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Abstract
This paper introduces a unique large-scale machine translation dataset with various levels of
human annotation combined with automatically recorded productivity features such as time and
keystroke logging and manual scoring during the annotation process. The data was collected
as part of the EU-funded QT21 project and comprises 20,000–45,000 sentences of industry-
generated content with translation into English and three morphologically rich languages:
English–German/Latvian/Czech and German–English, in either the information technology
or life sciences domain. Altogether, the data consists of 176,476 tuples including a source
sentence, the respective machine translation by a statistical system (additionally, by a neural
system for two language pairs), a post-edited version of such translation by a native-speaking
professional translator, an independently created reference translation, and information on post-
editing: time, keystrokes, Likert scores, and annotator identifier. A subset of 2,000 sentences
from this data per language pair and system type was also manually annotated with translation
errors for deeper linguistic analysis. We describe the data collection process, provide a brief
analysis of the resulting annotations and discuss the use of the data in quality estimation and
automatic post-editing tasks.

1 Introduction

Data-driven approaches to machine translation (MT) rely largely on datasets of source sentences
and their corresponding translations previously created by humans, so-called parallel corpora.
MT systems, be they statistical or neural, are built in static fashion and (if at all) updated from
time to time as more translations become available. With the popularisation of post-editing
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(PE), a natural question is whether the corrected version of the MT output could be used in
feedback loops to improve the current system via model retraining, model tuning or the addition
of explicit model components. Additionally, by studying PE data, one can get insights on the
errors made by the MT system to try and remedy them in different ways. PE data can also
be used to build and benchmark metrics for the automatic evaluation of MT output, as well as
quality estimation metrics and automatic PE systems.

To facilitate research in these and related areas, we have created a unique large-scale
dataset with various levels of human annotation combined with automatically recorded pro-
ductivity features. The data comprises 20,000–45,000 sentences of industry-generated content
for English from or into three morphologically rich languages and was collected as part of the
EU-funded QT21 project. The PE of all four language pairs was performed using a tool to
record detailed process and product information at the sentence level during PE, including time,
keystrokes, actual edits and Likert scores for the PE effort as given by the translator immediately
after completion of the editing.

Most of the data was translated by a phrase-based statistical MT (PBMT) system. In
addition, subsets of 15,000–20,000 sentences for EN–DE and EN–LV – respectively – were
also translated using a neural MT (NMT) engine that was trained on exactly the same data
used to train the original PBMT system. The PE of identical input data for both the PBMT
and NMT systems facilitates large-scale direct comparisons between the actual output of these
systems, as well as between process cues. For example, PE productivity can be calculated and
compared using the time and keystroke information recorded during PE. The “preference” of
translators can be compared through the scores given to the perceived quality of the output by
such translators. A number of other comparative analyses and benchmarking in both research
and industry scenarios become possible with this data.

Finally, a subset of 2,000 sentences was selected for each language pair and MT system
type and manually annotated with word-level errors for deeper linguistic analysis. Both PE and
error annotations were performed by professional translators.

While other datasets with PE data have been created in the past and also released for
research purposes, these are limited in either their scale (e.g. see those used for the WMT13–
14 shared tasks on quality estimation1), have been post-edited by non-professional translators
(Wisniewski et al., 2013; Bojar et al., 2015), or make only the actual post-edits available, pro-
viding no additional information on the process and no explicit annotations. The most notable
example of the latter is the Autodesk dataset (Zhechev, 2012). It contains sentences predomi-
nantly belonging to Autodesk software user manuals, covering 13 language pairs with English
as the source language. The source sentence, its machine translation and its post-edit are pro-
vided. The translated sentences are produced by an MT system or are translation memory
suggestions with a fuzzy match score larger than 75%.

In the remainder of this paper we first describe our data sources (Section 2) and the MT
systems built (Section 3) to translate this data. We introduce the PE process and its results in
Section 4, and the error annotation in Section 5. In Section 6 we present two uses of the dataset.

2 Data

The post-edited and annotated data described in this paper belongs to two specific domains:
information technology (IT) and life sciences. These domains were chosen because of the
high demand for this type of content in multiple languages due to its economic impact on
businesses active on global markets where language is key. The use of this data in research can
therefore play a significant role in building the necessary bridges between the constituencies
most interested in achieving progress in the field of MT: research and industry.

