
gorithms (FDA) data selection tech-
niques not only to fine-tune a sys-
tem but also to build a complete sys-
tem with less data. Our findings re-
veal that it is possible to find a subset
of sentence pairs, that outperforms by
1.11 BLEU points the full training cor-
pus, when used for training a German-
English NMT system .

1 Introduction

In Statistical Machine Translation (SMT) it
has been shown that having more data does
not always lead to better results [Ozdowska
and Way, 2009]. In fact, performance can
increase by limiting the training data to a
smaller but more relevant set [Eetemadi et al.,
2015]. Neural Machine Translation (NMT)
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models in contrast are data-hungry, and per-
form better only with large amounts of avail-
able training data, in some cases underper-
forming SMT when low amounts of data
are available [Östling and Tiedemann, 2017;
Dowling et al., 2018]. However, the amount
of training data required to make NMT work
really well depends a lot on the domain of the
training data and test set, and possibly also
how similar they are. For certain training do-
mains such as TED talks [Bentivogli et al.,
2016] it has already been shown that even with
fairly limited training sizes NMT can already
outperform SMT by a large margin.

Larger training sets also introduce noise and
require models to cover a larger number of
words, whereas for practical reasons the vo-
cabulary cannot be arbitrarily increased to fa-
cilitate these extra words. Consequently, train-
ing material that is not relevant for the test set
risks wasting limited entries in the vocabulary
on source words that are not relevant to the test
domain. This is why domain adaptation has
proven to be useful in NMT [Chu et al., 2017]
by tailoring a model towards in-domain data.

While traditional Machine Translation
(MT) approaches perform an inductive
learning (i.e. learn a model from translated
sentences in order to predict unseen ex-
amples), transductive learning approaches
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aim to identify the best training instance to
predict the test set [Bianchini et al., 2016].
Models trained with sentences retrieved by
transductive learning methods are tailored
towards the test set. This is similar to the way
many domain-adaptation methods adapt the
training material to be suitable for a specific
domain.

In this work, we use Feature Decay Al-
gorithms (FDA), a transductive data selection
method that has achieved good results in SMT
and apply it to NMT. Our purpose is twofold:
i) to question the widely held assumption that
in Neural Machine Translation it is always
better to use more data; and ii) to explore
how a transductive data-selection technique
like FDA should be applied in order to build
models that outperform those built with all
training data.

2 Related Work

Feature Decay Algorithms In our work, in
order to extract a subset of the data, we use
Feature Decay Algorithms [Biçici and Yuret,
2011; Biçici et al., 2015; Biçici and Yuret,
2015]. This is a method that uses the source
side of the test set to select sentences that pro-
vide translation examples that are most rele-
vant for this set. Furthermore, FDA aims to
maximize the variability of these selected rel-
evant n-grams in the training set by decreasing
their value as they are being selected.

In order to do that, the features (n-grams ex-
tracted from the test set) are assigned an initial
value, and each sentence of the training data is
scored as the normalized (by dividing by the
number of words) sum of the values of its n-
grams. Then, the method iteratively selects
the sentence with the highest score and adds
it to the set of selected data (which initially is
empty). After selecting a sentence, the values
of the features contained in it are decreased ac-

cording to the decay function. By default, the
value of a feature f is defined as in (1):

decay(f) = init(f)0.5CL(f) (1)

where init(f) is the initial value and CL(f) is
the count of the feature f in selected data.

The score of a sentence s at a particular iter-
ation is the sum of the values of CL(f) of the
features present in s, normalized by the length
of s. The score of a sentence, using the default
configuration in Equation (1), computed as in
(2):

score(s) =

∑
f∈Fs

0.5CL(f)

# words in s
(2)

where Fs is the set of features present in s.
FDA has proven to be useful in Statisti-

cal Machine Translation (SMT) Biçici [2013];
Poncelas et al. [2016, 2017]. Selecting a small
subset of sentences from a parallel corpus us-
ing FDA is enough to train SMT systems that
perform better than systems trained using the
whole parallel corpus.

