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Abstract

Translation Quality Estimation (QE) aims
to estimate the quality of an automated
machine translation (MT) output without
any human intervention or reference trans-
lation. With the increasing use of MT
systems in various cross-lingual applica-
tions, the need and applicability of QE
systems is increasing. We study exist-
ing approaches and propose multiple neu-
ral network approaches for sentence-level
QE, with a focus on MT outputs in In-
dian languages. For this, we also intro-
duce five new datasets for four language
pairs: two for English–Gujarati, and one
each for English–Hindi, English–Telugu
and English–Bengali, which includes one
manually post-edited dataset for English–
Gujarati. These Indian languages are spo-
ken by around 689M speakers world-wide.
We compare results obtained using our
proposed models with multiple state-of-
the-art systems including the winning sys-
tem in the WMT17 shared task on QE
and show that our proposed neural model
which combines the discriminative power
of carefully chosen features with Siamese
Convolutional Neural Networks (CNNs)
works best for all Indian language datasets.

1 Introduction

In recent years, Machine Translation (MT) sys-
tems have seen significant improvements. How-
ever, the quality of the output obtained from these
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MT systems is neither perfect nor consistent across
multiple test cases. The task of Translation Quality
Estimation (QE) aims to estimate the quality of an
MT output without any reference translation.

QE is now critically important with the increas-
ing deployment of MT systems in practical envi-
ronments. QE has been shown to be extremely use-
ful and is widely used in Computer Aided Trans-
lation (CAT) environments (Escartı́n et al., 2017;
Turchi et al., 2015). QE can also be useful in
various applications and systems such as cross-
lingual summarization, cross-lingual information
retrieval, etc., which rely on high quality transla-
tions. With the help of QE, such systems can au-
tomatically pick the best translation out of several
proposed translations by multiple MT systems. If
the estimated quality is still unsatisfactory the sys-
tem can alert the user about the poor quality, or
fall-back to some alternate way to find a better
translation.

Word, phrase, sentence or document level
QE has been studied extensively by various re-
searchers. WMT12-17 (the 7th to 10th workshops
on statistical machine translation and the 1st and
2nd conferences on machine translation) held a
shared task on QE (Callison-Burch et al., 2012;
Bojar et al., 2013, 2014, 2015, 2016, 2017). The
shared task has explored QE on several datasets
and settings for English–Spanish and English–
German language pairs over years.

Little work has been done to study QE for In-
dian languages. In this work, we focus on four In-
dian languages: Telugu, Hindi, Gujarati and Ben-
gali. According to a 2007 estimate1, there are 366

1https://web.archive.org/web/
20071203134724/http://encarta.msn.com/
media_701500404/Languages_Spoken_by_
More_Than_10_Million_People.html

Pérez-Ortiz, Sánchez-Mart́ınez, Esplà-Gomis, Popović, Rico, Martins, Van den Bogaert, Forcada (eds.)
Proceedings of the 21st Annual Conference of the European Association for Machine Translation, p. 159–168
Alacant, Spain, May 2018.



million Hindi speakers (across five countries), 207
million Bengali speakers (across four countries),
69.7 million Telugu speakers (across four coun-
tries), and 46.1 million Gujarati speakers (across
eight countries) worldwide, denoting the impor-
tance of our choice of these datasets. While En-
glish is a West Germanic language that originated
from Anglo-Frisian dialects, Hindi, Bengali and
Gujarati are Indo-Aryan languages2, and Telugu is
a Dravidian language3.

Indian languages are relatively free word order
languages and morphologically richer when com-
pared to English. Additionally, some Indian lan-
guages, for example Telugu, are highly agglutina-
tive. In comparison with English, Hindi has ap-
proximately twice as many vowels and consonants.
Although Hindi has tenses similar to those used in
English, there is a lack of correspondence in their
use to express various meanings. Gender and sta-
tus relations between speakers causes morphologi-
cal changes in Hindi words, unlike English. Com-
pared to English, Bengali uses onomatopoeia ex-
tensively, and so one has to convey that through
particular adjectives and adverbs. Besides these
differences, there are some phrases, idioms and
compound words in English which do not have
equivalents in Indian languages due to significant
cultural differences.