1http://www.statmt.org/wmt14/
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Language
pair

#
sentences

#
source tokens

#
target tokens Domain

Data
provider

EN–DE 80,874 1,322,775 1,312,975 IT Adobe
EN–CS 81,352 1,332,654 1,175,463 IT Adobe
EN–LV 231,028 3,713,803 3,168,740 Pharma EMEA
DE–EN 193,637 3,120,482 3,228,761 Pharma EMEA

Table 1: Domain-specific datasets: number of sentences and source and target tokens.

Training data
EN–DE EN–CS EN–LV DE–EN

# sentences 21,873 32,352 204,528 135,884
# source words 0.53 0.59 3.19 2.41

Table 2: Statistics on the in-domain training data. The number of words is reported in millions.

Four sets of parallel data in four language combinations (English– German/Latvian/Czech
and German–English) were selected from the web. English Adobe software manuals translated
into German and Czech were chosen for the IT domain, and a subset of the European Medicines
Agency (EMEA) corpus was selected for the life sciences domain (which we also refer to as
“pharma”) to cover the English–Latvian and German–English language pairs.2

To create datasets that can satisfy different research needs and thus increase their usability,
a set of criteria was applied to data selection and pre-processing. For English–German/Czech
and German–English, sentences that did not end with a punctuation mark or contained less than
three or more than 35 words were discarded, and duplicate sentences were removed. These
strategies reduced the number of sentence pairs by approx. 45%. For English–Latvian, a part of
parallel sentences were obtained by extracting textual sentences from PDF files in the EMEA
repository. First, we used Adobe Acrobat v10 Professional to convert PDF files to HTML
format, as this preserved most of the original document structure. Then we ran customised
scripts to convert the HTML files to plain text and clean the data. The Microsoft Bilingual
Sentence Aligner (Moore, 2002) was used for sentence alignment of the parallel plain text
files. Duplicate sentence pairs and sentences with less than three or more than 35 words were
removed. This sentence size filtering only marginally affected the size of the final corpus. The
statistics of the final sets are reported in Table 1.

For each language pair, we selected a subset of data for annotation (see Table 5), and used
the remaining sentence pairs as in-domain training data to build the MT systems (Section 3).
This remaining data was split into training (see Table 2), development (2,000) and test (2,000)
sets.

3 MT Engine Building

3.1 Training Data
A crucial aspect for creating a set of reliable post-edited sentences and error annotations is
the availability of domain-adapted translations. This is necessary because a generic translation
system is not able to correctly translate domain-specific terms or expressions, which would, in
turn, cause translators to rewrite translations from scratch, rendering accurate error annotation

2The German–English dataset was created by taking the available English–German data and then inverting the
language direction. This is not ideal; however, very little domain-specific data exists for under-resourced language
pairs, including those whose source language is German.
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EN–DE EN–CS EN–LV DE–EN
Parallel Mono Parallel Mono Parallel Mono Parallel Mono

In-domain 7.2 - - - 0.181 - 2.09 2.35
Out-domain 12.7 - 50.34 51.46 - - - -

Table 3: External resources collected to train the MT systems. The reported numbers represent
millions of sentences.

impossible.
When building a domain-adapted MT system we rely on different external resources de-

pending on the size of the in-domain data. For the language pairs for which there are less than
100,000 in-domain sentence pairs (i.e. EN–DE and EN–CS), a large collection of in- and out-of-
domain monolingual and parallel corpora was gathered from the web, while for the remaining
languages (EN–LV and DE–EN) only in-domain corpora were used. This process resulted in:

• EN–DE: Over 20 million generic and in-domain sentence pairs obtained by merging the
datasets available in the OPUS (Tiedemann, 2012), TAUS, WMT and JRC 3 repositories
(e.g. Europarl, CDEP, CommonCrawl, etc.);

• EN–CS: Over 51 million generic and in-domain sentence pairs available in the CzEng 1.6
dataset (Bojar et al., 2016b).4 In addition, translating into a language with free word order
suggests the use of a large collection (more than 50M sentences) of monolingual generic
data obtained from the Translation task at WMT16;

• EN–LV: Over 385,000 parallel medical sentences from the EMEA corpus available in
OPUS and the most recent documents from the EMEA website (years 2009-2014);

• DE–EN: Over 2 million in-domain sentence pairs collected from OPUS and the data re-
leased for the medical translation task at WMT14 (Bojar et al., 2014). These resources
include MuchMore, PatTr, and the Wikipedia parallel titles. In addition to these parallel
sentences, monolingual data (approx. 2 million) obtained from the medical translation task
at WMT14.

