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ABSTRACT. Rule-based techniques to extract relational entities from documents allow users to
specify desired entities with natural language questions, finite state automata, regular expres-
sions and structured query language. They require linguistic and programming expertise and
lack support for Arabic morphological analysis. We present a morphology-based entity and
relational entity extraction framework for Arabic (MERF). MERF requires basic knowledge
of linguistic features and regular expressions, and provides the ability to interactively specify
Arabic morphological and synonymity features, tag types associated with regular expressions,
and relations and code actions defined over matches of subexpressions. MERF constructs
entities and relational entities from matches of the specifications. We evaluated MERF with
several case studies. The results show that MERF requires shorter development time and effort
compared to existing application specific techniques and produces reasonably accurate results
within a reasonable overhead in run time.

RÉSUMÉ. Les techniques à base de règles pour extraire des entités permettent de spécifier les
entités souhaitées en utilisant des questions de langage naturel, des automates à états finis, des
expressions régulières et des instructions d’extraction de données. Ils nécessitent des expertises
en linguistique et en programmation, et ne soutiennent pas l’analyse morphologique de l’arabe.
On présente pour l’arabe un cadre d’extraction d’entité renforcé par l’analyse morphologique
(MERF). Il exige des connaissances de base des caractéristiques linguistiques et des expres-
sions régulières, et fournit la possibilité de spécifier de façon interactive des fonctionnalités de
morphologie et synonymie arabes, des types de tag associés avec des expressions régulières, et
des relations et actions de code définies sur les correspondances de sous-expressions. MERF
construit des entités relationnelles à partir des correspondances des spécifications. On éva-
lue MERF avec des études de cas. Les résultats montrent que MERF nécessite un effort de
développement plus court par rapport aux techniques existantes et produit des résultats raison-
nablement précis avec une surcharge raisonnable en temps d’exécution.
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1. Introduction

Computational Linguistics (CL) is concerned with building accurate linguistic
computational models. Natural Language Processing (NLP) is concerned with au-
tomating the understanding of natural language. CL and NLP tasks range from simple
ones such as spell checking and typing error correction to more complex tasks includ-
ing named entity recognition (NER), cross-document analysis, machine translation,
and relational entity extraction (Linckels and Meinel, 2011; Ferilli, 2011). Entities are
elements of text that are of interest to an NLP task. Relational entities are elements
that connect entities. Annotations relate chunks of text to labels denoting semantic
values such as entities or relational entities. We refer to annotations and labels as tags
and tag types, respectively, in the sequel.

Supervised and unsupervised empirical learning techniques tackle NLP and CL
tasks. They employ machine learning without the need to manually encode the requi-
site knowledge (Soudi et al., 2007). Supervised learning techniques require train-
ing corpora annotated with correct tags to learn a computational model. Super-
vised and unsupervised techniques require annotated reference corpora to evaluate
the accuracy of the technique using metrics such as precision and recall (Marcus
et al., 1993; Maamouri et al., 2004; Xue et al., 2005).

Researchers build training and reference corpora either manually, incrementally
using learning techniques, or using knowledge-based annotation techniques that rec-
ognize and extract entities and relational entities from text. Knowledge-based tech-
niques use linguistic and rhetorical domain specific knowledge encoded into sets of
rules to extract entities and relational entities (Soudi et al., 2007). While existing an-
notation, entity, and relational entity extraction tools exist (Chiticariu et al., 2010; Atz-
mueller et al., 2008; Urbain, 2012; Settles, 2011; Müller and Strube, 2006; Stenetorp
et al., 2012), most of them lack Arabic language support, and almost all of them lack
Arabic morphological analysis support (Habash and Sadat, 2006). Fassieh (Attia
et al., 2009) is a commercial Arabic annotation tool with morphological analysis sup-
port and text factorization. However, this tool lacks support for entity and relational
entity extraction.

Figure 1 illustrates the target of MERF using the directions to Dubai Mall ex-
ample 1. The figure also presents a transliteration and an English translation of the
Arabic text. The framed words in the text are entities referring to names of people
(n1, n2, n3), names of places (p1, . . . , p7), relative positions (r1, . . . , r4), and numer-
ical terms (u1, u2). We would like to extract those entities, and then extract the rela-
tional entities forming the graph in Figure 1 where vertices express entities, and edges
represent the relational entities.

In this paper, we present MERF, a morphology-based entity and relational entity
extraction framework for Arabic text. MERF provides a user-friendly interface where
the user defines tag types and associates them with regular expressions over Boolean

1. Text taken from the Dubai Mall website http://www.thedubaimall.com/ar/.
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Figure 1. Direction example with Arabic text, annotated with entities, transliteration,
translation, and extracted relational entities in a graph.

formulae. A Boolean formula is defined by a term, negation of a term, or disjunc-
tion of terms. Terms are matches to Arabic morphological features including prefix,
stem, suffix, part of speech (POS) tags, gloss tags, extended synonym tags, and se-
mantic categories. For example, entity p1 in Figure 1 has a “place” semantic category.
MERF regular expressions support operators such as concatenation, zero or one, zero
or more, one or more, up to M repetitions where M is a non-zero positive integer,
and logical conjunction and disjunction. For example, the sequence between p1 and
p2 matches a regular expression re that requires two semantic place categories with a
place-preposition POS tag (r1) in between.

An editor allows the user to associate an action with each subexpression. The user
specifies the action with C++ code and uses an API to access information related to the
matches such as text, position, length, morphological features, and numerical value.
Each regular expression is associated with a named identifier to form a local grammar
like structure (Traboulsi, 2009). A relation definition GUI allows the user to provide
relational tuples where each tuple has a source, a destination and an edge label. The
user uses the regular expression identifiers to define the relational tuple elements. For
example, the relation between e1, e2 and r shown in Figure 1 is a match of a relational
tuple over the components of re. We refer to regular expressions and Boolean formu-
lae as expressions and formulae, respectively. We also refer to expressions as rules
when used in a grammar context; e.g. when used with an identifier.

MERF takes an Arabic text and the local grammar defined by the Boolean for-
mulae and the regular expressions. MERF computes the morphological solutions of
the input text then computes matches to the Boolean formulae therein. MERF then
generates a non-deterministic finite state automata (NDFSA) for each expression and
simulates it with the sequence of Boolean formulae matches to compute the regular
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expression matches. MERF generates executable code for the actions associated with
the regular expressions, compiles, links, and executes the generated code as shared
object libraries. Finally, MERF constructs the semantic relations and cross-reference
between entities. MERF also provides visualization tools to present the matches, and
estimate their accuracy with respect to reference tags.

This work significantly extends Jaber and Zaraket (2013) that allows for manual,
and morphology annotation. MERF enables a user to incrementally create complex
annotations for Arabic based on automatic extraction of morphological tags through a
user-friendly interactive interface. MERF has the following advantages.

– MERF provides a novel and intuitive visual interface to build formulae over
morphological features, build regular expressions over the resulting formulae, and
thereafter compute automatic tags.

– To our knowledge, this morphology-based framework is the first for Arabic en-
tity and relational entity extraction.

– MERF provides the user with the ability to rapidly create annotated Arabic text
corpora with sophisticated morphology-based tags.

In MERF, we make the following contributions.