Because of the differences in the characteristics
of the languages involved, existing methods for QE
may or may not be effective for all language pairs.
We experiment with multiple datasets in different
language pairs, each involving English and an In-
dian language, to study the effectiveness of various
models on these datasets.

In addition to the different characteristics of
Indian languages, many of these languages are
resource-scarce, from a Computational Linguistics
perspective. Linguistic resources like dependency
parsers or semantic role labelers are not available
for most languages we use in this paper. Addi-
tionally, large amount of manually annotated data,
such as parallel corpora are also difficult and costly
to obtain. Hence, in this work, we try to minimize
dependency on external large datasets, especially
ones which require manual annotation. We hope
that the QE accuracy can be further improved us-
ing such extra information, and plan to explore it

2https://en.wikipedia.org/wiki/
Indo-Aryan_languages
3https://en.wikipedia.org/wiki/Dravidian_
languages

as future work.
To study QE for Indian languages, we also in-

troduce five datasets, for four different language
pairs. One dataset, news.gu, described in Sec-
tion 3.2 has been prepared by manually post-
editing MT outputs. The other four datasets, de-
scribed in Section 3.3 make use of existing paral-
lel corpora to create datasets for QE. All datasets
are prepared using Neural Machine Translation
(NMT) API provided by Google Translate4. To the
best of our knowledge, we are the first to study QE
when using the NMT system.

In this paper, we evaluate the effectiveness
of various state-of-the-art systems (proposed for
other language pairs) including the winning sys-
tem of the WMT17 shared task on various Indian
language datasets. We also propose and evalu-
ate multiple neural network models for QE. Fi-
nally we show that one of our proposed models
CNN.Combined, described in Section 4.2.2, gives
best results on most Indian language datasets. Our
major contributions through this paper are as fol-
lows.

• Introduction of a manually post-edited QE
dataset for English–Gujarati language pair
and four other datasets prepared using paral-
lel corpora.

• Proposal of multiple neural network architec-
tures for QE, of which the CNN.Combined
model is shown to work best for most Indian
language datasets in our experiments.

• Evaluation and comparison of several meth-
ods of QE on multiple datasets including the
WMT17 English–German dataset.

The rest of the paper is organized as follows. We
describe related work in Section 2. Section 3 de-
scribes the datasets used for the experiments. Sec-
tion 4 describes different methods and proposed
models used for our experiments. Section 5 con-
tains a few notes about the experimental settings.
Section 6 provides analysis and related discus-
sions. Finally, we conclude with a brief summary
in Section 7.

2 Related Work

Related previous work on translation quality esti-
mation can be organized into two broad kinds of
4https://translate.google.com/
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approaches: manual feature engineering based ap-
proaches, and neural networks based approaches.
WMT12-17 shared task on QE (Callison-Burch et
al., 2012; Bojar et al., 2013, 2014, 2015, 2016,
2017) has recorded the overview and progress of
the field over years.

2.1 Manual Feature Engineering based
Approaches

Many previous studies on QE were predominantly
based on feature engineering. Manual feature en-
gineering can be costly, especially because it needs
to be done for each language pair separately.

For Indian languages, few studies have been
done, predominantly for English–Hindi language
pair. Most of the approaches, most recently Joshi
et al. (2016), are based on manual feature engi-
neering, and traditional classification methods. We
show in our experiments, that the neural network
based models perform significantly better for all
language pairs and datasets.

2.2 Neural Network based Approaches

In recent years, many deep learning methods have
also been proposed for QE. Patel and Sasikumar
(2016) proposed the use of Recurrent Neural Net-
work Language Modeling (RNN-LM) to predict
word-level quality labels using bilingual context
window proposed by Kreutzer et al. (2015). Sev-
eral other neural models also use the bilingual con-
text window approach to compose the input layer,
which takes the target word and the aligned source
word and their contexts as input (Martins et al.,
2016, 2017a, 2017b). These models, however, re-
quire word alignment information from the MT
system or need to align the words using some ex-
ternal parallel corpora. Since our datasets are pre-
pared using neural MT systems, we do not have
alignment information from MT system. Addition-
ally, we do not have enough resources to create ex-
ternal word-aligners for each language-pair. As a
result, we do not include systems that need word
alignment information in our experiments.

