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Abstract

We present an approach to interactive-
predictive neural machine translation that
attempts to reduce human effort from three
directions: Firstly, instead of requiring hu-
mans to select, correct, or delete segments,
we employ the idea of learning from hu-
man reinforcements in form of judgments
on the quality of partial translations. Sec-
ondly, human effort is further reduced by
using the entropy of word predictions as
uncertainty criterion to trigger feedback
requests. Lastly, online updates of the
model parameters after every interaction
allow the model to adapt quickly. We
show in simulation experiments that re-
ward signals on partial translations sig-
nificantly improve character F-score and
BLEU compared to feedback on full trans-
lations only, while human effort can be re-
duced to an average number of 5 feedback
requests for every input.

1 Introduction

Interactive-predictive machine translation aims at
obtaining high-quality machine translation by in-
volving humans in a loop of user validations
of partial translations suggested by the machine
translation system. This interaction protocol
can easily be fit to neural machine translation
(NMT) (Bahdanau et al., 2015) by conditioning
the model’s word predictions on the user-validated
prefix (Knowles and Koehn, 2016; Wuebker et
al., 2016). User studies conducted by Green et
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al. (2014) for phrase-based machine translation
have shown that the interactive-predictive inter-
action protocol leads to significant reductions in
post-editing effort. Other user studies on interac-
tive machine translation based on post-editing have
shown that human effort can also be reduced by
improving the online adaptation capabilities of the
learning system, both for statistical phrase-based
(Bentivogli et al., 2016) or NMT systems (Kari-
mova et al., 2017).

The goal of our work is to further reduce human
effort in interactive-predictive NMT by combining
the advantages of the interactive-predictive pro-
tocol with the advantages of learning from weak
feedback. For the latter we rely on techniques from
reinforcement learning (Sutton and Barto, 2017),
a.k.a. bandit structured prediction (Sokolov et al.,
2016; Kreutzer et al., 2017; Nguyen et al., 2017) in
the context of sequence-to-sequence learning. Our
approach attacks the problem of reducing human
effort from three innovative directions.

• Firstly, instead of requiring humans to cor-
rect or delete segments proposed by the ma-
chine translation system, we employ the re-
inforcement learning idea of humans provid-
ing reward signals in form of judgments on
the quality of the machine translation. Hu-
man effort is reduced since each partial trans-
lation receives a human reward signal at most
once, rendering it a bandit-type feedback sig-
nal, and each reward signal itself is easier to
obtain than a correction of a translation.

• In order to reduce the amount of feedback
signals even further, we integrate an uncer-
tainty criterion for word predictions to trig-
ger requests for human feedback. Using the
comparison of the current average entropy to
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the entropy of word predictions in the history
as a measure for uncertainty, we reduce the
amount of feedbacks requested from humans
to an average number of 5 requests per input.

• In contrast to previous approaches to
interactive-predictive translation, the param-
eters of our translation system are updated
online after receiving feedback for partial
translations. The update is done according to
an actor-critic reinforcement learning proto-
col where each update pushes up the score
function of the partial translation sampled
by the model (called actor) proportional to a
learned reward function (called critic). Fur-
thermore, since the entropy criterion is based
on the actor, it is also automatically updated.
Frequent updates improve the adaptability of
our system, resulting in a further reduction of
human effort.

The rest of this paper is structured as follows. In
Section 2, we will situate our approach in the con-
text of interactive machine translation and analyze
our contribution related to reinforcement learn-
ing for sequence prediction problems. Details of
our algorithm are given in Section 3. We eval-
uate our approach in a simulation study where
bandit feedback is computed by evaluating par-
tial translations against references under a charac-
ter F-score metric (Popović, 2015) without reveal-
ing the reference translation to the learning sys-
tem (Section 4). We show that segment-wise re-
ward signals improve translation quality over rein-
forcement learning with sparse sentence-wise re-
wards, measured by character F-score and corpus-
based BLEU against references. Furthermore, we
show that human effort, measured by the number
of feedback requests, can be reduced to an average
number of 5 requests per input. These implications
of our new paradigm are discussed in Section 5.