– MERF enables the user to define relations in a simple manner and automatically
detects relational entities matching the user defined relations.

– MERF enables the user to associate subexpressions with code actions, and ex-
ecutes the code action when a corresponding match is found. It also provides an API
to enable access to match features such as text, position, length, numerical value, and
morphological features.

– MERF enables the user to tag words based on a novel light Arabic WordNet
relation that leverages the synonym Synk feature.

– MERF is open source and available online for the research community under
https://github.com/codelogicanalysis/atmine.

The rest of the paper is structured as follows. Section 2 introduces Arabic morpho-
logical analysis and its important role in Arabic NLP. Section 3 explains the method-
ology of MERF. Section 4 presents MERF components. Section 5 presents MERF
GUI. Section 6 presents and discusses related work. Section 7 presents the evaluation
results. Finally, we conclude and discuss future work in Section 8.

2. Background: Morphological Analyzer

Morphological analysis is key to Arabic NLP due to the exceptional degree of am-
biguity in writing, the rich morphology, and the complex word derivation system (Al-
Sughaiyer and Al-Kharashi, 2003; Shahrour et al., 2016; Pasha et al., 2014). Short
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vowels, also known as diacritics, are typically omitted in Arabic text and inferred by
readers (Habash and Sadat, 2006). For example, the word 	áK.bn can be interpreted as

	á
�
K.bon (“coffee”) with a damma diacritic on the letter �K.b or 	áK.�

bin (“son of”) with a

kasra diacritic on the letter �K.b .

Morphological analysis is required even for tokenization of Arabic text. The posi-
tion of an Arabic letter in a word (beginning, middle, end, and standalone) changes its
visual form. Some letters have non-connecting end forms which allows visual word
separation without the need of a white space separator. For example, the word
	á�
 ÖÞ�A K
yāsmyn can be interpreted as the “Jasmine” flower, as well as A K
 (the calling

word) followed by the word 	á�
 ÖÞ� (obese). Consider the sentence �
é �PY ÖÏ @ I. ë

	
X

ú
�
Í@YË

�
ñË@ d

¯
hb alwald-ilā ’lmdrsh (“the kid went to school”). The letters X and ø have

non-connecting end of word forms and the words YËñË@, úÍ@, and �
é�PYÖÏ @ are visually

separable, yet there is no space character in between. Newspaper articles with text
justification requirements, SMS messages, and automatically digitized documents are
examples where such problems occur.

MERF is integrated with Sarf, an in-house open source Arabic morphological
analyzer based on finite state transducers (Zaraket and Makhlouta, 2012b). Given
an Arabic word, Sarf returns a set of morphological solutions. A word might have
more than one solution due to multiple possible segmentations and multiple tags as-
sociated with each word. A morphological solution is the internal structure of the
word composed of several morphemes including affixes (prefixes and suffixes), and a
stem, where each morpheme is associated with tags such as POS, gloss, and category
tags (Al-Sughaiyer and Al-Kharashi, 2003; Habash, 2010).

Prefixes attach before the stem and a word can have multiple prefixes. Suffixes
attach after the stem and a word can have multiple suffixes. Infixes are inserted inside
the stem to form a new stem. In this work we consider a set of stems that includes infix
morphological changes. The part-of-speech tag, referred to as POS, assigns a morpho-
syntactic tag for a morpheme. The gloss is a brief semantic notation of morpheme
in English. A morpheme might have multiple glosses as it could stand for multiple
meanings. The category is a custom tag that we assign to multiple morphemes. For
example, we define the Name of Person category to include proper names.
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Prefixes Stem Suffix

Data
�	

¬fa �
�sa �ø



ya É

�
¿

�

@âakul Aëhā

POS CONJ+ FUT+ IV3MS+ VERB_IMPERFECT IVSUFF_DO:3FS
Gloss and/so will he/it eat/consume it/them/her
index 10 13 16

length 3 3 2

Table 1. Sample solution vector for AêÊ
�
¿

�

A
�
J


�
�

�	
¯fasayaâakulhā .

We denote by S, P , X , POS , GLOSS , and CAT , the set of all stems, pre-
fixes, suffixes, POS, gloss, and user defined category tags, respectively. Let T “

xt1, t2, . . . , tM y be a set of Arabic words denoting the text documents. MERF uses
Sarf to compute a set of morphological solutions Mptq “ tm1,m2, . . . ,mNu for
each word t P T . Each morphological solution m P Mptq is a tuple of the form
xp, s, x, P,G,Cy P P ˆ S ˆ X ˆ POS ˆ GLOSS ˆ CAT where p “ p1 . . . p|p|,
x “ x1 . . . x|x|, P “ Pp1

. . . Pp|p|
PsPx1

. . . Px|x|
,G “ Gp1

. . . Gp|p|
GsGx1

. . . Gx|x|
,

and C “ Cp1 . . . Cp|p|
CsCx1 . . . Cx|x|

. Ppi , Gpi , and Cpi , 1 ď i ď |p| are the POS,
gloss and category tags of prefix pi. Pxj , Gxj , and Cxj , 1 ď j ď |x| are the POS,
gloss and category tags of suffix xi. Ps, Gs, and Cs are the POS, gloss and category
tags of stem s. Intuitively, p, x, P,G and C are concatenations of prefix, suffix, POS,
gloss and category values, respectively.

Table 1 shows the morphological analysis of the word A êÊ
�
¿

�

A
�
J


�
�

�	
¯ . The word is

composed of the prefix morphemes
�	

¬fa , �
�sa , and �ø



ya , followed by the stem

É
�
¿

�

@âakul , and then followed by the suffix morpheme A ëhā . Each morpheme

is associated with a number of morphological features. The CONJ, FUT, IV3MS
VERB_IMPERFECT, and IVSUFF_DO:3FS POS tags indicate conjunction, future, third
person masculine singular subject pronoun, an imperfect verb, and a third person fem-
inine singular object pronoun, respectively. The POS and gloss notations follow the
Buckwalter notation (Buckwalter, 2002).

3. MERF Methodology

Figure 2 illustrates the four processes involved in MERF methodology. The first
process takes Arabic text and provides the user with a morphology-based Boolean
(MB) formulae GUI. The user interactively composes MB-formulae using the GUI
and the output of the simulator and the Synk detector. The simulator and the detector
apply the formulae over the morphological solutions of the Arabic text and produce
the MB-formulae tags.

The second process takes the MB-formulae tags and the Arabic text and provides
the user with a morphology-based grammar rule GUI. The user interactively composes
MB-grammar rules using the GUI and the output of the MB-grammar rule simulator.
The grammar rule simulator applies the rules over the MB-formulae tags and produces
the MB-grammar rule tags.
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Figure 2. MERF four process methodology with rounded corner blocks for GUI.

The third process takes the MB-grammar rule tags and provides the user with a
relation and action GUI. The user interactively provides (1) the relation definitions
and (2) the actions in terms of identifiers from the MB-grammar rules. The relation
extraction produces the target entities and relational entities. The action execution en-
riches the entities and the relational entities with powerful semantics. For example,
users can utilize actions to compute statistical features, store intermediate results, or
apply intelligent entity inference techniques as we show later in the numerical extrac-
tion example of Subsection 7.4. Finally, in the fourth process the user compares the
results with golden reference chunks and visualizes the difference. This allows the
user to refine the formulae, rules, relations and actions.