Kim and Lee (2016a), Kim and Lee (2016b),
Kim et al. (2017a) and Kim et al. (2017b) have
studied and proposed different end-to-end neu-
ral network based models, primarily based on
predictor-estimator architecture. We compare with
the architecture described by Kim et al. (2017a) in
our experiments. The architecture is explained in
Section 4.1.2.

Dataset Target Language Train Dev Test

wmt17 German (de) 23,000 1,000 2,000
news.gu Gujarati (gu) 4,489 561 562
ilci.gu Gujarati (gu) 40,000 5,000 5,000
ilci.hi Hindi (hi) 40,000 5,000 5,000
ilci.te Telugu (te) 40,000 5,000 5,000
ilci.bn Bengali (bn) 40,000 5,000 5,000

Table 1: Target Languages and the Number of Sentence Pairs
in each Dataset

Paetzold and Specia (2017) propose a character-
level Convolutional Neural Network (CNN) archi-
tecture combined with engineered features. The
system is comparable to our proposed work in
two ways: 1) They do not use any external data
or resources. 2) They also use a CNN-based ar-
chitecture for QE. However, the final architec-
tures are significantly different. Their best system,
SHEF/CNN-C+F, is explained in Section 4.1.3.

3 Datasets

We used six different datasets for five different lan-
guage pairs for our experiments. Source language
is English for all the datasets. All datasets are split
into the typical train, development and test sets.
Table 1 shows the target languages and sizes of all
the datasets. We describe these datasets in detail in
this section.

3.1 WMT17: English-German Dataset

We use the English–German dataset released as
part of the WMT17 QE Shared Task (Bojar et al.,
2017). The dataset contains text from the Infor-
mation Technology domain, translated from En-
glish to German using a statistical MT system and
post-edited by professional translators. The dataset
contains source sentences, MT sentences and
post-edited sentences, along with Human-targeted
Translation Edit Rate (HTER) scores (Snover et
al., 2006) for each sentence pair.

Translation Edit Rate (TER) is computed as the
minimum number of insertion, deletion, substitu-
tion and shift operations needed to be done on MT
sentence to match a reference sentence, normal-
ized by the length of the reference sentence. The
way the HTER differs from TER is that for HTER,
there is no pre-decided reference sentence. There
is a human in the loop. The human expert gen-
erates the targeted reference by editing the system
hypothesis, until it is fluent and has the same mean-
ing as the original source sentence. We use the
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HTER scores reported as quality scores for this
dataset. The dataset contains 23,000, 1,000 and
2,000 sentences in the training, development and
test sets respectively.

3.2 news.gu: English-Gujarati Dataset

We introduce a new QE dataset for the English–
Gujarati language pair, prepared using the work-
bench published by Jhaveri et al. (2018). News
articles from various sources were translated to
Gujarati from English using the Neural Ma-
chine Translation (NMT) API provided by Google
Translate and post-edited by one professional
translator (different from the authors), who is also
a native Gujarati speaker, over a duration of two
months. The quality scores, HTER, were com-
puted using the tercom 0.7.25 tool. The dataset
contains a total of 5612 sentences, which was split
randomly into training, development and test sets
of sizes 4489, 561 and 562 sentences respectively.

3.3 ILCI Parallel Corpora

A parallel corpora for many Indian language pairs,
including English has been released by the Indian
Languages Corpora Initiative (ILCI)6 (Choudhary
and Jha, 2014). We use the parallel corpora of
the health and the tourism domain, having 25,000
sentences for each of the domains for each lan-
guage pair. We prepare the QE datasets using this
for translation from English to four Indian lan-
guages, namely, English–Gujarati, English–Hindi,
English–Telugu and English–Bengali.