Neural Machine Translation We use neural
machine translation [Kalchbrenner and Blun-
som, 2013; Cho et al., 2014] in the form
of sequence-to-sequence models [Sutskever
et al.] based on recurrent neural networks
[Bahdanau et al., 2014; Luong et al., 2015].

Fine-tuning A method of domain adaptation
that has been used in NMT is “fine-tuning”,
which involves using a pre-built NMT system
and training it further for several epochs with
smaller amounts of in-domain data.

Most works Luong and Manning [2015];
Freitag and Al-Onaizan [2016] first use gen-
eral domain data for training a system, and
then a different in-domain data set for fine-
tuning. Chu et al. [2017] train a system using
a resource-rich domain corpus, and then use a
small domain corpus to fine-tune the system.
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The approach of Li et al. [2016] is the clos-
est to our work, as they use the information
of the test set to retrieve the data for tuning.
Li et al. [2016] use string similarity measures,
such as Levenshtein [Levenshtein, 1966] or
the cosine similarity of the average of the word
embedding [Mikolov et al., 2013] in order to
find sentences that are close to a given sen-
tence of the test set.

An alternative technique of performing fine-
tuning is proposed by van der Wees et al.
[2017]. They train the model with a dataset
that is varied for each epoch, instead of train-
ing a model with a fixed training set, and then
tuning it with a subset or another dataset for
the last epoch. The size of the data is de-
creased gradually, keeping the sentences that
are more in-domain, weighted using Cross-
Entropy Difference [Axelrod et al., 2011]. The
size of the subset of a training data S at each
epoch e is defined as Equation (3):

n(e) = α · |S| · βb(e−1)/ηc (3)

where α is the relative start size, the fraction
of training data used for the first epochs (rela-
tive start size), β is the fraction of training data
kept in the new selection (retention rate), and
η is the number of epochs for which the same
subset is used.

3 Data selection using the source-side
of the test set

Using the source side of test examples is cen-
tral to machine translation. For example,
SMT effectively uses only those phrase-pairs
that match the source side of a test sentence.
Matching can be done implicitly, inside the de-
coder and during translation, or explicitly, by
filtering the phrase-table with the source-side
of the test set before passing it to the decoder.

The usage of the test set source side by
FDA is conceptually not different from well-
established lazy supervised learning meth-

ods such as K-nearest neighbors, and is
also not fundamentally different from the
usage of source information for matching
phrase-pair selection by SMT grammar extrac-
tors/decoders [Lopez, 2008].

4 Research questions

Due to the good performance achieved by
FDA in SMT, we want to explore whether the
improvements also maintain in NMT. Accord-
ingly, the first question we want to answer is:

• Is FDA also useful for selecting a subset
of training data to train NMT models that
perform better than models trained with
the larger (full) training data without any
selection?

In NMT there are several possible config-
urations for applying a data-selection tech-
niques. One method is to build a complete
model from scratch using just a subset of the
data. Another way is to use fine-tuning to spe-
cialize an existing model.

On the top of that, there are several possi-
bilities of how to tune a model: (i) Perform-
ing fine-tuning (and even in this option, there
are several possibilities as we can choose dif-
ferent epochs of the model to tune); and (ii)
perform a gradual tuning, where at each epoch
the model is trained in using gradually smaller
in-domain subsets

Due to the different configurations avail-
able, our second research question is:

• What configuration should be applied so
that NMT model benefits the most from
FDA techniques?

The test set may not always be accessible
when building the NMT model. However, a
system tuned for a document of one domain
using FDA may be be useful for translating a
different one if they share the domain.
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• Can a model biased towards one test set
using FDA be useful for translating a dif-
ferent test set in the same domain?

5 Experiments

In this work we have constructed a German-to-
English NMT system using the Pytorch port 1

of OpenNMT [Klein et al., 2017] to train the
models. According to the creators of Open-
NMT 2 a good baseline for German-to-English
WMT 2015 data is the one built with default
parameters (2-layer LSTM with 500 hidden
units, vocabulary size of 50002 and 50004 for
source and target language, respectively) exe-
cuted for 13 Epochs. The words in the output
that are not in the vocabulary are replaced with
the word in the source with the highest atten-
tion.