After relation extraction, we are interested to relate entities that express the same
concept. MERF provides the extended synonym feature of second order as a default
cross-reference relation (Syn2). In Figure 1, triggering this feature creates the edge
labeled with isSyn between the nodes Khalifa Tower and The building.

The user may refine the defined formulae, rules and relations and the correspond-
ing formulae tags, rule tags, entities and relational entities either using the GUI or
directly through readable output files. The files are in the javascript object notation
(JSON) (Nolan and Lang, 2014) format that is intuitive to read and modify. MERF
separates the user defined formulae, rules, actions and relations in a MERF tag type
file and the matching tags in a tags files. The separation serves the user to apply the tag
types to multiple case studies and to obtain a separate file of resulting tags for each.

4. MERF Components

4.1. The extended synonymy feature Synk

Up to our knowledge, Synk provides the first light Arabic WordNet based on
the lexicon of Sarf. The sets E,A, and L denote all English words, Arabic words,
and Arabic lexicon words, respectively. Recall that GLOSS and S denote the set of
glosses and stems in the morphological analyzer, respectively. We have GLOSS Ă E
and S Ă L Ă A. Function α : S Ñ 2GLOSS maps Arabic stems to subsets of related
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ZAÓmāâ
i

	
�

	
�nd. h.

�
�

�Pršwater

leak

spray

splatter

Figure 3. Syn2pZA
�
Ómāâq.

English glosses, where 2GLOSS denotes the power set of GLOSS which is the set of
all subsets of GLOSS . Function γ : L Ñ 2S maps Arabic lexicon words to subsets
of relevant Arabic stems.

Given a wordw P L, Sypwq “ tu | u P S^Ds P γpwq^ αpuqXαpsq ‰ Hu is the
set of Arabic stems directly related to w through the gloss map. Let Syipwq denote
stems related to w using the gloss map of order i recursively such that Sy1pwq “
Sypwq and Syi`1pwq “ tu | u P S ^ Ds P Syipwq ^ αpuq X αpsq ‰ Hu. Formally,
Synkpwq “

k
Ť

i“1

Syipwq for i P r1 . . . ks. The example in Figure 3 illustrates the

computation. Let w denote an input Arabic word ZA
�
Ómāâ , which has the gloss water,

i.e. water P αpwq. w shares this gloss with the stem i
	

�
	
�nd. h. , denoted s1, i.e.

s1 P Sy
1pwq. Next, the stem

�
�

�Pršš , denoted s2, shares the gloss spray with s1, i.e.

s2 P Sy
1ps1q Ă Sy2pwq. Therefore, Syn2pwq relates the words ZA

�
Ómāâ and

�
�

�Pršš .

4.2. MRE: Morphology-based regular expressions

Let O “ tisA, containsu be the set of atomic term predicates, where isA
and contains denote exact match and containment, respectively. Also, let F “

tP,S,X ,POS ,GLOSS ,CAT u be the set of morphological features where each
morphological feature A P F is in turn a set of morphological feature values. Given a
word w, a user defined constant feature value CF P A, and an integer k, 1 ď k ď 7,
the following are morphology-based atomic terms (MAT), terms for short.

– apwq :“ Dm P Mpwq. m “ xp, s, x, P,G,Cy.r ˝ CF where ˝ P O, r P
tp, s, x, P,G,Cu, and r P A. Informally, a solution vector of w exists with a feature
containing or exactly matching the user-chosen feature value CF .
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MBF description formula matches
N name of person category “ Name_of_Person n1, n2, n3
P name of place category “ Name_of_Place p1, p2, ..., p7
R relative position stem P {H. Q

�
¯,ú




	
¯,. . . } r1, r2, r3, r4

U numerical term stem P {Èð


@,ú




	
GA

�
K,. . . } u1, u2

Table 2. Boolean formulae corresponding to task in Figure 1.

– apwq :“ w P SynkpCF q, CF P S. Informally, this checks if w is an extended
synonym of a stem CF . We limit k to a maximum of 7 since we practically noticed
that (1) values above 7 introduce significant semantic noise and (2) the computation is
expensive without a bound.

A morphology-based Boolean formula (MBF) is of the following form.

– a and  a are MBF formulae where a is a MAT and  is the negation operator.
– pf _ gq is an MBF where f and g are MBF formulae, and _ is the disjunction

(union) operator.

Moreover, MERF provides O to be a default Boolean formula that tags all other
words in the text that do not match a user defined formula. We also refer to those
words as null words.

Consider the task we discussed in the introduction (Figure 1) and recall that we
are interested in identifying names of people, names of places, relative positions, and
numerical terms. Table 2 presents the defined formulae. The user denotes the “name
of person” entities with formula N which requires the category feature in the mor-
phological solution of a word to be Name_of_Person. The entities n1, n2, and n3
are matches of the formula N in the text. Similarly, the user specifies formula P to
denote “name of place” entities. The user specifies formulaR to denote “relative posi-
tion” entities, and defines it as a disjunction of terms that check for solutions matching
stems such as H. Q

�
¯qrb (“near”) and ú




	
¯fy (“in”). Similarly, U denotes numerical

terms and is a disjunction of constraints requiring the stem feature to belong to a set
of stems such as Èð



@âwl (“first”), ú




	
GA

�
�
Kt
¯
āny (“second”), . . .Qå

�
�A

�
«ã̄ašr (“tenth”).

Next, we define a morphology-based regular expression (MRE) as follows.

– m is an MRE where m is an MBF.
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Figure 4. Matches of regular expression pP |Nq` O? R Oˆ2 pP |N |Uq`.

– fg is an MRE where f and g are both MRE expressions. A match of f followed
by a match of g satisfies this concatenation operation.

– f˚, f`, f^x, and f? are MRE where f is an MRE, and are satisfied by zero or
more, one or more, up to x matches, and an optional single match of f , respectively.

– f&g, (conjunction) and f |g (disjunction) are MRE where f and g are MRE,
and are satisfied by the intersection of f and g matches, and the union of the f and g
matches, respectively.

We denote by vfw the set of matches of an MRE f .

Back to the example in Figure 1. We use the formulae defined in Table 2 to con-
struct an MRE such as pP |Nq` O? R O^2 pP |N |Uq` where |,`, ?, and ^k denote
disjunction, one or more, zero or one, and up to k matches, respectively. The expres-
sion specifies a sequence of places or names of persons, optionally followed by a null
word, followed by one relative position, followed by up to two possible null words,
followed by one or more match of name of place, name of person, or numerical term.
O? and O^2 are used in the expression to allow for flexible matches.

The matching parse trees in Figure 4 illustrate two matches of the expression com-
puted by MERF. The first tree refers to the text
Èð



B@ © £A

��
®

�
J Ë @ 	á Ó H. Q

�
® ËA

�
K.