To use the parallel corpora for the QE task, we
obtain translations using Google Translate7 from
English to all the target languages. We computed
the quality scores as the TER between the MT out-
put and the reference sentences using tercom 0.7.2.

The datasets contain a total of 50,000 sentences
each, which was divided randomly into training,
development and test sets of sizes 40,000, 5000
and 5000 sentences respectively.

4 Models for Translation Quality
Estimation

This section describes various models used for ex-
periments and evaluation. We first discuss the
baseline models in Section 4.1 and then the pro-
posed models in Section 4.2.

5http://www.cs.umd.edu/˜snover/tercom/
6http://tdil-dc.in
7https://translate.google.com/

4.1 Baseline Models
In this sub-section, we discuss previously pro-
posed models for QE and their variations. Sec-
tion 4.1.1 describes baseline model based on Sup-
port Vector Regression (SVR). Section 4.1.2 de-
scribes POSTECH.two-step and POSTECH.multi-
task models. Section 4.1.3 describes the
SHEF/CNN-C+F model.

4.1.1 SVR Baseline
The official baseline for WMT17 QE shared task

is a Support Vector Regression (SVR) (Drucker et
al., 1997) model trained with 17 features for the
task. Some of these features use external data such
as language models or word alignments trained
on large parallel corpora. These features were
adapted to use whatever scarce resources are avail-
able for our set of target languages as follows. Two
features requiring word alignment tables were re-
moved. No external data was used to compute the
language models or n-gram counts. Additionally,
a few features were added such as, average tar-
get token length and depth of parse tree of source
sentence. The source parse tree were computed
using Stanford CoreNLP toolkit (Manning et al.,
2014), this was possible as all the datasets have
English as the source language. We call this model
SVR.baseline.

4.1.2 POSTECH Approaches
POSTECH’s participation was the winning sys-

tem at the WMT17 shared task, which uses a
predictor-estimator architecture, many variations
of which have been studied and proposed by Kim
et al. (2017a), Kim et al. (2017b), Kim and Lee
(2016a) and Kim and Lee (2016b). We follow the
architecture described by Kim et al. (2017a) for
this work.

Kim et al. (2017a) describe a two-step end-
to-end neural QE architecture, called predictor-
estimator architecture. The predictor-estimator ar-
chitecture consists of two types of neural network
models: 1) word predictor, which is trained on par-
allel corpora, i.e. using source and reference trans-
lations. 2) quality estimator, a neural regressor,
trained on QE data.

The first model, word predictor, tries to predict
each word in the target sentence using the source
sentence and the remaining target sentence as con-
text. They propose an RNN encoder-decoder (Cho
et al., 2014; Bahdanau et al., 2014) model based
word predictor, which uses bidirectional RNN in
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encoder as well as decoder to use the source sen-
tence information as well as the entire left and right
context of target sentence to predict each word.

The estimator part, then, extracts a quality es-
timation feature vector (QEFV) for each word in
MT sentence using internal network connections
of the word predictor network. For sentence-level
QE, the QEFVs are then passed to bidirectional
RNN to obtain a summary vector, which, then, is
passed to regression layer which generates quality
score for sentences.

We define two variations of the model for
our experiments: POSTECH.two-step and
POSTECH.multi-task.

POSTECH.two-step trains the two models, word
predictor and quality estimator separately as de-
scribed by Kim et al. (2017a). Input to the word
prediction step is source and reference sentences,
and the outputs are the predicted words. Whereas,
the quality estimator takes source and MT sentence
as input and outputs quality score for the sentence.
No external parallel corpora have been used for
pre-training the word predictor as it is not avail-
able for most of the language pairs we work with.

The main idea of POSTECH system proposed
by Kim et al. (2017a) is to take advantage of pre-
training of word predictor using large external par-
allel corpora. Since we do not use any external cor-
pora, we propose a variation of this model, which
jointly learns both, word predictor and quality es-
timator, in a multi-task setting. We call this model
POSTECH.multi-task. The inputs to this model are
the source and MT sentence, and the outputs are
predicted words and quality score.