The data sets used in the experiments are
based on the ones used in the work of Biçici
[2013]:

• Training data: The training data provided
in the WMT 2015 [Bojar et al., 2015]3

translation task setting a maximum sen-
tence length of 126 words (4.5M sentence
pairs, 225M words).

• Validation data: 5K randomly sampled
sentences from development sets from
previous years.

We extract subset of different sizes (100K,
200K, 500K, 1M and 2M sentences) from the
training data with FDA using the test set from
the WMT 2015 Translation Task. We use the
default configuration of FDA (i.e. 3-grams as
features, 0.5 as decay factor and 0 as decay
exponent of 0). We perform several experi-
ments building different NMT models using
1https://github.com/OpenNMT/
OpenNMT-py
2http://opennmt.net/Models/
3http://www.statmt.org/wmt15/
translation-task.html

the training data and the data extracted with
FDA. In order to answer the research questions
in Section 4, models are built following differ-
ent configurations:

• FDA experiments: Build NMT models
from scratch, using only the output of
FDA as training data.

• BASE12+FDA experiments: Fine-tune
the last epoch of the baseline model with
the output of FDA. Since the baseline is
run for 13 epochs, we use the model of
the 12th epoch.

• BASE8+FDA experiments: Fine-tune the
the baseline model starting from the 8th
epoch. We choose the 8th epoch not only
because it is close to the middle stage
of the training, but also because it is the
point where fine-tuning and convergence
of the model is initiated by starting the
decay of the learning rate.

• Gradual fine-tuning experiments: Per-
form a gradual fine-tuning where the
complete training data is used on the
first epochs but gradually smaller sizes of
training data are used thereafter. The sen-
tences that are kept for the next iteration
are the top sentences retrieved by FDA
(being smaller at each epoch). The exper-
iments are performed with the same con-
figuration in the original work of van der
Wees et al. [2017], using α = 0.5, β =
0.7 and η = 2 in Equation (3).

In addition, we are interested in exploring
whether the model trained on data retrieved by
FDA using one document could also be useful
for translating different documents in the same
domain. We use the same models (trained with
data using the test set of WMT 2015 as seed)
for translating a different test set, the namely
WMT 2014 [Bojar et al., 2014] news test set,
which is in the same domain.
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6 Results

In Table 1 and 2 we show several evaluation
metrics: BLEU [Papineni et al., 2002], TER
[Snover et al., 2006], METEOR [Banerjee and
Lavie, 2005] and CHRF3 [Popovic, 2015].
These scores give an estimation of the qual-
ity of the output of the experiment when com-
pared to a translated reference. In Table 2 we
have also marked in bold the scores that out-
perform the baseline (Table 1) and computed
the statistical significance (marked with an as-
terisk) with multeval [Clark et al., 2011] for
BLEU, TER and METEOR when compared
to the baseline at level p=0.01 using Bootstrap
Resampling [Koehn, 2004].

baseline
BLEU 0.2474
TER 0.5525
METEOR 0.2798
CHRF3 48.9473

Table 1: Results of the model trained with all available
training data.

In the baseline column of Table 2 we see
the scores of the translation of the test set
(WMT 2015 document) using all training data.
In the column FDA we present the results
of the models built from scratch on different
sizes of data retrieved by FDA (different sub-
tables). As expected, an NMT model trained
with small sets of data achieves worse results
than the baseline. However, we discover that
after selecting enough data, the system trained
with less data outperforms the baseline. Using
just 11% of sentences is enough to obtain bet-
ter results (500K subtable) that are statistically
significant for more than one evaluation met-
ric. We observe the best results when selecting
2 million sentences, which is just 44.6% of the
total number of sentences.