�
é

	
® J
 Ê

	
g h. QK.brǧ h– lyfh bālqrb mn āltqāt. ã āl-âwl

(“Khalifa Tower next to the first intersection”). The second tree refers to the text ú


G
.
X

ú
�	
æJ. ÖÏ @ @

�	
Yë 	áÓ

�
éK. Q

�
®Ó ú

�
Î« ÈñÓdby mwl ãlā mqrbh mn hd

¯
ā ālmbnā (“Dubai Mall is
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located near this building”). The leaf nodes of the trees are matches to formulae and
the internal nodes represent roots to subexpression matches. For instance,
�
é

	
®J
Ê

	
g h. QK.brǧ h– lyfh in match 1 tree corresponds to the subexpression pP |Nq`.

4.3. User-defined relations and actions

A relation is defined by the user as a tuple xe1, e2, ry where e1, e2, and r are
identifiers associated with subexpressions of an MRE f . Matches of the relation are a
set of labeled binary edges where matches of e1 and e2 are the source and destination
nodes and matches of r are the edge labels. We denote vxe1, e2, ryw to be the set of
matches of the corresponding relation, and we refer to them as relational entities.

We are interested in constructing the relational entity graph in Figure 1. Let e1,
o1, r, o2,, and e2 be identifiers to the subexpressions pP |Nq`, O?, R, O ^ 2, and
pP |N |Uq`, respectively. The matches to e1, r, o2, and e2 in match 1 (Fig. 4) are h. QK.

�
é

	
®J
Ê

	
gbrǧ h– lyfh (“Khalifa Tower”), H. Q

�
®ËA

�
K.bālqrb (“next”), 	áÓmn (“to”), and ©£A

��
®

�
JË @

Èð


B@āltqāt. ã āl-âwl (“first intersection”). Note that there is no match to the optional

O formula in match 1. Similarly, the matches to e1, o1, r, o2, and e2 in the second
matching tree are ÈñÓ ú



G
.
Xdby mwl (“Dubai Mall”), ú

�
Î«ãlā (“is located”), �

éK. Q
�
®Ómqrbh

(“near”), @

�	
Yë 	áÓmn hd

¯
ā (“this”), and ú

�	
æJ. ÖÏ @ālmbnā (“building”), respectively.

We define the semantic relations xe1, e2, ry, xr, e1, o1y, and xr, e2, o2y. Re-
lation xe1, e2, ry creates the edge labeled next to between Khalifa tower and
intersection 1 nodes from match 1, and the edge labeled near between Dubai Mall
and the building nodes from match 2. Relation xr, e1, o1y creates the edge labeled
prep between Dubai Mall and near nodes from match 2. Relation xr, e2, o2y creates
the edge labeled from between intersection 1 and next to nodes in match 1, and
the edge labeled from this between near and the building nodes in match 2.

Moreover, MERF allows advanced users to write C++ code snippets to process
matches of subexpressions. Each subexpression can be associated with two compu-
tational actions: pre-match and on-match. MERF provides an API that enriches the
actions with detailed access to all solution features of an expression or a formula match
including text, position, length, equivalent numerical value when applicable, and mor-
phological features. The API follows a decorator pattern in that it incrementally adds
the action results to the matching entities. Once MERF computes all matching parse
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Figure 5. Equivalent NFA of direction expression.

trees, it traverses each tree to execute the user defined pre-match actions in pre-order
manner and the on-match actions in post-order manner. This follows an observer pat-
tern that notifies listeners with each produced match.

4.4. MERF simulators

The set of tag types T contains tuples of the form xl, f, dy where l is a text la-
bel with a descriptive name, f is an MRE, and d is a visualization legend with
font and color information. For the example of Figure 1, l is “direction”, f is
pP |Nq` O? R O^2 pP |N |Uq`, and d is italic.

For each word ti P T, 0 ď i ă |T |. MERF computes a Boolean value for all
MBFs. For example, h. QK.brǧ matches MBF P . Then, it computes the set of MBF tags
Ri “ tpti, ttq|tt “ xl, f, dy ^ f is an MBF ^ fptiqu Ď T ˆ T which tags a word ti
with tt iff the MBF f associated with tag type tt is true for ti. The MBF evaluation
results in a sequence of tag sets xR0, R1, . . . , Rn´1y. If a word ti has no tag type
match, its tag set Ri is by default the singleton O “ tNONEu. For example, the tag
sets for the text in Figure 2 follows ttNONEu, tNONEu, tNONEu, tNONEu, tp

h. QK.brǧ , P qu, tp �
é

	
®J
Ê

	
gh– lyfh , Nqu, . . .u.

For each MRE, MERF generates its equivalent non-deterministic finite automa-
ton (NFA) in the typical manner (Sipser, 2012). We support the upto operation (f ˆx),
which is not directly supported in Sipser (2012), by expanding it into a regular ex-
pression form; for example f ˆ3 is equivalent to f?|ff |fff . Consider the example of
Figure 1 and the corresponding expression pP |Nq` O?R O^2 pP |N |Uq`. Figure 5
shows part of the corresponding NFA where q8, q9, . . . , q13 represent NFA states, and
edges are transitions based on MBF tags such as P, and N . Edges labeled with the
empty string ε are non-deterministic.

MERF simulates the generated NFA over the sequence of tag sets matching the
MBF formulae. A simulation match m of an expression f is a parse tree where the
root spans the expression, the internal nodes are roots to subexpressions of f , and the
leaves are matches of the MBF formulae of f , e.g. Figure 4. The sequence of leaf
matches forms a vector of tags xrk, rk`1, . . . , rjy corresponding to the text sequence
xtk, tk`1, . . . , tjy where r` P R`, 0 ď k ď ` ď j ă n. If we have more than one
match for an expression, MERF returns the longest.
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Finally, MERF computes the relational entities corresponding to each user defined
relation vxe1, e2, ryw Ď ve1w ˆ ve2w ˆ vrw.

5. MERF GUI

MERF provides a user friendly interface to specify the atomic terms, the MBFs,
the MREs, the tag types, and the legends. The GUI also allows the user to modify
and correct the tag set R. The GUI allows the user also to compute accuracy results
that compare different tag sets and that can serve well as inter annotation agreement
results when the tag sets come from two human annotators, or as evaluation results
when comparing with reference tag sets.

5.1. Tag type Boolean formula editor

The user writes MBF tag types with the tag type editor introduced in Jaber and
Zaraket (2013). First the user specifies atomic terms by selecting a feature from F .
The user can also choose whether to require an exact match using the isA predicate,
or a substring match using the contains predicate option.

The user can add and remove feature values to the atomic terms using push buttons.
A check box in the “Feature” column allows negating the term, and the “Relation”
column switches the predicate between isA and contains. The list of feature and
value pairs is interpreted as a disjunction to form the MBF. A right pane shows a
description of the tag type and a set of legend descriptors. When the stem or gloss
features are selected, the user has the option to use the Synk feature.

In the direction extraction task example, the user specifies four MBF-based tag
types with labels N , P , R, and U with “name of person”, “name of place”, “relative
position”, and “numerical term” descriptions, respectively. For each MBF, the user
selects the morphological features, specifies the constant value CF , and adds it to the
Boolean formula editor.

5.2. MBF match visualization

The MBF match visualizer shows color sensitive text view, the tag list view, and
the tag description view. The tag description view presents the details of the selected
tag along with the relevant tag type information. The user can edit the tags using a
context sensitive menus. MERF GUI also allows manual tag types and corresponding
tags that are not based on morphological features. This enables building reference
corpora without help from the morphological analyzer.
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Figure 6. MERF tag type regular expression editor.