Recently, Kim et al. (2017b) proposed single-
level and multi-level stack propagation based
learning for the two steps. We experimented with
single-level stack propagation, as we do not have
necessary training data for all sentence, word and
phrase level QE, which the multi-level model re-
quires. In our experiments, we did not see any
significant improvement across datasets between
single-level stack propagation (Kim et al., 2017b)
and two-step learning (Kim et al., 2017a).

4.1.3 SHEF/CNN Approach
Paetzold and Specia (2017) propose an archi-

tecture that combines engineered features and
character-level information using deep Convolu-
tional Neural Networks (CNN) and Multi-Layered
Perceptrons (MLP). The model SHEF/CNN-C+F
has three parts, sentence encoders for source and

MT sentence, MLP for engineered features and a
final layer to combine both and generate quality
scores.

The sentence encoder takes the sequence of
characters as input, and converts it to a sequence
of character embeddings. They stack four pairs
of convolution and max-pooling for each window
size. Each stack is applied to character embed-
dings in parallel, and later flattened and concate-
nated to get a sentence vector. Two different en-
coders, each for source and MT sentences are
created. The encoded source and MT sentence
are then concatenated with the encoded features,
which are obtained by applying MLP on engi-
neered features. A final layer is applied on the
concatenated vectors, which predicts the quality
scores.

4.2 Proposed Models

In this section, we discuss our proposed neu-
ral architectures for QE. Section 4.2.1 describes
two proposed RNN-based models: RNN and
RNN.summary-attention. Section 4.2.2 describes
the proposed CNN-based models: CNN.Siamese,
CNN.Combined, and CNN.Combined.no-features,

4.2.1 Recurrent Neural Network (RNN)
Approaches

Encoder
BiGRU

Source Sentence

Decoder
BiGRU

MT Sentence

Summary BiGRU

Quality

Attention

Regression

w1   w2    w3     ………      wm

w1   w2    w3     ………      ws

Summary Vector

Figure 1: Architecture of the RNN model

The POSTECH architecture, described in Sec-
tion 4.1.2, takes advantage of the pre-training of
word predictor on large external parallel corpora.
Since no such datasets are easily available for most
language pairs in our case, we propose a simplified
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version of POSTECH removing the word predic-
tion step, and simplifying the QEFV extraction.

The model takes source sentence and MT sen-
tence as input. A bidirectional RNN encoder, is
applied on the source sentence, which gives a fixed
size representation, which in turn is used as the ini-
tial state for decoder. Decoder is also a bidirec-
tional RNN, with attention over the encoder out-
puts for each word and predicts a QEFV for each
word in MT sentence. The outputs of decoder, QE-
FVs, are then “summarised” by another bidirec-
tional RNN, to generate a summary vector for the
sentence pair. This summary vector is then passed
to a regression layer, which outputs the predicted
quality score. The predicted quality score is com-
pared with the actual quality scores under the L2
loss function for training the network using back-
propagation. Figure 1 shows the architecture of the
RNN model.

Encoder
BiGRU

Decoder
BiGRU

Summary BiGRU

Quality

Attention

Summary Attention

Regression

Source Sentence
w1    w2    w3     ………..      ws

MT Sentence
w1    w2    w3     ………..      wm

Summary Vector

Figure 2: Architecture of the RNN.summary-attention model

We also propose a variation of this model, called
RNN.summary-attention, in which the summary
vectors are created using attention mechanism over
bidirectional RNN outputs. The QEFVs obtained
from decoder are passed to a bidirectional RNN,
the outputs of which are then passed to a word at-
tention mechanism, similar to Yang et al. (2016),
to get a fixed length summary vector. Attention al-
lows the model to give more importance to certain
words in the context while ignoring the others, ef-
fectively learning the focus points to better predict
the quality score. Figure 2 shows the architecture
of the RNN.summary-attention model.