A summary of the external resources used to train the MT system is shown in Table 3.

3.1.1 Data Selection
In MT literature, it has been shown that when large generic datasets and a small in-domain
corpus exist, the use of data selection techniques can help improve translation quality (Eetemadi
et al., 2015). To optimally leverage a domain-specific corpus, we used cross-entropy-based
selection for monolingual data (Moore and Lewis, 2010), its extended version for bilingual
texts proposed by Axelrod et al. (2011) and the latent-domain translation method (Cuong and
Simaan, 2014).

Entropy-based method: Originally proposed by Gao and Zhang (2002), entropy-based
approaches consist in computing the perplexity score of each sentence of a generic corpus
against both an in-domain language model (LM) and an LM trained on the generic corpus. The
sentences are then ranked according to the difference between their two perplexity scores. Once
all of the generic sentences have been ranked, the size of the subset to extract is determined by
minimising the perplexity of a development set against an LM trained on an increasing amount
of the sorted corpus (e.g. 5%, 10%, ...). According to (Moore and Lewis, 2010), perplexity

3https://ec.europa.eu/jrc/en/language-technologies
4http://ufal.mff.cuni.cz/czeng/czeng16pre
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decreases when less but more relevant data is used. We used the freely available open-source
tool XenC (Rousseau, 2013).

Latent-domain translation method: This technique is able to give priors to different
domains that comprise the generic data set. The goal is to estimate the probability of whether
a sentence pair belongs to the in- or out-of-domain data, using in-domain corpus statistics as
prior. The Expectation-Maximisation training algorithm is derived and used to estimate the out-
of-domain models (given only in and mixed-domain data). This technique provides the selected
data directly without the need to choose a cut-off point in the ranked list of sentence pairs.

Both methods were first tested on the EN–DE language pair, and the best performing
method was applied to EN–CS. In our experiments, we used the data shown in Table 1 as
in-domain and the concatenation of the data in Table 3 as out-of-domain data. Although an
in-domain corpus exists for EN–DE in the additional resources, it represents a mix of datasets
resulting from a different distribution compared to the training data in Table 1. For this reason,
all corpora in the additional resources are considered out-of-domain data.

The perplexity computed on the target side of the development set using all available data
is 207. When applying both data selection methods, it significantly decreased to 150, indicating
that selecting data in this fashion can be advantageous. The entropy-based method achieved a
perplexity of 150, and selecting only the top 15% of the ranked sentences resulted in 3.3 million
sentence pairs. The latent domain method obtained a similar perplexity (157) but selected a
larger number of sentences. For this reason, the entropy-based technique is also used for EN–
CS. In this case, the perplexity is higher than for EN–DE (1900), but using the top 5% of the
ranked data (2.5 million sentences) allowed us to significantly reduce it to 1300. These high
perplexity values stem from the fact that the external resources for EN–CS do not contain any
IT data.

3.2 MT Systems
Different systems were built for each language pair using the selected and the in-domain data
for EN–DE and EN–CS and the in-domain data for the other language pairs.

• EN–DE: Two different MT systems were created: a PBMT and a NMT system. The
PBMT system was trained on all of the selected parallel training data. The phrase table
was adapted to the in-domain data using the approach proposed in (Niehues and Waibel,
2012). To deal with complex reordering in the German language, this system uses a pre-
reordering technique (Herrmann et al., 2013) in combination with lexical reordering. In
addition, it takes advantage of two word-based n-gram language models and three addi-
tional non-word language models, namely, two automatic word class-based (Och, 1999)
language models using 100 and 1,000 word classes, and a POS-based language model us-
ing fine-grained POS tags (Schmid and Laws, 2008). For the NMT system, we trained
the Nematus toolkit (Sennrich et al., 2017) which is an implementation of the attentional
encoder-decoder architecture (Bahdanau et al., 2014). To handle large vocabulary, the
training data was previously segmented using the byte-pair encoding compression algo-
rithm (Sennrich et al., 2016), resulting in a vocabulary of 40,000 sub-word units for both
languages. We used mini-batches of 100, word embeddings of 500 dimensions, and gated
recurrent unit layers of 1,024 units. The maximum sentence length was set to 50. The
models were trained using Adam and by reshuffling the training set at each epoch. The
NMT system was trained on the selected data and then fine-tuned on the in-domain data.