5.3. Tag type regular expression editor

After interacting with the MBF editor, the user moves to specify the regular ex-
pressions. The MRE editor of Figure 6 allows the definition of an MRE tag type in a
user-friendly manner. The user first adds the required MBF formulae by selecting a
label from T under MBFs. The Boolean formula of a highlighted tag type is shown in
the table on the lower left pane. Each selected MBF is associated with an automatic
name. The user can nest the MRE expression using a tree view of the MRE operations.
The tree features the name, MBF, and operation for each subexpression.

To specify a binary operation the user selects two subexpressions and clicks the
corresponding operation button. The operations include disjunction, conjunction, zero
or one, sequence, zero or more, one or more, and up to a user defined constant. The
right pane shows a description of the tag type and a set of legend descriptors.

5.4. MRE match visualization

While specifying an MRE, the user can interact with the visualization and editor
views to make sure the MRE expresses the intent. The color-sensitive text view in
Figure 7 shows the highlighted tag matches after the user called the MRE simulator
using the Tagtypes menu.
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Figure 7. MRE annotated Text, MRE matching parse tree, and entity-relation graph.

The matching parse tree view shows the selected match in a graph view. Figure 7
shows the matching parse tree of the direction task @

�	
Yë 	áÓ

�
éK. Q

�
®Ó ú

�
Î« ÈñÓ ú



G
.
X

ú
�	
æJ. ÖÏ @dby mwl ãlā mqrbh mn hd

¯
ā ālmbnā (“Dubai Mall is located near this building”).

5.5. User defined relation editor

After the user is satisfied with the MRE matches, the user moves to define relations
and code actions. The relation editor allows the user to define relations by specify-
ing xe1, e2, ry tuples, where e1 and e2 denote source and destination entities, and r
denotes the label. The editor shows the MRE tree and allows the user to select the
subexpressions and select features of the matches of the subexpressions to define the
three components of the relation.

A snapshot of the GUI in Figure 7 shows in an interactive graph view the entity-
relation graph of the match of the user defined relation extracted from the matching
parse tree of the MRE. In the computational action editor, an advanced user can enter
C++ code and use the MERF API to program and process subexpression matches.

5.6. Analysis

In the analysis view, the user provides two tag sets R1 and R2 and two tag type
sets T1 and T2 as input. The tag type difference view shows the text annotated in
three panes: (i) the common tag types T1 X T2, (ii) the tag types in T1 but not in T2,
and (iii) the tag types in T2 and not in T1. Similarly, the tag difference view shows
R1 X R2, R1{R2 and R2{R1 in addition to precision, recall and F-measure values.
The user selects a predicate to compute the metrics from the following predicates: (1)
“Intersection”: a tag from R1 intersects in text with a tag in R2, (2) “Exact”: a tag
from R1 exactly matches a tag in R2, (3) “A includes B”: a tag from R1 contains a tag
from R2, and (4) “B includes A”: a tag from R2 contains a tag from R1.
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Features MERF SystemT TEXTMARKER Urbain QARAB
Query type MRE AQL matching rules natural language natural language
Morphology support � - - OpenNLP Parser
Relations � - - � -
Actions � - - - -
Editor � - � - -
Tag visualization � - � - -
Graph visualization � - - - -

Table 3. Comparison of MERF with SystemT, TEXTMARKER, Urbain, QARAB.

6. Related Work

In this section we review the literature on entity and relation IE and on automatic
and manual annotation techniques and compare to MERF.

Information Extraction. The common pattern specification language (CPSL) tar-
gets system independent IE specifications (Appelt and Onyshkevych, 1998). MERF
extends CPSL with Arabic morphological features, code actions, and user defined re-
lations. SystemT (Chiticariu et al., 2010) aims to overcome the limitations of CPSL.
It is based on an algebraic approach to declarative information extraction, uses the
declarative annotation query language (AQL), and uses an optimizer to generate high
performance execution plans for the AQL rules. MERF supports multiple tags per
word, and supports the MRE conjunction operator which overcomes the overlapping
annotation problem discussed in SystemT.

TEXTMARKER is a semi-automatic rule-based IE system for structured data ac-
quisition (Atzmueller et al., 2008). Both TEXTMARKER and MERF provide the
user with GUI editor and result visualizer.

The work in Urbain (2012) presents a user-driven relational model and targets
entity and relation extraction. The user enters a natural language query, and uses the
OpenNLP toolkit to extract tags and relations from the query. Similar to MERF, the
system constructs entities and relations.

QARAB is an Arabic question answering system that takes an Arabic natural lan-
guage query and provides short answers for it (Hammo et al., 2002). QARAB uses
traditional information retrieval techniques and an outdated Arabic NLP analyzer with
limited features of Arabic words compared to the morphological analysis of MERF.

Table 3 summarizes the comparison between MERF and other systems. MERF
differs in that it provides code actions, user defined relations, and an interactive graph
visualization of the relational entities. It also differs in that it fully supports Arabic
morphological analysis while only QARAB supports Arabic linguistic features us-
ing a parser, and the work in Urbain (2012) uses OpenNLP that currently lacks full
support for Arabic morphological features. Similar to TEXTMARKER, MERF has
the advantage of providing a user-friendly interactive interface to edit the entity and
relational specifications and visualize the results.
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DUALIST is an annotation system for building classifiers for text processing tasks
using machine learning techniques (Settles, 2011). MERF doesn’t support classifica-
tion tasks. However, MERF provides an interactive GUI where the user can edit MBF
and MRE tags. This interactive environment contributes to the regular expression ex-
traction and semantic relation construction which increases the overall accuracy.

Another track in the literature targets specific tasks such as NER using statistical
and machine-learning techniques such as maximum entropy, optimized feature sets
and conditional random fields (Benajiba et al., 2007; Benajiba et al., 2008; Ekbal
and Bandyopadhyay, 2008; AbdelRahman et al., 2010). Knowledge-based techniques
such as Zaghouani et al. (2010) and Traboulsi (2009) propose local grammars with
morphological stemming. Makhlouta et al. (2012) extract entities and events, and rela-
tions among them, from Arabic text using a hierarchy of manually built finite state ma-
chines driven by morphological features, and graph transformation algorithms. Such
techniques require advanced linguistic and programming expertise.

WordNet is a lexical reference system that mimics human lexical memory and
relates words based on their semantic values and their functional categories: nouns,
verbs, adjectives, adverbs, and function words (Miller et al., 1990). The Synk feature
in MERF is inspired by WordNet.

Annotation tools. MMAX2 is a manual multi-level linguistic annotation tool with
an XML based data model (Müller and Strube, 2006). BRAT (Stenetorp et al., 2012)
and WordFreak (Morton and LaCivita, 2003) are manual multi-lingual user-friendly
web-based annotators that allow the construction of entity and relation annotation cor-
pora. Knowtator (Ogren, 2006) is a general purpose incremental text annotation tool
implemented as a Protégé (Gennari et al., 2003) plug-in. Protégé is an open-source
platform with a suite of tools to construct domain models and knowledge-based appli-
cations with ontology. However, it doesn’t support the Arabic language.