4.2.2 Convolutional Neural Network (CNN)
Approaches

CNN

Source Sentence

Quality

Dense

Sentence Vectors

CNN

Dense

Cosine Similarity

   w1     w2      w3       ………..        ws

MT Sentence
   w1     w2      w3       ………..        wm

Figure 3: Architecture of the CNN.Siamese model

In the basic CNN model, we encode both the
source and MT sentence, using CNN-based sen-
tence encoders, similar to one proposed by Kim
(2014) for the text classification task. The encoder
takes a sentence as a list of word embeddings and
applies multiple convolution filters with varying
window sizes and applies max-over-time pooling
(Collobert et al., 2011) operations for each filter,
output of which is then passed to a dense layer, to
obtain a sentence vector.

We create two independent encoders (weights
are not shared), each for source and target lan-
guage sentences. The source and MT sentences
are encoded using encoder for their respective lan-
guages. Finally we take cosine similarity of the
two encoded sentence vectors to obtain the quality
score. We call this model CNN.Siamese. Figure 3
shows the architecture of this model.

We also propose an extension of CNN.Siamese
model in which the model computes the qual-
ity scores in two different ways using the same
encoded sentences. One path computes the co-
sine similarity between the two encoded sentences.
The other path concatenates the sentence encod-
ings, optionally along with feature embeddings,
and applies a fully connected layer to produce
quality scores, similar to SHEF/CNN-C+F model
described in Section 4.1.3. The final quality score
is computed by averaging the two quality scores
given by different paths. The architecture of this
model is shown in Figure 4. We include two
variations, with and without engineered features
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in our experiments, called CNN.Combined and
CNN.Combined.no-features respectively.

CNN

Source Sentence

Quality

Dense

Sentence Vectors

CNN

Dense

Cosine Similarity

   w1     w2      w3       ………..        ws

MT Sentence
   w1     w2      w3       ………..        wm

Dense

Features
    f1       f2         f3        ………..         fn

Dense

Regression

Average

Figure 4: Architecture of the CNN.Combined model

For each CNN based model, we tried two initial-
izations for word embeddings: 1) Random 2) Us-
ing the pre-trained models published by FastText8

(Bojanowski et al., 2016), which are trained on
Wikipedia9 for corresponding languages. The ex-
periments, which use the FastText embeddings are
denoted by +fastText suffix.

5 Experimental Settings

The code used for experiments has been made pub-
licly available at https://goo.gl/gG9J6f.

SVR.baseline model is trained using scikit-learn
library (Pedregosa et al., 2011). Keras (Chollet and
others, 2015), with Theano (Theano Development
Team, 2016) is used to implement all the neural
network models, including the baselines.

Development set was used for parameter tuning
for SVR.baseline for each dataset. For neural mod-
els, development data was used as validation data
while training models, to early stop the training to
prevent overfitting.

GRU cells (Cho et al., 2014), with 500 hidden
units, are used in RNNs in all the neural network
models. Sentences are clipped to length of 100
words and padded with masking. Vocabulary size
is limited to 40,000 words for all the experiments.
Word embedding size is set to 300.

For all proposed CNN based models, 200 filters
of sizes 3, 4 and 5 each were used in the sentence
encoders. Sentence vector size was set to 500.

8https://fasttext.cc/docs/en/
pretrained-vectors.html
9https://www.wikipedia.org/

6 Evaluation and Results

Two types of evaluation are performed for all ex-
periments: 1) Using Pearson’s correlation coeffi-
cient between the predicted quality scores and the
actual quality scores, to evaluate scoring. 2) Using
Spearman’s correlation coefficient to evaluate the
ranking of sentences according to quality.

We also report statistical significance of the re-
sults considering POSTECH.two-step as baseline,
over ten different runs.

Table 2 shows comparison of different models
for the scoring task using Pearson’s correlation.
Table 3 shows comparison of different models for
the ranking task using Spearman’s correlation.

We find that POSTECH.two-step model works
best for WMT17 en–de dataset for both the tasks,
but fails to give best results for any other dataset,
in the low-resource settings explored in this pa-
per. We also find that the proposed CNN-based
models generally work better for Indian language
datasets. The better performance of CNN-based
models over RNN-based models for Indian lan-
guages might be because of the free word order
property of Indian languages. CNN does not di-
rectly rely on entire sequence and order of words,
rather it picks best phrases depending on filter sizes
from the sentence without explicitly looking at the
order.