2 Related Work

The interactive-predictive translation paradigm
reaches back to early approaches for IBM-type
(Foster et al., 1997; ?) and phrase-based machine
translation (Barrachina et al., 2008; Green et al.,
2014). Knowles and Koehn (2016) and Wuebker
et al. (2016) presented neural interactive trans-
lation prediction — a translation scenario where
translators interact with an NMT system by ac-
cepting or correcting subsequent target tokens sug-

gested by the NMT system in an auto-complete
style. NMT is naturally suited for this incremental
production of outputs, since it models the proba-
bility of target tokens given a history of target to-
kens sequentially from left to right. In standard su-
pervised training with teacher forcing, this history
comes from the ground truth, while in interactive-
predictive translation it is provided by the prefix
accepted or entered by the user. Both approaches
use references to simulate an interaction with a
translator and compare their approach to phrase-
based prefix-search. They find that NMT is more
accurate in word and letter prediction and recov-
ers better from failures. Similar to their work, we
will experiment in a simulated environment with
references mimicking the translator. However, we
do not use the reference directly for teacher forc-
ing, but only to derive weak feedback from it. Fur-
thermore, our approach employs techniques to re-
duce the number of interactions, and to update the
model more frequently than after each sentence.

Our work is also closely related to approaches
for interactive pre-post-editing (Marie and Max,
2015; Domingo et al., 2018). The core idea is
to ask the translator to mark good segments and
use these for a more informed re-decoding. Both
studies could show a reduction in human effort
for post-editing in simulation experiments. We
share the goal of using human feedback more ef-
fectively by targeting it towards essential transla-
tion segments, however, our approach does adhere
to the left-to-right navigation through translation
hypotheses. In difference to these approaches, we
try to reduce human effort even further by min-
imizing the number of feedback requests and by
frequent model updates.

Reinforcing/penalizing a targeted set of actions
can also be found in recent approaches to rein-
forcement learning from human feedback. For ex-
ample, Judah et al. (2010) presented a scenario
where users interactively label freely chosen good
and bad parts of a policy’s trajectory. The pol-
icy is directly trained with this reinforcement sig-
nal to play a real-time strategy game. Simulations
of NMT systems interacting with human feed-
back have been presented firstly by Kreutzer et al.
(2017), Nguyen (2017), or Bahdanau et al. (2017)
who apply different policy gradient algorithms,
William’s REINFORCE (Williams, 1992) or actor-
critic methods (Konda and Tsitsiklis, 2000; Sutton
et al., 2000; Mnih et al., 2016), respectively. While
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Bahdanau et al.’s (2017) approach operates in a
fully supervised learning scenario, where rewards
are simulated in comparison to references with
smoothed and length-rescaled BLEU, Kreutzer et
al. (2017) and Nguyen et al. (2017) limit the setup
to sentence-level bandit feedback, i.e. only one
feedback is obtained for one completed translation
per input. In this paper, we use actor-critic update
strategies, but we receive simulated bandit feed-
back on the sub-sentence level.

We adopt techniques from active learning to re-
duce the number of feedbacks requested from a
user. González-Rubio et al. (2011; 2012) apply
active learning for interactive machine translation,
where a user interactively finishes the translation
of an SMT system. The active learning component
decides which sentences to sample for translation
(i.e. receive full supervision for) and the SMT sys-
tem is updated online (Ortiz-Martı́nez et al., 2010).
In our algorithm the active learning component de-
cides which prefixes to be rated (i.e. receive weak
feedback for) based on their average entropy. En-
tropy is a popular measure for uncertainty in active
learning: the rationale is to feed the learning algo-
rithm with labeled instances where it is least con-
fident about its own predictions. This uncertainty
sampling algorithm (Lewis and Gale, 1994) is a
popular choice for active learning for NLP tasks
with expensive gold labeling, such as text classifi-
cation (Lewis and Gale, 1994), word-sense disam-
biguation (Chen et al., 2006) and statistical parsing
(Tang et al., 2002). Our method falls into the cate-
gory of stream-based online active learning (as op-
posed to pool-based active learning, selecting in-
stances from a large pool of unlabeled data), since
the algorithm decides on the fly (online) which
translation prefixes of the stream of source tokens
to request feedback for. Instead of receiving gold
annotations, as in the studies mentioned above, our
algorithm receives weaker, bandit feedback — but
the motivation of minimizing human labeling ef-
fort is the same.