MERF differs from MMAX2, BRAT, WordFreak, and Knowtator in that it is an
automatic annotator that allows manual corrections and sophisticated tag type and
relation specifications over Arabic morphological features.

Kholidy and Chatterjee (2010) present an overview of annotation tools and con-
cludes with a set of rules and guidelines needed in an Arabic annotation alignment
tool. The work in Dukes et al. (2013) presents a collaborative effort towards morpho-
logical and syntactic annotation of the Quran. Dorr et al. (2010) present a framework
for interlingual annotation of parallel text corpora with multi-level representations.
Kulick (2010) presents the integration of the Standard Arabic Morphological Ana-
lyzer (SAMA) into the workflow of the Arabic Treebank.

The work in Smrz and Pajas (2004) presents a customizable general purpose tree
editor, with the Arabic MorphoTrees annotations. The MorphoTrees present the mor-
phological analyses in a hierarchical organization based on common features.

Task specific annotation tools such as Alrahabi et al. (2006) use enunciation se-
mantic maps to automatically annotate directly reported Arabic and French speech.
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AraTation is another task specific tool for semantic annotation of Arabic news using
web ontology based semantic maps (Saleh and Al-Khalifa, 2009). We differ in that
MERF is general, and not task specific, and it uses morphology-based features as
atomic terms. Fassieh is a commercial Arabic text annotation tool that enables the
production of large Arabic text corpora (Attia et al., 2009). The tool supports Arabic
text factorization including morphological analysis, POS tagging, full phonetic tran-
scription, and lexical semantics analysis in an automatic mode. Fassieh is not directly
accessible to the research community and requires commercial licensing. MERF is
open source and differs in that it allows the user to build tag types and extract entities
and relations from text.

7. Results

In this section we evaluate MERF with four case studies. We perform a survey-
like evaluation where developers manually built task specific information extraction
tools for the case studies and other developers built equivalent MERF tools. The aim
of the comparison is to showcase that MERF enables fast development of linguistic
applications with similar accuracy and a reasonable affordable overhead in compu-
tational time. We report development time, size of developed code versus size of
grammar, running time, and precision-recall as metrics of cost, complexity, overhead,
and accuracy, respectively.

We survey three case studies from the literature: (1) narrator chain, (2) tem-
poral entity, and (3) genealogy entity extraction tasks, and we use the reported
development time for the task specific techniques proposed in ANGE (Zaraket
and Makhlouta, 2012a), ATEEMA (Zaraket and Makhlouta, 2012c), and GEN-
TREE (Makhlouta et al., 2012), respectively. We also compare a MERF number
normalization task to a task specific implementation.

We evaluated ANGE with Musnad Ahmad, a hadith book, where we constructed
an annotated golden reference containing 1,865 words. We evaluated ATEEMA with
articles from issues of the Lebanese Al-Akhbar newspaper where we constructed an
annotated golden reference containing 1,677 words. For the genealogical tree extrac-
tion we used an extract from the Genesis biblical text with 1,227 words. Finally, we
used an annotated article from the Lebanese Assafir newspaper with 1,399 words to
evaluate the NUMNORM case study 2. In the online appendix 3, we report on eight
additional MERF case studies. Manual annotators inspected the outcome and pro-
vided corrections where tools made mistakes. The corrections form the manual gold
annotation that we compared against.

Table 4 reports the development time, extraction runtime, recall and precision of
the output MRE tags, the size of the task in lines of code or in number of MERF rules,
for both the standalone task specific and the MERF implementations. The develop-

2. Available at http://www.assafir.com and http://www.al-akhbar.com.
3. Available at http://research-fadi.aub.edu.lb/pdfs/merfappendix.pdf.
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Task Size Development Run Accuracy Ease of Composition(words) time time(s) Recall Precision

ANGE 1,865 2 months 1.79 0.99 0.99 3,000+ lines of code
MERF 3 hours 7.24 0.99 0.93 8 MBFs and 4 MREs

ATEEMA 1,677 1.5 months 2.53 0.88 0.89 1,000+ lines of code
MERF 3 hours 3.14 0.91 0.81 3 MBFs and 2 MREs

Genealogy tree 1,227 3 weeks 0.74 0.96 0.98 3,000+ lines of code
MERF 4 hours 2.28 0.84 0.93 3 MBFs and 3 MREs

NUMNORM 1,399 1 week 0.32 0.91 0.93 500 lines of code
MERF 1 hour 1.53 0.91 0.90 3 MBFs/1 MRE/57 lines

Table 4. MERF compared to task specific applications.

ment time measures the time required for developing the case study. For instance,
ANGE (Zaraket and Makhlouta, 2012a) required two months of development by a re-
search assistant with 6 and 14 hours of course work and teaching duties, respectively.
Recall refers to the fraction of the entities correctly detected against the total number
of entities. Precision refers to the fraction of correctly detected entities against the
total number of extracted entities.

Table 4 provides runtime results of MERF compared to the task specific imple-
mentations while running MBF and MRE simulations jointly. This is a rough estimate
of the complexity of the MERF simulator. The complexity of the MBF simulation is
the total number of morphological solutions for all the words multiplied by the num-
ber of user-defined MBFs. We do not provide a limit on the number of user defined
formulae. In practice, we did not encounter more than ten formulae per case study.
As for the complexity of MRE simulation, converting the rules into non-deterministic
finite state machines (NDFSM) is done once. Simulating an NDFSM over the MBF
tags is potentially exponential. In practice, all our case studies terminated within a
predetermined time bound of less than 30 minutes. MERF required reasonably more
runtime than the task specific implementations and reported acceptable and slightly
less precision metrics with around the same recall.

Table 4 shows that MERF has a clear advantage over task specific techniques in
the effort required to develop the application at a reasonable cost in terms of accu-
racy and run time. Developers needed three hours, three hours, four hours, and one
hour to develop the narrator chain, temporal entity, genealogy, and number normal-
ization case studies using MERF, respectively. However, the developers of ANGE,
ATEEMA, GENTREE, and NUMNORM needed two months, one and a half months,
three weeks, and one week, respectively. MERF needed eight MBFs and four MREs
for narrator chain, three MBFs and two MREs for temporal entity, three MBFs and
three MREs for genealogy, and three MBFs, one MRE, and 57 lines of code actions
for the number normalization tasks. However, ANGE, ATEEMA, GENTREE, and
NUMNORM required 3,000+, 1,000+, 3,000+, and 500 lines of code, respectively.
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name: PN ((MEAN)? PN)*;
nar: name ((NONE)^3 FAM (NONE)^3 name)*;
pbuh: BLESS GOD UPONHIM GREET;
nchain: (s1 “TOLD s2 “nar)+ ((PN|FAM|NONE)^8 pbuh)?
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PN FAM PN TOLD PN TOLD PN FAM PN TOLD

name name name name name

nar nar nar

nchain

Table 5. Narrator chain example.

7.1. Narrator chain case study

A narrator chain is a sequence of narrators referencing each other. The chain
includes proper nouns, paternal entities, and referencing entities. ANGE uses Arabic
morphological analysis, finite state machines, and graph transformations to extract
entities and relations including narrator chains (Zaraket and Makhlouta, 2012a).