If we compare the models which have
been fine-tuned (columns BASE8+FDA

FDA BASE8
+FDA

BASE12
+FDA

100K lines (2%)
BLEU 0.1951 0.244 0.2458
TER 0.6243 0.5567 0.553
METEOR 0.245 0.2771 0.2793
CHRF3 42.9756 48.5617 48.7841

200K lines (4%)
BLEU 0.2304 0.2445 0.2479
TER 0.5788 0.5562 0.5523
METEOR 0.2722 0.2773 0.2804
CHRF3 47.2747 48.5487 49.0209

500K lines (11%)
BLEU 0.2517* 0.2478 0.2487
TER 0.5601 0.5536 0.5518
METEOR 0.2886* 0.2797 0.2805
CHRF3 49.8314 48.8575 49.0866

1M lines (22.3%)
BLEU 0.2560* 0.2480 0.2475
TER 0.5497 0.5533 0.5524
METEOR 0.2886* 0.279 0.2801
CHRF3 50.0932 48.8372 48.9158

2M lines (44.6%)
BLEU 0.2585* 0.2484 0.2472
TER 0.5454* 0.5543 0.5522
METEOR 0.2894* 0.2795 0.2802
CHRF3 50.0950 48.8752 48.9247

Gradual fine-tuning
BLEU 0.2478 - -
TER 0.5588 - -
METEOR 0.2798 - -
CHRF3 48.8834 - -

Table 2: Comparison of results of system trained in dif-
ferent sizes of training data retrieved by FDA
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and BASE12+FDA), the scores obtained in
BASE12+FDA experiments are better than
BASE8+FDA. Almost all the evaluation
metrics (the only exception is the BLEU score
in subtable of 1M lines) are better when the
fune-tuning is applied in the last epoch rather
than in earlier stages. The BASE12+FDA
experiment performs better than the baseline
when using subsets of more than 200K sen-
tences (we see in column BASE12+FDA that
most of the scores are in bold). However none
of them are statistically significant better than
the baseline.

In the last subtable of Table 2 we show the
performance of the model built using gradual
fine-tuning. Even if it obtains a higher BLEU
score the output is not statistically signifi-
cantly better than the baseline at level p=0.01
for any of the metric.

We have seen that models trained with a
subset of data perform better than those trained
with all the data. As models built from scratch
are not required to extract the words from the
whole training data but only from the subset of
sentences pairs relevant to the test set source,
these are able to focus the limited vocabulary
space more on those words that are relevant
for the test set source. Tuning approaches in
contrast preserve the initial vocabulary, which
means they do not benefit from the more fo-
cused vocabulary training from scratch using
FDA allows, which is one of the principles be-
hind the working of FDA.

6.1 Further analysis: generalisation to
additional test sets within the same
domain

In order to explore whether the models built
are also useful for translating another test set,
we present Table 4. Here we see that the only
scores that are statistically significantly bet-
ter (marked with an asterisk) than the base-
line (Table 3) are those of the FDA experiment

baseline
BLEU 0.2502
TER 0.5558
METEOR 0.2824
CHRF3 49.5967

Table 3: Results of the model trained with all available
training data using a different test set (WMT 2014 test
set).

when 2M sentences are selected. These results
are consistent with those observed in Table 2.

Training models with smaller in-domain
data sets achieves better results. In addition,
fine-tuning applied in the last epoch causes
the results to improve, as in Table 2. How-
ever, while we can still see improvements over
the baseline for BASE12+FDA (numbers in
bold in Table 4, column BASE12+FDA when
500K sentences or more are selected), none
of these improvements are observed for the
BASE8+FDA configuration/column in Table
4. Furthermore none of these improvements
are statistically significant.

The main difference with Table 2 is that
more training data is necessary to achieve re-
sults that are better than the baseline. This is
because in this set of experiments, the vocab-
ulary is not directly obtained from the test set
but from a document in the same domain.

Note that in this set of experiments the seed
used to extract in-domain data is the WMT
2015 test set which contains only 2169 lines.
In future work, we want to explore whether the
results can improve if we use documents with
more sentences as seed.