3 Reinforcement Learning for
Interactive-Predictive Translation

In the following, we will introduce the key ideas of
our approach, formalize them, and present an al-
gorithm for reinforcement learning for interactive-
predictive NMT.

3.1 Actor-Critic Reinforcement Learning for
NMT

The objective of reinforcement learning methods is
to maximize the expected reward obtainable from
interactions of an agent (here: a machine transla-
tion system) with an environment (here: a human
translator). In our case, the agent/system performs
actions by predicting target words yt according to
a stochastic policy pθ parameterized by an RNN
encoder-decoder NMT system (Bahdanau et al.,
2015) where

pθ(y|x) =

Ty∏

t=1

pθ(yt|x,y<t). (1)

The environment/human can be formalized as a
Markov Decision Process where a state at time t is
a tuple st = 〈x,y<t〉 consisting of the condition-
ing context of the input x and the current produced
history of target tokens y<t. Note that since states
st+1 include the current chosen action yt and can
contain long histories y<t, the state distribution
is sparse and deterministic. The reward distribu-
tion of the environment/critic is estimated by func-
tion approximation in actor-critic methods. The re-
ward estimator (called critic) is trained on actual
rewards and updated after every interaction, and
then used to update the parameters of the policy
(called actor) in a direction of function improve-
ment. We use the advantage actor critic frame-
work of Mnih et al. (2016) which estimates the
advantage Aφ(yt|st) in reward of choosing action
yt in a given state st over the mean reward value
for that state. This framework has been applied to
reinforcement learning for NMT by Nguyen et al.
(2017). The main objective of the actor is then to
maximize the expected advantage

Lθ = Ep(x)pθ(y|x)



Ty∑

t=1

Aφ(yt|st)


 . (2)

The stochastic gradient of this objective for a sam-
pled target word ŷt for an input x can be calculated
following the policy gradient theorem (Sutton et
al., 2000; Konda and Tsitsiklis, 2000) as

∇Lθ(ŷt) =

Ty∑

t=1

[∇ log pθ(ŷt|st)Aφ(ŷt|st)] . (3)

In standard actor-critic algorithms, the parameters
of actor and the critic are updated online at each
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time step. The actor parameters θ are updated
by sampling ŷt from pθ and performing a step in
the opposite direction of the stochastic gradient of
Lθ(ŷt); the critic parameters φ are updated by min-
imizing Lφ(ŷt), defined as the mean squared error
of the reward estimator for sampled target word ŷt
with respect to actual rewards (for more details see
Nguyen et al. (2017)). In our experiments, we sim-
ulate user rewards by character F-score (chrF) val-
ues of partial translations.

3.2 Triggering Human Feedback Requests by
Actor Entropy

Besides the idea of replacing human post-edits by
human rewards, another key feature of our ap-
proach is to minimize the number of requests for
human feedback. This is achieved by computing
the uncertainty of the policy distribution as the av-
erage word-level entropy H̄ of an n-word partial
translation, defined as

H̄(ŷ1:n) =
1

n

n∑

t=1

[
−
∑

v∈V
pθ(v|st) log pθ(v|st)

]
,

(4)
where ŷ1:n = {ŷ1, ŷ2, . . . , ŷn} is a sequence of
n predicted tokens starting at the sentence begin-
ning, V is the output vocabulary, and pθ(v|st) is
the probability of predicting a word in V at state st
of the RNN decoder.

A request for human feedback is triggered when
H̄(ŷ1:n) is higher than a running average γ by a
factor of ε or when <eos> is generated. Upon
receiving a reward from the user, both actor and
critic are updated. Hence, our algorithm takes the
middle ground between updating at each time step
t and performing an update only after a reward
signal for the completed translation is received.
In our simulation experiments, this process is re-
peated until the<eos> token is generated, or when
a pre-defined maximum length, here Tmax = 50, is
reached.