Table 5 presents the MREs for the narrator chain case study. MBF PN checks
the abstract category Name of Person. MBF FAM denotes “family connector” and
checks the stem gloss “son”. MBF TOLD denotes referencing between narrators and
checks the disjunction of the stems �

HYg(“spoke to”), 	á«(“about”), ©ÖÞ�(“heard”),

Q�.
	

g


@(“told”), and



A J.

	
K


@(“inform”). MBF MEAN checks the stem ú




	
æ«(“mean”). MBFs

BLESS, GOD, UPONHIM, and GREET check the stems ú

��
Î�, é

��
<Ë @, ú



Î«, and Õ

�
Î�, respectively.

MRE name is one or more PN tags optionally followed with a MEAN tag. MRE nar
denotes narrator which is a complex Arabic name composed as a sequence of Arabic
names (name) connected with family indicators (FAM). The NONE tags in nar allow for
unexpected words that can occur between names. MRE pbuh denotes a praise phrase
often associated with the end of a hadith (“peace be upon him”), and is the satisfied by
the sequence of BLESS, GOD, UPONHIM, and GREET tags. MRE nchain denotes narrator
chain, and is a sequence of narrators (nar) separated with TOLD tags, and optionally
followed by a pbuh tag.



MERF 117

Task MBF accuracy relation accuracy
Recall Precision Recall Precision

Narrator chain 0.99 0.85 0.99 0.98
Number normalization 0.99 0.99 0.97 0.95
Temporal entity 0.99 0.52 0.98 0.89
Genealogy tree 0.99 0.75 0.81 0.96

Table 6. MERF MBF and user-defined relation accuracy.

The first row in Table 5 is an example narrator chain, the second is the transliter-
ation, the third shows the MBF tags. Rows 4, 5, and 6 show the matches for name,
nar, and nchain, respectively. MERF assigns the symbols s1 and s2 for the MRE
subexpressions TOLD and nar, respectively. We define the relation xs2, s12, s1y to relate
sequences of narrators with edges labeled by the tags of TOLD where s12 denotes the
next match of nar in the one or more MRE subexpression. Table 6 shows that MERF
detected almost all the MBF matches with 99% recall and 85% precision and extracted
user-defined relations with 98% recall and 99% precision.

7.2. Temporal entity extraction
Temporal entities are text chunks that express temporal information. Some repre-

sent absolute time such as 2010 H.

�
@ 	áÓ �ÓA

�	
mÌ'@ālh– āms mn â̄ab 2010. Others represent

relative time such as ÐA
�
K


�

@

�
é � Ô

	
g Y ª K.bãd h– msh âayām, and quantities such as

A
�
ÓñK
 1414 ywmā. ATEEMA presents a temporal entity detection technique for the Ara-
bic language using morphological analysis and finite state transducers (Zaraket and
Makhlouta, 2012c). Table 6 shows that MERF detected almost all the MBF matches
with 99% recall, however it shows low precision (52%). As for the semantic relation
construction, MERF presents a 98% recall and 89% precision.

7.3. Genealogy tree
Biblical genealogical lists trace key biblical figures such as Israelite kings and

prophets with family relations. The family relations include wife and parenthood. A
sample genealogical chunk of text is A

�
£ñË

	
à@ �PA

�
ë YËð ðw wld hārān lwt.ā meaning “and

Haran became the father of Lot”. GENTREE (Makhlouta et al., 2012) automatically
extracts the genealogical family trees using morphology, finite state machines, and
graph transformations. Table 6 shows that MERF detected MBF matches with 99%
recall, and 75% precision, and extracted relations with 81% recall and 96% precision.
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TMB algorithm
cout << $s1.text;
if(isHundred) {

if(current != 0) {
previous += current;

}
current = currentH * $s1.number;
currentH = 0;
isHundred = false;
isKey = true;

} else if(current == 0) {
current = $s1.number;
isKey = true;

} else if(!isKey) {
isKey = true;
current = current * $s1.number;

} else {
previous += current;
current = $s1.number;}

DT algorithm
if(isHundred) {currentH += $s0.number;
} else if(current == 0) {

current = $s0.number;
} else if(isKey) {

previous += current;
current = $s0.number;

} else {current += $s0.number; }
isKey = false;

H algorithm
isHundred = true;
if(current == 0) {

currentH = $s2.number;
} else if(!isKey) {

currentH = current * $s2.number;
current = 0;

} else {currentH = $s2.number;}
isKey = false;

Figure 8. Actions for TMB, DT, and H MRE expressions.

7.4. Number normalization

We implemented a number normalization extractor using MERF and compared it
with NUMNORM, a C++ implementation for number normalization. First, we defined
the MBFs DT, H, and TMB to denote (1) digits and tens, (2) hundreds, and (3) thousands,
millions, and billions, respectively. The num MRE (DT|TMB|H)+ is one or more DT,
TMB, or H tags. MERF assigns the symbols s1, s2, and s3 for the subexpressions
DT, TMB, and H, respectively. Figure 8 shows the actions associated with the DT, TMB,
and H subexpressions that cumulatively compute the numeric value of the numeric
expression match. The actions use MERF API to access features of the matches such
as text ($s1.text) and numeric value ($s1.number) of literal numbers such as numbers
from one to ten. Table 6 shows high accuracy in MBF tagging and relation extraction
with 99% and 97% recall and 99% and 95% precision, respectively.

7.5. Discussion

The results show that MERF provides a friendly environment to develop entity
and relational entity extraction tasks with acceptable accuracy and runtime overheads
compared to task specific applications. MERF requires the user to understand and in-
teract with basic linguistic concepts such as readable values of morphological features,
sequences, repetitions, and bounded repetitions. The user interacts with the MBF edi-
tor to specify basic concepts and visualize their matches over highlighted text. Then,
the user interacts with the MRE editor to specify sequences of the concepts and visu-
alize the matches in a graph, in conjunction with the highlighted text.
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The two levels of interaction allow the user to separate between concepts that
relate to word features, and more sophisticated entities that relate to sequences and
context. The MBF, MRE, and user defined relations can be used to generate large
annotated corpora in a fast manner. MERF visualization can be used later to refine the
annotation. The case studies showed that MERF requires some linguistic expertise to
successfully execute the tasks. In contrast, the case specific implementations require
more sophisticated linguistic and programming expertise to attain similar results.

We notice that ANGE, ATEEMA, and Genealogy tree report higher precision than
MERF. This is mainly due to their capacity to learn words and relations that may not
have a match in the morphological analyzer based on co-occurrence relations. For
example, the sequence p1t1p2 where p1 and p2 are persons and t1 is a tell relationship
helps indicate that x is a tell relationship in p1xp2 even if the morphological analyzer
did not return the required feature for x to match a tell relationship. MERF does not
have that capacity yet unless it is encoded in the C++ actions.

8. Conclusion

In this work, we present a morphology-based entity and relational entity extraction
framework for Arabic text. MERF provides a friendly interface where the user defines
tag types and associates them with regular expressions defined over Boolean formu-
lae. The Boolean formulae are in turn defined over matches of Arabic morphological
features and a novel extended synonymy feature (Synk). MERF allows the user to as-
sociate code actions with each regular subexpression and to define semantic relations
between subexpressions. We evaluate MERF with several case studies and compare
with existing application-specific techniques. The results show that MERF requires
shorter development time and effort compared to existing techniques and produces
reasonably accurate results within a reasonable overhead in run time. In the future,
MERF will support user-defined cross-reference predicates, and will infer morpho-
logical features from relevant example words to express a concept.