• EN–CS: The PBMT system was trained using Moses (Koehn et al., 2007) combined with
TectoMT (Žabokrtskỳ et al., 2008). This was done by adding the source development and
test sentences and their translations obtained by TectoMT as additional (synthetic) parallel
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EN–DE EN–CS EN–LV DE–EN
PBMT NMT PBMT PBMT NMT PBMT
35.9 45.8 38.7 46.5 38.4 53.4

Table 4: BLEU score of the PBMT and NMT systems on different language pairs.

data to the Moses system previously trained on the selected data. This new corpus and
the in-domain data were used to train separated phrase tables. At test time, we ran Moses
using all of the phrase tables and we corrected its output using Depfix (Rosa et al., 2012).
In addition, we trained a 7-gram LM on surface forms from all monolingual resources.
Similar to the EN–DE system, two additional LMs over morphological tags were built to
help maintain morphological coherence in the translation output. The system is described
in (Tamchyna et al., 2016).

• EN–LV: The PBMT system was trained on Tilde’s MT platform (Vasiļjevs et al., 2012).
The system is based on the Moses toolkit using the standard components. Nematus with
sub-word units was used to train the NMT system with a vocabulary size of 40,000 sub-
words. The models were trained with a projection (embedding) layer of 500 dimensions,
recurrent units of 1024 dimensions, a batch size of 20 and dropout enabled. All other
parameters were set to their default values.

• DE–EN: The PBMT system was trained using the same components and adaptation tech-
niques as those used for the EN–DE model.

The results of the different systems for each of the language pairs are reported in Table
4 according to BLEU (Papineni et al., 2002). The parameters of the models were optimised
on the development set and the final results computed on the test set. When comparing the
PBMT and NMT performance, we noticed that when using a large collection of training data
(i.e. EN–DE) the NMT system can significantly outperform the PBMT as shown in several
evaluation campaigns. However, when the training data is limited (i.e. EN–LV) , the PBMT
performs better than the NMT. The language pairs with the lowest out-of-vocabulary rate (EN–
LV: 0.2 and DE–EN: 0.5) achieve the best BLEU score values. The DE–EN system obtains
better performance compared to EN–LV because it can leverage more in-domain training data.

4 Post-Editing Process

Post-editing was performed using the PET tool (Aziz et al., 2012). This is a simple and freely
available, open-source tool that tracks PE using a number of indicators. Figure 1 shows a
screenshot of the tool with an English–German PE task. The tool tracks the process of PE,
records PE time per sentence, and logs all keystrokes pressed by the annotator. This allows us
to reproduce the PE activity, which can be useful for research on topics such as PE process,
productivity gains, and automatic PE. The following information was recorded during PE:

• Editing time: time spent translating or editing a unit.

• Keystrokes: number of keys pressed during the PE according to type of keys (deletion,
alpha-numeric, etc.).

• HTER: edit distance between the draft translation and its post-edited version.

• Evaluation: quality assessment based on a pre-defined set. We ask a question about the
usefulness of the draft translation for PE (top left corner in Figure 1).
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Figure 1: Example of project in the PET tool.

Time, one of the most important indicators collected by the tool, is computed from the
moment the target box of the unit is clicked to the moment the task is completed (either the
job is closed or the navigation button “next” is pressed). The tool allows for multiple revisions,
where the annotator can go back to the same sentence and edit it again. For the statistics reported
here, we take the aggregation of PE time and keystrokes, and compute the edit distance between
the last version and draft MT output. The outcome of a job is also stored in an XML file.