3.3 Simulating Human Rewards on
Translation Quality

Previous work on reinforcement learning in ma-
chine translation has simulated human bandit
feedback by evaluating full-sentence translations
against references using per-sentence approxima-
tions of BLEU (Sokolov et al., 2016; Kreutzer
et al., 2017; Nguyen et al., 2017). We found
that when working with partial translations, user
feedback on translation quality can successfully be

simulated by computing the chrF-score (Popović,
2015) of the translation with respect to the refer-
ence translation truncated to the same length. If
the length of the translation exceeds the length of
the reference, no truncation is used. We denote
rewards as a function R(ŷ1:t) of only the partial
translation ŷ1:t, in order to highlight the fact that
rewards are in principle independent of reference
translations.

3.4 Sampling versus Forced Decoding via
Prefix Buffer Ξ

The standard approach to estimate the expected re-
ward in policy gradient techniques is to employ
Monte-Carlo methods, in specific, multinomial
sampling of actions. This guarantees an unbiased
estimator and allows sufficient exploration of the
action space in learning. In contrast, interactive-
predictive machine translation usually avoids ex-
ploration in favor of exploitation by decoding the
best partial translation under the current model af-
ter every interaction. Since in our framework,
learning and decoding are interleaved, we have to
find the best compromise between exploration and
exploitation.

The general modus operandi of our framework
is simultaneous exploration and exploitation by
multinomial sampling actions from the current
policy. However, in cases where a partial trans-
lation receives a high user reward, we store it in a
so-called prefix buffer Ξ, and perform forced de-
coding by feeding the prefix to the decoder for the
remaining translation process.

3.5 Algorithm for Bandit
Interactive-Predictive NMT

Algorithm 1 gives pseudo-code for Bandit-
Interactive-Predictive Neural Machine
Translation (BIP-NMT). The algorithm re-
ceives an input source sequence xi (line 4), and
incrementally predicts a sequence of output target
tokens up to length Tmax (line 6). At each step t, a
partial translation ŷ1:t is sampled from the policy
distribution pθ(·|xi,y<t,Ξ) that implements an
RNN encoder-decoder with an additional prefix
buffer Ξ for forced decoding (line 7). User
feedback is requested in case the average entropy
H̄(ŷ1:t) of the policy is larger than or equal to a
running average by a factor of ε or when <eos> is
generated (line 9). If the reward R(ŷ1:t) is larger
than or equal to a threshold µ, the prefix is stored
in a buffer for forced decoding (lines 11-12). Next,
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Algorithm 1: Algorithm BIP-NMT
1: Input: θ0, φ0, αA, αC
2: Output: Estimates θ∗, φ∗

3: for i = 1, . . . N do
4: Receive xi

5: Initialize γ ← 0, Ξ← ∅
6: for t = 1 . . . Tmax do
7: Sample ŷ1:t ∼ pθt−1(·|xi,y<t,Ξ)
8: Compute H̄(ŷ1:t) using Eq. (4)
9: if H̄(ŷ1:t)− γt−1 ≥ ε× γt−1 or <eos>

in ŷ1:t then
10: Receive feedback R(ŷ1:t)
11: if R(ŷ1:t) ≥ µ then
12: Ξ← ŷ1:t
13: end if
14: Update θt ← θt−1 − αA∇Lθt−1(ŷt)

(Eq. (3))
15: Update φt ← φt−1 − αC∇Lφt−1(ŷt)

(see Eq. (7) in Nguyen et al. (2017))
16: end if
17: Update γt = γt−1 + 1

t

(
H̄(ŷ1:t)− γt−1

)

18: break if <eos> in ŷ1:t
19: end for
20: end for

updates of the parameters of the policy (line 14),
critic (line 15), and average entropy (line 17) are
performed. Actor and critic each use a separate
learning rate schedule (αA and αC).

Figure 1 visualizes the interaction of the BIP-
NMT system with a human for a single translation:
Feedback is requested when the model is uncertain
or the translation is completed. It is directly used
for a model update and, in case it was good, for
filling the prefix buffer, before the model moves to
generating the next (longer) partial translation.