Our final model CNN.Combined, with or with-
out the use of FastText embeddings works best
for four out of five Indian language datasets
for the scoring task. For news.gu dataset, our
combined CNN model, without engineered fea-
tures, CNN.Combined.no-features+fastText, gives
the best results. On investigating the relatively
low results of the two variants of CNN.Combined
model on news.gu, we found that due to some
engineered features and the relatively small size
of train set, the combined CNN model with fea-
tures was rapidly overfitting. The similar model
without engineered features, CNN.Combined.no-
features works as expected and yields the best re-
sults on news.gu.

Similarly, for the ranking task, the two vari-
ants of CNN.Combined model outperform all
the models for four out five datasets. For
the remaining Indian language dataset, news.gu,
CNN.Siamese+fastText model yields the best re-
sult.

We also notice that using fastText embeddings
in CNN based models generally works better com-
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Model wmt17 news.gu ilci.gu ilci.hi ilci.te ilci.bn
SVR.baseline (original features) 39.98 - - - - -
SVR.baseline 38.26 20.12 44.67 39.58 44.20 33.65
POSTECH.multi-task 42.44 38.85 45.63 46.51 45.21 38.66
POSTECH.two-step 50.40 30.14 49.47 50.23 46.18 44.43
SHEF/CNN-C+F (original features) 40.34† - - - - -
SHEF/CNN-C+F 34.22† 29.05 44.32† 39.73† 46.60 34.93†

RNN 41.71† 37.74∗ 48.56 50.58 49.07∗ 45.14∗

RNN.summary-attention 39.68† 37.30∗ 48.85 52.59∗ 49.42∗ 44.85
CNN.Siamese 44.22† 43.75∗ 49.29 52.71∗ 49.56∗ 44.83
CNN.Siamese+fastText 47.39† 48.60∗ 51.85∗ 53.06∗ 49.69∗ 45.40
CNN.Combined.no-features 45.83† 43.43∗ 48.88 52.01∗ 49.31∗ 44.68
CNN.Combined.no-features+fastText 48.14† 49.06∗ 52.12∗ 53.17∗ 49.35∗ 45.00
CNN.Combined 46.98† 41.51∗ 52.46∗ 53.00∗ 51.14∗ 46.62∗

CNN.Combined+fastText 48.96† 46.11∗ 52.71∗ 53.51∗ 50.06∗ 46.08∗

Table 2: Results for the Scoring Task, Pearson’s Correlation (∗ and † indicate statistically significantly better or worse (p <
0.05) compared to POSTECH.two-step respectively)

Model wmt17 news.gu ilci.gu ilci.hi ilci.te ilci.bn
SVR.baseline (original features) 43.16 - - - - -
SVR.baseline 40.65 7.06 42.15 38.44 41.20 31.62
POSTECH.multi-task 44.52 22.46 43.15 44.43 42.03 35.69
POSTECH.two-step 52.06 19.61 46.85 48.23 42.83 40.94
SHEF/CNN-C+F (original features) 43.37† - - - - -
SHEF/CNN-C+F 37.98† 14.89† 42.97† 39.09† 44.39∗ 32.61†

RNN 43.42† 27.42∗ 46.00 48.77 46.33∗ 42.11∗

RNN.summary-attention 41.74† 23.21 46.07 50.48∗ 46.34∗ 41.90∗

CNN.Siamese 46.20† 31.98∗ 46.48 51.16∗ 46.05∗ 41.43
CNN.Siamese+fastText 49.49† 41.87∗ 48.34∗ 51.67∗ 45.13∗ 41.27
CNN.Combined.no-features 47.90† 29.81∗ 46.03 50.37∗ 45.77∗ 41.23
CNN.Combined.no-features+fastText 50.10† 41.13∗ 49.08∗ 51.78∗ 45.13∗ 40.88
CNN.Combined 48.79† 30.70∗ 50.21∗ 51.32∗ 47.58∗ 44.19∗

CNN.Combined+fastText 51.06 38.20∗ 49.77∗ 52.28∗ 45.90∗ 42.39∗

Table 3: Results for the Ranking Task, Spearman’s Correlation (∗ and † indicate statistically significantly better or worse
(p < 0.05) compared to POSTECH.two-step respectively)

pared to using random embeddings. However,
in some cases, especially for Telugu and Bengali
datasets, random initialization of embeddings per-
forms better.