9. Acknowledgment
The authors would like to thank the Lebanese National Council for Scientific Re-

search (CNRS) for their support.

10. References

AbdelRahman S., Elarnaoty M., Magdy M., Fahmy A., “Integrated Machine Learning Tech-
niques for Arabic Named Entity Recognition”, International Journal of Computer Science
Issues, vol. 7, no 4, p. 27-36, 2010.

Al-Sughaiyer I., Al-Kharashi I., “Arabic morphological analysis techniques: A comprehensive
survey”, JASIST, 2003.

Alrahabi M., Ibrahim A. H., Desclés J.-P., “Semantic Annotation of Reported Information in
Arabic”, FLAIRS Conference, vol. 6, p. 263-268, 2006.

Appelt D., Onyshkevych B., “The common pattern specification language”, TIPSTER work-
shop, ACL, 1998.



120 TAL. Volume 58 – n˝ 3/2017

Attia M., Rashwan M., Al-Badrashiny M., “Fassieh, a semi-automatic visual interactive tool for
morphological, PoS-Tags, phonetic, and semantic annotation of Arabic text corpora”, IEEE
transactions on audio, speech, and language processing, vol. 17, no 5, p. 916-925, 2009.

Atzmueller M., Kluegl P., Puppe F., “Rule-Based Information Extraction for Structured Data
Acquisition using TextMarker”, Proceedings of LWA, Citeseer, p. 1-7, 2008.

Benajiba Y., Diab M., Rosso P., “Arabic named entity recognition using optimized feature sets”,
Proceedings of the Conference on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, p. 284-293, 2008.

Benajiba Y., Rosso P., Benedíruiz J. M., “Anersys: An Arabic named entity recognition system
based on maximum entropy”, International Conference on Intelligent Text Processing and
Computational Linguistics, Springer, p. 143-153, 2007.

Buckwalter T., Buckwalter Arabic Morphological Analyzer Version 1.0, Technical report, Uni-
versity of Pennsylvania, 2002.

Chiticariu L., Krishnamurthy R., Li Y., Raghavan S., Reiss F. R., Vaithyanathan S., “SystemT:
an algebraic approach to declarative information extraction”, Proceedings of the Association
for Computational Linguistics, p. 128-137, 2010.

Dorr B. J., Passonneau R. J., Farwell D., Green R., Habash N., Helmreich S., Hovy E., Levin
L., Miller K. J., Mitamura T. et al., “Interlingual annotation of parallel text corpora: a new
framework for annotation and evaluation”, NLE, vol. 16, no 3, p. 197-243, 2010.

Dukes K., Atwell E., Habash N., “Supervised collaboration for syntactic annotation of Quranic
Arabic”, Language resources and evaluation, vol. 47, no 1, p. 33-62, 2013.

Ekbal A., Bandyopadhyay S., “Named Entity Recognition using Support Vector Machine: A
Language Independent Approach”, IJCSSE, 2008.

Ferilli S., “Natural Language Processing”, Automatic Digital Document Processing and Man-
agement, Springer, 2011.

Gennari J., Musen M., Fergerson R., Grosso W., Crubézy M., Eriksson H., Noy N., Tu S.,
“The evolution of Protégé: an environment for knowledge-based systems development”,
International Journal of Human-Computer Studies, vol. 58, no 1, p. 89-123, 2003.

Habash N., “Introduction to Arabic natural language processing”, Synthesis Lectures on Human
Language Technologies, 2010.

Habash N., Sadat F., “Arabic Preprocessing Schemes for Statistical Machine Translation”,
NAACL, p. 49-52, 2006.

Hammo B., Abu-Salem H., Lytinen S., “QARAB: A question answering system to support the
Arabic language”, Computational approaches to semitic languages, ACL, p. 1-11, 2002.

Jaber A., Zaraket F., “MATAr: Morphology-based Tagger for Arabic”, AICCSA, May, 2013.

Kholidy H., Chatterjee N., “Towards developing an Arabic word alignment annotation tool with
some Arabic alignment guidelines”, ISDA, IEEE, p. 778-783, 2010.

Kulick S., “Consistent and flexible integration of morphological annotation in the Arabic Tree-
bank”, LREC, 2010.

Linckels S., Meinel C., “Natural Language Processing”, E-Librarian Service, Springer, p. 61-
79, 2011.

Maamouri M., Bies A., Buckwalter T., Mekki W., “The penn Arabic treebank: Building a large-
scale annotated Arabic corpus”, NEMLAR Conference on Arabic Language Resources and
Tools, p. 102-109, 2004.



MERF 121

Makhlouta J., Zaraket F., Harkous H., “Arabic entity graph extraction using morphology, finite
state machines, and graph transformations”, CICLing, Springer, p. 297-310, 2012.

Marcus M. P., Marcinkiewicz M. A., Santorini B., “Building a large annotated corpus of En-
glish: The Penn Treebank”, Computational linguistics, vol. 19, no 2, p. 313-330, 1993.

Miller G. A., Beckwith R., Fellbaum C., Gross D., Miller K. J., “Introduction to WordNet: An
on-line lexical database”, International journal of lexicography, vol. 3, no 4, p. 235-244,
1990.

Morton T., LaCivita J., “WordFreak: an open tool for linguistic annotation”, HLT/NAACL, 2003.

Müller C., Strube M., “Multi-level annotation of linguistic data with MMAX2”, Corpus tech-
nology and language pedagogy: New resources, new tools, new methods, 2006.

Nolan D., Lang D., “JavaScript Object Notation”, XML and Web Technologies for Data Sciences
with R, Springer, 2014.

Ogren P., “Knowtator: a protégé plug-in for annotated corpus construction”, NAACL-
Demonstrations, ACL, 2006.

Pasha A., Al-Badrashiny M., Diab M. T., El Kholy A., Eskander R., Habash N., Pooleery
M., Rambow O., Roth R., “MADAMIRA: A Fast, Comprehensive Tool for Morphological
Analysis and Disambiguation of Arabic”, LREC, vol. 14, p. 1094-1101, 2014.

Saleh L., Al-Khalifa H., “AraTation: an Arabic semantic annotation tool”, IIWAS, 2009.

Settles B., “Closing the loop: Fast, interactive semi-supervised annotation with queries on fea-
tures and instances”, Proceedings of EMNLP, ACL, p. 1467-1478, 2011.

Shahrour A., Khalifa S., Taji D., Habash N., “Camelparser: A system for Arabic syntactic
analysis and morphological disambiguation”, COLING Demonstrations, p. 228-232, 2016.

Sipser M., Introduction to the Theory of Computation, Cengage Learning, 2012.

Smrz O., Pajas P., “Morphotrees of Arabic and their annotation in the TrEd environment”,
NEMLAR International Conference on Arabic Language Resources and Tools, 2004.

Soudi A., Neumann G., Van den Bosch A., Arabic computational morphology: knowledge-
based and empirical methods, Springer, 2007.
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