As we argued in the introduction, using
the source side of the test set is used even
implicitly for fragment selection by all data-
oriented (fragment based) methods, including
SMT, though this may not be widely realized
by practitioners in the field. But these results
show that FDA can give improvements even if
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FDA BASE8
+FDA

BASE12
+FDA

100K lines (2%)
BLEU 0.1625 0.2419 0.2489
TER 0.6633 0.5623 0.5563
METEOR 0.2185 0.279 0.282
CHRF3 39.7603 48.9277 49.4858

200K lines (4%)
BLEU 0.1982 0.2432 0.2501
TER 0.6157 0.5625 0.5566
METEOR 0.2483 0.2786 0.282
CHRF3 44.1265 48.7811 49.4807

500K lines (11%)
BLEU 0.2307 0.2478 0.2502
TER 0.5759 0.5582 0.5555
METEOR 0.2711 0.2813 0.2830
CHRF3 47.752 49.2136 49.6680

1M lines (22.3%)
BLEU 0.2458 0.2484 0.2504
TER 0.5662 0.558 0.5559
METEOR 0.2797 0.2814 0.2828
CHRF3 48.8866 49.2997 49.5829

2M lines (44.6%)
BLEU 0.2530* 0.2491 0.2501
TER 0.5553 0.556 0.5549
METEOR 0.2849* 0.282 0.2826
CHRF3 49.8117 49.3921 49.5804

Gradual fine-tuning
BLEU 0.245 - -
TER 0.5644 - -
METEOR 0.2787 - -
CHRF3 48.8506 - -

Table 4: Comparison of results of system trained in dif-
ferent sizes of training data retrieved by FDA using a
different test set (WMT 2014 test set).

we omit the direct use of the source side of the
test set, as is normally done by FDA.

7 Conclusion and Future Work

In this work we have discovered that using
FDA, it is possible to find a subset of data
that can be used to train an NMT model that
achieves better results than a model trained
with all data. In particular, our best model,
trained on 44.6% of the data improves over the
baseline trained on the full training set, while
also giving significant improvements on other
metrics. Besides the significant improvement
in translation quality, this also implies (in the
chosen training regime, with 13 epochs and
FDA after 8 epochs) a linear reduction in train-
ing time compared to the baseline system. For
example, by reducing the training data by half
for the last 8 epochs we use only 81% of the
original training time4.

In future work, we want to study the impact
of the differences in vocabulary in each experi-
ment. We also want to compare these results to
different data-selection techniques or different
variants of FDA (either using different values
in the parameters, or different variants of the
algorithm such us the one proposed in Ponce-
las et al. [2016, 2017]).
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Robert Östling and Jörg Tiedemann. Neural
machine translation for low-resource lan-
guages. arXiv preprint arXiv:1708.05729,
2017.

Sylwia Ozdowska and Andy Way. Opti-
mal Bilingual Data for French-English PB-
SMT. In Proceedings of the 13th An-
nual Meeting of the European Association
for Machine Translation, pages 96–103,
Barcelona, Spain, 2009.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In
Proceedings of 40th Annual Meeting of the
Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania,
USA, 2002.

Alberto Poncelas, Andy Way, and Antonio
Toral. Extending feature decay algorithms
using alignment entropy. In International
Workshop on Future and Emerging Trends
in Language Technology, pages 170–182,
Seville, Spain, 2016.

Alberto Poncelas, Gideon Maillette
de Buy Wenniger, and Andy Way. Apply-
ing n-gram alignment entropy to improve
feature decay algorithms. The Prague
Bulletin of Mathematical Linguistics, 108
(1):245–256, 2017.

Maja Popovic. chrF: character n-gram F-score
for automatic MT evaluation. In Proceed-
ings of the Tenth Workshop on Statistical
Machine Translation, pages 392–395, Lis-
bon, Portugal, 2015.

Matthew Snover, Bonnie Dorr, Richard
Schwartz, Linnea Micciulla, and John

Makhoul. A study of translation edit
rate with targeted human annotation. In
Proceedings of the 7th Conference of the
Association for Machine Translation in
the Americas, pages 223–231, Cambridge,
Massachusetts, USA, 2006.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.
Sequence to sequence learning with neural
networks. In Proceedings of the 27th Inter-
national Conference on Neural Information
Processing Systems - Volume 2.

Marlies van der Wees, Arianna Bisazza, and
Christof Monz. Dynamic data selection for
neural machine translation. In Proceedings
of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages
1400–1410, Copenhagen, Denmark, 2017.

248