A set of PE and annotation guidelines created by the QTLaunchpad project were adapted
for the PE of our data. To ensure that the quality of the post-edits was consistent and reflected
the requirements of the research to be performed on the resulting data, agreement was reached
on the level of editing to be done on the data. Based on the previous experience of the language
partners involved, the following general rules were defined:5

• Use as much of the raw MT output as possible.
• Aim for grammatically and syntactically correct translations.
• Ensure that no information has been accidentally added or omitted.
• Edit any offensive, inappropriate or culturally unacceptable content.
• Ensure proper and appropriate spelling.
• Do not restructure or change word order solely to improve the flow of the text unless

dictated by grammar or domain standards.

Additionally, the following domain-specific rules for software localisation were used:

• Ensure that domain-specific terminology is correctly translated.
• Ensure that standard domain and language-specific style issues are followed.
• If formatting is used, ensure that it is correct.

5For details: qt21-wiki.dfki.de/index.php?title=Post-editing_guidelines
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# sentences # words SRC # words MT # words PE
Lang. PBMT NMT - PBMT NMT PBMT NMT
DE–EN 45,000 – 14.66 15.54 – 15.58 –
EN–DE 30,000 15,0006 14.47 14.61 14.77 14.61 14.56
EN–LV 20,738 20,738 15.91 13.50 13.42 13.52 13.42
EN–CS 45,000 – 15.04 13.16 – 13.23 –

Table 5: General statistics of the post-edited data: Total number of sentences, average number
of words in source, translation and post-edited sentences.

Avg. utility score
Lang. PBMT NMT
DE–EN 1.62 –
EN–DE 1.98 1.40
EN–LV 1.64 1.84
EN–CS 2.17 –

Table 6: PE utility scores: the
lower the score, the more useful
the MT output.

Avg. TER MT-PE Avg. TER REF-PE
Lang. PBMT NMT PBMT NMT
DE–EN 0.17 – 0.36
EN–DE 0.25 0.08 0.40 0.37
EN–LV 0.15 0.23 0.29 0.34
EN–CS 0.32 – 0.34 –

Table 7: Average edit distance between PE and original
MT (HTER), and between PE and independent reference.
The higher the distance, the more edits performed.

The guidelines were made available to all language teams and pre-editing meetings were
held to avoid communication issues. Consistency in the application of these rules was crit-
ical, which is why professional translators were employed and thorough consultations were
performed prior to PE.

Professional translators performed PE on every language pair. Six translators were in-
volved in the PE for EN–DE, 4 for DE–EN, 8 for EN–LV, and 5 for EN–CS. For the evaluation
score, the following options were given to the translator after the post-editing of each sentence:

• 1. Perfect or near perfect (typographical errors only).
• 2. Very good, could be post-edited quickly.
• 3. Poor, required significant post-editing.
• 4. Very poor, required retranslation.

Tables 5–8 summarise the outcome of the PE process. Much more detailed information is
available in the XML output files. Table 5 provides general statistics on numbers of sentences
and words per language pair and MT system type. The average perceived PE effort scores are
given in Table 6. Table 7 measures the edit distance between MT and PE, and between PE and
the original reference (REF). Finally, 8 shows average PE time and keystrokes. As expected, PE
time varies considerably for different sentences, even if outliers are removed. Therefore, Table
8 also shows standard deviations.

5 Error Annotation Process using MQM

Our error annotation process follows a 2-step workflow. After PE, the quality of each sentence is
evaluated on a scale from 1–4 as explained in the previous section. A subset of sentences scored
as 2 (very good) are then selected for the error annotation phase, during which all issues resolved
during the PE phase are classified. The errors are annotated using the Multidimensional Quality
Metrics (MQM) error annotation framework (Lommel et al., 2014), which is popular in industry
and research, and actively supported by XTM, Trados Studio, and other commercial tools. We
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Avg. PE time Avg. PE time w/o outliers Avg. keystrokes
Lang. PBMT NMT PBMT NMT PBMT NMT
DE–EN 42±80 – 36±45 – 24.71 –
EN–DE 51±78 46±602 46±39 32±36 15.55 13.89
EN–LV 27±77 43±406 23±28 36±39 18.91 26.08
EN–CS 44±43 – 42±35 – 45.78 –

Table 8: Post-editing time and keystrokes: average number of seconds per word, with and
without outliers (plus standard deviation) and average number of keys pressed during post-
editing of a sentence. Outliers are sentences that took more than four minutes to be edited.

used the open-source tool translate57 (see Figure 2), a database-driven tool with a GUI. Source
texts, translations, post-edits, and error annotations are organised in a relational database. The
tool, originally implemented as a proofreading and PE environment for the translation industry,
has been recently extended to support MQM annotation.