4 Experiments

We simulate a scenario where the learning NMT
system requests online bandit feedback for partial
translations from a human in the loop. The fol-
lowing experiments will give an initial practical as-
sessment of our proposed interactive learning algo-
rithm. Our analysis of the interactions between ac-
tor, critic and simulated human will provide further
insights into the learning behavior of BIP-NMT.

4.1 Setup

Data and Preprocessing. We conduct experi-
ments on French-to-English translation on Eu-

START
Predict 
partial

translation 
Request

feedback?

Update
parameters 

Good
prefix? 

Prefix
Buffer

No

YesYes

NMT

STOP EOS? 
Yes

No

Figure 1: Interaction of the NMT system with the human
during learning for a single translation.

Dataset EP (v.5) n̄ NC (WMT07) n̄

Training (filt.) 1,346,679 23.5 9,216 21.9
Validation 2,000 29.4 1,064 24.1
Test - - 2,007 24.8

Table 1: Number of parallel sentences and average number of
words per sentence in target language (en), denoted by n̄, for
training (filtered to a maximum length of 50), validation and
test sets for French-to-English translation for Europarl (EP)
and News Commentary (NC) domains.

roparl (EP) and News Commentary (NC) domains.
The large EP parallel corpus is used to pre-train the
actor in a fully-supervised setting with a standard
maximum likelihood estimation objective. The
critic network is not pre-trained. For interactive
training with bandit feedback, we extract 10k sen-
tences from the NC corpus. Validation and test
sets are also chosen from the NC domain. Note
that in principle more sentences could be used,
however, we would like to simulate a realistic sce-
nario where human feedback is costly to obtain.
Data sets were tokenized and cleaned using Moses
tools (Koehn et al., 2007). Furthermore, sen-
tences longer than 50 tokens were removed from
the training data. Each language’s vocabulary con-
tains the 50K most frequent tokens extracted from
the two training sets. Table 1 summarizes the data
statistics.

Model Configuration and Training. Following
Nguyen et al. (2017), we employ an architecture
of two independent but similar encoder-decoder
frameworks for actor and critic, respectively, each
using global-attention (Luong et al., 2015) and uni-
directional single-layer LSTMs1. Both the size
of word embedding and LSTM’s hidden cells are
500. We used the Adam Optimizer (Kingma and

1Our code can be accessed via the link https://github.
com/heidelkin/BIPNMT.
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Figure 2: Average cumulative entropy during one epoch
of BIP-NMT training with µ = 0.8 and ε =
{0, 0.25, 0.5, 0.75}.

Ba, 2015) with β1 = 0.9 and β2 = 0.999. Dur-
ing supervised pre-training, we train with mini-
batches of size 64, and set Adam’s α = 10−3.
A decay factor of 0.5 is applied to α, starting
from the fifth pass, when perplexity on the valida-
tion set increases. During interactive training with
bandit feedback, we perform true online updates
(i.e. mini-batch size is 1) with Adam’s α hyper-
parameter kept constant at 10−5 for both the actor
and the critic. In addition, we clip the Euclidean
norm of gradients to 5 in all training cases.

Baselines and Evaluation. Our supervised out-
of-domain baseline consists of the actor NMT sys-
tem described as above, pre-trained on Europarl,
with optimal hyperparameters chosen according to
corpus-level BLEU on the validation set. Starting
from this pre-trained EP-domain model, we fur-
ther train a bandit learning baseline by employing
Nguyen’s (2017) actor-critic model, trained on one
epoch of sentence-level simulated feedback. The
choice of comparing models after one epoch of
training is a realistic simulation of a human-system
interaction on a sequence of data where each input
is seen only once. The feedback signal is simulated
with chrF, using character-n-grams of length 6 and
a value of β = 2 of the importance factor of recall
over precision. While during training exploration
through sampling is essential, during inference and
for final model evaluation we use greedy decoding.
We evaluate the trained models on our test set from
the NC-domain using average sentence-level chrF
and standard corpus-level BLEU (Papineni et al.,
2002) to measure how well they got adapted to the
new domain.