Our word-level CNN encoder based Siamese ar-
chitecture, CNN.Siamese model outperforms the
SHEF/CNN-C+F model, which is a character
based deep CNN model, combined with engi-
neered features. We also show that combining the
Siamese architecture with MLP based architecture
in SHEF/CNN-C+F, CNN.Combined model, fur-
ther improves the results.

The RNN based models work comparably or
better for all Indian language datasets, but are

much simpler and have much lower number of
trainable parameters compared to POSTECH mod-
els. However, the difference between the two RNN
based models, RNN and RNN.summary-attention,
across datasets is inconclusive.

In Table 4, we show some examples of
scores predicted by our proposed system
CNN.Combined+fastText and the baseline
(POSTECH.two-step) system, along with source,
MT and reference sentences and actual quality
scores. Note that across examples with low to high
quality scores, our method can accurately predict
the quality score much better than the baseline.

166



Dataset Source sentence MT sentence Correct sentence Base-
line

Our
model

Actual
TER

news.gu

Every year , loud sound
from firecrackers causes
stress , terror and even
death in strays and birds .

દર વષĀ , ફટાકડાથી
ઘĈઘાટવાળા અવાજ
તણાવ , આતંક અને
ભટકતા અને પŊીઓમાં
મૃÍયુ પણ થાય છે .

દર વષĀ , ફટાકડાથી
સėŏતો ઘĈઘાટ
òાણીઓઅને
પŊીઓમાં તણાવ ,
આતંક અને મૃÍયુ પણ
સજĀ છે .

0.03 0.31 0.33

ilci.gu

The total distance of this
route is 163 kilometers
from Pathankot to
Jogindernagar .

આમાગŏની કુલ અંતર
પઠાણકોટથી
ŕગીÑïનગરથી 163
િક.મી . છે .

પઠાનકોટથી
ŕ￵ગÑદરનગર સુધીના
આ ęટનું કુલ અંતર
૧૬૩ િકલોમીટર છે .

0.31 0.75 0.73

ilci.hi

The tombs of Shahjahan
and Mumtaz are
surrounded by fine
meshes .

शाहजहां और मुमताज कĢ
मकबरे पěरशर्म से िघरे हैं ।

शाहजहाँ और मुमताज के
मकबरे चारƁ तरफ से
महीन जाÙलयƁ से िघरे हैं ।

0.89 0.53 0.50

ilci.te

People of Hindustan ,
Pakistan , Bangladesh ,
Egypt do business in
Manama Souk .

Ǩందూǃ˽˕ ,ƶǆǃ˾˕ ,

బంƤ̊Ƀˡ ,మƵమʿ˂
ʖǙఈǍ˨˸ ప̈జ͜ .

ƹరతɃశం ,ƶǆǃ˾˕ ,

ƸంƤ̊Ƀˡ ,Ǟˡ̈ ప̈జ͜
ƺƵƺసూɺ̊
ǀ̇ƶరం ȷǃ˽͞ .

0.98 0.62 0.62

ilci.bn
There are eight - ten
houses of wood in
Gejam village .

গাজাম গর্ােমরআটিট
কােঠর কাঠােমা রেয়েছ ।

Ƶগজম বসিতেতআট -
দশিট কােঠর বািড়
আেছ ৷

0.58 0.85 0.89

Table 4: Example of output by baseline (POSTECH.two-step), compared with our proposed model (CNN.Combined+fastText),
across all datasets.

7 Conclusions

In this paper, we study the effectiveness of differ-
ent neural network architectures for QE for Indian
languages. We also introduce multiple datasets for
the task, which can be used as benchmark for fu-
ture work in the area. We observe that our pro-
posed CNN.Combined model beats the state-of-
the-art methods by a significant margin.
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