Figure 2: MQM error annotation in translate5 (excerpt of screenshot).

An error represents any issue that has been corrected during the PE step in the translated
sentence. In the annotation step, a relevant error classification must be provided for all cor-
rections made during PE according to a given list of errors. Error annotation is performed by
experienced professional translators supported by detailed annotation guidelines.

The list of errors is divided into the main issue categories accuracy, fluency and terminol-
ogy, which fold into a selection of more detailed categories from the MQM hierarchy. Figure 3
shows part of a decision tree that annotators used to select the most appropriate issue. The
actual error categories used in the annotation are shown in Table 9.

Annotators are instructed to use the subcategories whenever possible and to resort to the
more general category level only in case of doubt, for example, if the German term Zoomfaktor
is incorrectly translated as zoom shot factor, and the annotator is unsure whether this represents
a mistranslation or an addition. In this case, the error can be classified as an Accuracy error
since it is unclear whether content has been added or a term mistranslated.

The annotation process has been completed for all languages and MT system types, result-
ing in 1,800 unique sentences per language pair and MT system type, with an additional 200
sentences doubly annotated for agreement analysis. The breakdown of error annotations for all
2,000 sentences per language pair and MT system type is shown in Table 9.

Table 10 shows an initial analysis on the agreement between pairs of annotators. Agree-
ment was computed using Cohen’s kappa (Cohen, 1960) at the word level in two ways: firstly,
for each word we count an agreement whenever both annotators agree that it is incorrect (or cor-
rect), with agreement by chance = 1/2; second, for each word we count an agreement whenever

7http://translate5.net
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Figure 3: Decision tree guiding error annotation (excerpt).

both annotators agree on the exact error type assigned to the word (or agree on the word being
correct), considering all the 20 categories shown in Table 9 as equally likely (i.e. no distinction
was made among different levels in the hierarchy), with agreement by chance = 1/21.

The interpretation of the kappa coefficient is difficult, but it is generally believed that 0.4–
0.6 is moderate, while 0.6–0.8 represents substantial agreement, with anything above 0.8 indi-
cating perfect agreement (Landis and Koch, 1977). Considering the subjectivity of the task and
the number of error categories and different levels in the hierarchy, we consider the moderate
to high agreement found a very positive result towards validating the annotation of the data.
In the near future, further quantitative and qualitative analysis will be performed to understand
problematic categories and the reasons behind certain disagreements.

6 Examples of Uses of the Dataset

Subsets of the datasets collected have been used in the 2016 and 2017 editions of the WMT
shared tasks on Quality Estimation and Automatic Post-editing (Bojar et al., 2016a, 2017).8 In
what follows we summarise some of the outcomes from these tasks.

6.1 Quality Estimation
Quality Estimation (QE) is the task of predicting the quality of the output of an MT system
without the use of reference translations (Blatz et al., 2004; Specia et al., 2009). This is ap-
proached as a machine learning task, where training data with quality labels is needed. These
labels can target different granularity levels: words, phrases, sentences or entire documents.

Early work in the area relied on proxies to quality labels generated using automatic evalu-
ation metrics such as BLEU (Papineni et al., 2002) based on human translations. The task was
thus framed as that of predicting an automatic evaluation metric score. This did not prove very
successful because of the limitations of the automatic metrics themselves and the lack of a clear
interpretation for the predictions (i.e. what does a BLEU score of 0.5 mean?).