4.2 Results and Analysis

Table 2 shows the results of an evaluation of a
baseline NMT model pre-trained by maximum
likelihood on out-of-domain data. This is com-
pared to an actor-critic baseline that trains the
model of Nguyen et al. (2017) on sentence-level
in-domain bandit feedback for one epoch. This
approach can already improve chrF (+0.95) and
BLEU (+0.55) significantly by seeing bandit feed-
back on in-domain data. BIP-NMT, with opti-
mal hyperparameters ε = 0.75, µ = 0.8 chosen
on the validation set, is trained in a similar way
for one epoch, however, with the difference that
even weaker sub-sentence level bandit feedback is
provided on average 5 times per input. We see
that BIP-NMT significantly improves both BLEU
(+2.18) and chrF (+2.04) by even larger margins.

Table 3 analyzes the impact of the metaparame-
ter ε of the BIP-NMT algorithm. We run each ex-
periment three times and report mean results and
standard deviation. ε controls the margin by which
the average word-level entropy needs to increase
with respect to the running average in order to
trigger a feedback request. Increasing this margin
from 0 to 0.25, 0.5 and 0.75 corresponds to de-
creasing the number of feedback requests by a fac-
tor of 3 from around 16 to around 5. This reduction
corresponds to a small increase in chrF (+0.29) and
a small decrease in BLEU (-0.47).

Figure 2 shows another effect of the metaparam-
eter ε: It shows the variation of the average word-
level entropy H̄ over time steps of the algorithm
during one epoch of training. This is computed as
a cumulative average, i.e., the value of H̄ is ac-
cumulated and averaged over the number of tar-
get tokens produced for all inputs seen so far. We
see that average cumulative entropy increases in
the beginning of the training, but then decreases
rapidly, with faster rates for smaller values of ε,
corresponding to more updates per input.

The metaparameter µ controls the threshold of
the reward value that triggers a reuse of the pre-
fix for forced decoding. In our experiments, we set
this parameter to a value of 0.8 in order to avoid re-
translations of already validated prefixes, even if
they might sometimes lead to better final full trans-
lations. We found the effect of lowering µ from
1.0 to 0.8 negligible on the number of feedback re-
quests and on translation quality but beneficial for
the usability.
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System chrF (std) BLEU (std) ∆ chrF ∆ BLEU

Out-of-domain NMT 61.30 24.77 0 0
Nguyen et al. (2017) 62.25 (0.08) 25.32 (0.02) +0.95 +0.55
BIP-NMT (ε = 0.75, µ = 0.8) 63.34 (0.12) 26.95 (0.12) +2.04 +2.18

Table 2: Evaluation of pre-trained out-of-domain baseline model, actor-critic learning on one epoch of sentence-level in-domain
bandit feedback (Nguyen et al., 2017) and BIP-NMT with settings ε = 0.75, µ = 0.8 trained on one epoch of sub-sentence
level in-domain bandit feedback. Results are given on the NC test set according to average sentence-level chrF and corpus-level
BLEU. Result differences between all pairs of systems are statistically significant according to multeval (Clark et al., 2011).

ε chrF (std) BLEU (std) Avg # Requests ∆ chrF ∆ BLEU ∆ Avg # Requests

0 61.86 (0.06) 25.54 (0.17) 15.91 (0.01) 0 0 0
0.25 62.15 (0.17) 25.84 (0.13) 11.06 (0.07) +0.29 +0.3 -5
0.5 61.95 (0.05) 25.46 (0.09) 7.26 (0.03) +0.09 -0.08 -9
0.75 62.15 (0.04) 25.07 (0.12) 4.94 (0.02) +0.29 -0.47 -11

Table 3: Impact of entropy margin ε on average sentence-level chrF score, corpus BLEU and average number of feedback
requests per sentence on the NC validation set. The feedback quality threshold µ is set to 0.8 for all models.

4.3 Example Protocols

Table 4 presents user-interaction protocols for
three examples encountered during training of
BIP-NMT with ε = 0.75, µ = 0.8. For illustra-
tive purposes, we chose examples that differ with
respect to the number of feedback requests, the
use of the prefix buffer, and the feedback values.
Prefixes that receive a feedback ≥ µ and are thus
stored in the buffer and re-used for later samples
are indicated by underlines. Advantage scores < 0
indicate a discouragement of individual tokens and
are highlighted in red.

In the first example, the model makes frequent
feedback requests (in 8 of 17 decoding steps) and
fills the prefix buffer due to the high quality of the
samples. The second example can use the prefix
buffer only for the first two tokens since the feed-
back varies quite a bit for subsequent partial trans-
lations. Note how the token-based critic encour-
ages a few phrases of the translations, but discour-
ages others. The final example shows a translation
where the model is very certain and hence requests
feedback only after the first and last token (mini-
mum number of feedback requests). The critic cor-
rectly identifies problematic parts of the translation
regarding the choice of prepositions.

5 Conclusion

We presented a novel algorithm, coined BIP-NMT,
for bandit interactive-predictive NMT using re-
inforcement learning techniques. Our algorithm
builds on advantage actor-critic learning (Mnih et

al., 2016; Nguyen et al., 2017) for an interactive
translation process with a human in the loop. The
advantage over previously presented algorithms
for interactive-predictive NMT is the low human
effort for producing feedback (a translation quality
judgment instead of a correction of a translatioin),
even further reduced by an active learning strategy
to request feedback only for situations where the
actor is uncertain.

We showcased the success of BIP-NMT with
simulated feedback, with the aim of moving to real
human feedback in future work. Before deploying
this algorithm in the wild, suitable interfaces for
giving real-valued feedback have to be explored
to create a pleasant user experience. Furthermore,
in order to increase the level of human control, a
combination with the standard paradigm that al-
lows user edits might be considered in future work.

Finally, our algorithm is in principle not limited
to the application of NMT, but can furthermore —
thanks to the broad adoption of neural sequence-
to-sequence learning in NLP — be extended to
other structured prediction or sequence generation
tasks.
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SRC depuis 2003 , la chine est devenue le plus important partenaire commercial du mexique après les etats-unis .
REF since 2003 , china has become mexico ’s most important trading partner after the united states . < /s>

Partial sampled translation Feedback
since 1
since 2003 , china has 1
since 2003 , china has become 1
since 2003 , china has become mexico 1
since 2003 , china has become mexico ’s 1
since 2003 , china has become mexico ’s most 1
since 2003 , china has become mexico ’s most important 1
since 2003 , china has become mexico ’s most important trading partner
after the us . < /s>

0.8823

SRC la réponse que nous , en tant qu’ individus , acceptons est que nous sommes libres parce que nous nous gouvernons
nous-mêmes en commun plutôt que d’ être dirigés par une organisation qui n’ a nul besoin de tenir compte de notre existence .

REF the answer that we as individuals accept is that we are free because we rule ourselves in common ,
rather than being ruled by some agency that need not take account of us . < /s>

Partial sampled translation Feedback
the 1
the answer 1
the answer we 0.6964
the answer we , 0.6246
the answer we as individuals allow to 14 are 0.6008
the answer we , as individuals , go down to speak 8 , are being free because we govern ourselves
, rather from being based together

0.5155

the answer we , as people , accepts is that we principle are free because we govern ourselves ,
rather than being led by a organisation which has absolutely no need to take our standards . < /s>

0.5722

SRC lors d’ un rallye “journée jérusalem” tenu à l’ université de téhéran en décembre 2001 , il a prononcé l’ une des menaces
les plus sinistres du régime .

REF at a jerusalem day rally at tehran university in december 2001 , he uttered one of the regime ’s most sinister threats . < /s>

Partial sampled translation Feedback
in 0
in a round of jerusalem called a academic university in teheran in december 2001 ,
he declared one in the most recent hostility to the regime . < /s>

0.5903

Table 4: Interaction protocol for three translations. These translations were sampled from the model when the algorithm
decided to request human feedback (line 10 in Algorithm 1). Tokens that get an overall negative reward (in combination with
the critic), are marked in red, the remaining tokens receive a positive reward. When a prefix is good (i.e. ≥ µ, here µ = 0.8) it
is stored in the buffer and used for forced decoding for later samples (underlined).
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