Quality labels given by humans have been suggested in (Quirk, 2004) but only started to be

8http://www.statmt.org/wmt16/ and http://www.statmt.org/wmt17/.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 64



DE–EN EN-DE EN–LV EN–CS
Error type PBMT PBMT NMT PBMT NMT PBMT
Accuracy 3 0 0 39 50 0

Addition 539 332 167 277 268 385
Mistranslation 437 967 852 274 677 786
Omission 576 690 355 395 560 588
Untranslated 278 102 24 79 62 301

Fluency 3 0 0 233 210 234
Grammar 0 0 0 11 2 103

Function words 1 2 1 0 0 0
Extraneous 302 525 245 49 49 228
Incorrect 139 804 449 56 55 454
Missing 362 779 231 66 32 348

Word form 0 94 267 280 261 1401
Part of speech 20 128 132 38 35 147
Agreement 18 506 97 419 357 48
Tense/aspect/mood 63 184 51 60 46 397

Word order 218 868 309 336 152 1148
Spelling 118 126 132 324 387 638
Typography 282 553 249 823 387 1085
Unintelligible 0 33 0 10 14 30

Terminology 27 82 139 34 31 0
All categories 3386 6775 3700 3803 3635 8321

Table 9: MQM error categories and breakdown of annotations completed to data.

DE–EN EN-DE EN–LV EN–CS
PBMT PBMT NMT PBMT NMT PBMT

# annotated words (A1/A2) 516/643 974/920 338/288 669/682 303/310 324/370
Kappa on annotated words 0.61 0.70 0.82 0.69 0.67 0.62
Kappa on error type 0.51 0.48 0.69 0.53 0.51 0.51

Table 10: Number of annotated words per language pair for each annotator (A1 and A2) and
the Cohen’s kappa measuring inter-annotator agreement for MQM error annotations.

used more recently (Specia et al., 2009). In particular, the use of objective labels derived from
extrinsic uses of MT output, such as PE, have become popular (Specia, 2011). Labels of this
type include normalised PE distance (HTER - Human Targeted Translation Error Rate (Snover
et al., 2006)). These can be acquired as a by-product of PE in a translation workflow, are less
subjective and less subject to biases such as the annotators’ perception of MT.

The datasets described in this paper open many new avenues for research in QE. The main
benefits with respect to previously collected labels include its scale, domain specificity and the
availability of multiple types of (reliable) human annotation.

In the WMT16 QE shared task, a subset of the English-German IT domain post-edited
data containing 15,000 sentences was used for the sentence, word and phrase-level tasks. The
quality labels were automatically derived from the PE of the MT output, e.g. for sentence level,
HTER scores were used. Bojar et al. (2016a) claim that, when compared to previous year –
approx. 14,000 crowdsourced post-edited sentences – the results of the 2016 task were more
conclusive. They attribute this to the higher quality of the new dataset and observe that:
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Task Baseline ↑ Best system ↑
2016 Training set

Word-level QE 0.32 0.55
Phrase level QE 0.40 0.50
Sentence-level QE 0.35 0.53

2017 Training set
Word-level QE 0.36 0.58
Phrase level QE 0.33 0.60
Sentence-level QE 0.39 0.71

Table 11: QE shared task results on the 2016 test set: baseline and winning systems in 2016 and
2017 (larger training set) for sentence (Pearson), word and phrase (F1-mult = multiplication of
F1 for the GOOD and BAD classes) levels.

• for sentence level, the best Pearson correlation between the system prediction and true
HTER in 2015 was 0.39 (against 0.14 of the baseline system). In 2016, the winning sub-
mission reached 0.52 Pearson correlation (against 0.35 of the same baseline system). One
can speculate that the task was made somewhat “easier” by using high quality data, but
the delta in the Pearson correlation between the baseline and winning submission is still
substantial.
• for word level, 2016 systems performed much better: 0.56 against 0.43 F1-BAD. The

baseline systems are not comparable.

In order to further push progress in the QE field, the 2017 QE task was provided with an
extended version of the 2016 dataset in addition to data from a different domain and a different
language pair. For English-German, the 2016 dataset was extended to include a total of 28,000
sentence pairs. For German-English, 28,000 sentence pairs in the life sciences domain were
made available for the task.

The two datasets are significantly larger than any dataset used before in QE shared tasks.
The same data was used for the three subtasks: sentence, word and phrase levels. The results of
this year’s task (Bojar et al., 2017) show major improvements for all tasks over the 2016 results.
In addition to general advances in the field, these can in part be attributed to the larger dataset
provided. For the 2016 test set, also used in 2017 for comparison, Table 11 shows the results
using the official metrics for the best system and the baseline system using the 2016 vs the 2017
training sets.

This data has proven useful for subsequent work in the field: for instance, (Forcada et al.,
2017) focuses on the prediction of PE time at sentence level on the 2016 dataset, while (Martins
et al., 2017) proposes an novel word-level QE approach using automatic PE techniques.

6.2 Automatic Post-Editing
Automatic Post-editing (APE) systems are usually trained on (source, MT, human post-edit)
triplets from which the appropriate corrections of systematic errors should be learned and pos-
sibly generalised. This supervised learning problem is addressed as a “monolingual translation”
task in which rough MT output in a given target language has to be translated into a fluent and
adequate translation of the original source text. BLEU and TER computed against reference
human post-edits are the standard evaluation metrics for the task, and their respective improve-
ments and reductions are usually compared against the baseline scores obtained by the original
MT output that has been left untouched (i.e. rough, non post-edited translations).

Early APE systems (Allen and Hogan, 2000; Simard et al., 2007) were developed under
the PBMT paradigm, that is, by learning from “parallel” data, either (MT, human post-edit)
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pairs or triplets including information from the source text (Béchara et al., 2011; Chatterjee
et al., 2015). Recent solutions achieved larger and more significant improvements by exploiting
neural methods (Junczys-Dowmunt and Grundkiewicz, 2016; Pal et al., 2016, 2017), which
approach the task as a sequence to sequence learning problem.

Both paradigms suffer from drawbacks that have, to date, represented the main obstacles
towards a wider adoption of APE technology. According to Bojar et al. (2015), one of the
major problems lies in data sparsity, which limits the ability to exploit training data in order to
learn correction patterns that can also be applied to test instances. Several factors contribute to
raising this data sparsity issue, namely: i) the size of the data (although human post-edits are
a by-product of industrial translation workflows, few corpora are available for research, ii) the
domain of the data (general domains – like news – are definitely less repetitive than narrow ones
– like information technology), and iii) the origin of the post-edits (professional post-editors are
definitely more reliable and coherent than non-expert ones).

The datasets described in this paper aim to mitigate the problems related to data sparsity
for reasons that are similar to those discussed in the previous section on QE. Indeed, their
size, domain specificity and professional PE quality may explain the renewed interest and the
impressive progress of APE research in the past few years. The following figures drawn from
the WMT experience support our claims:

• Number of tasks and submitted runs. At WMT 2016, only one English-German translation
task in the IT domain was organised, while 2017 saw two tasks: English-German (IT) and
German-English (life sciences). The new corpora (more repetitive than news data edited
by non-experts in 2015) motivated more teams to participate: from 7 submissions in 2016
to 20 in 2017.

• Improvements over the baseline. The switch to new data coincided with significant per-
formance gains that prove the viability of APE in domain-specific settings. While in 2015
none of the participants was able to beat the baseline, the best English-German submissions
in 2016 and 2017 improved over the baseline by up to 5.5 and 7.6 BLEU points.

• Improvements over the PBMT approach. While in 2015 all systems followed this
paradigm, falling in the same range of performance, the combination of advancements in
neural research and the provision of more suitable data resulted in impressive performance
gains in the next two evaluation rounds. The same PBMT system used for comparison
in all the evaluation rounds was significantly outperformed by most of the participants in
2016 (up to 3.2 BLEU points) and in 2017 (up to 7.1 BLEU points).

7 Conclusions

In this paper we introduced a large and unique set of data points derived from industry data that
have been post-edited and annotated by professional translators. This allows for specific fea-
tures and novel combinations of features to be used for a variety of research and user-oriented
purposes, including establishing the actual PE effort by translators based on time and keystrokes
and comparing these results to the perceived level of quality of the post-edited sentence, estab-
lishing correlations between certain characteristics such as sentence length and post-editing
time, or post-editing time and human or automatic quality evaluation metrics. The datasets also
measure post-editing productivity and can be used to detect error patterns in the MT output.
In addition, the creation of MQM-annotated subsets of these post-edits for typical industry do-
mains provide information about error patterns and support feature-oriented quality estimation
and evaluation, among many other novel avenues for research. This dataset is freely available
and can be downloaded from the project website: http://www.qt21.eu/.
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