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Abstract
Hybrid machine translation (HMT) takes advantage of different types of machine translation
(MT) systems to improve translation performance. Neural machine translation (NMT) can
produce more fluent translations while phrase-based statistical machine translation (PB-SMT)
can produce adequate results primarily due to the contribution of the translation model. In
this paper, we propose a cascaded hybrid framework to combine NMT and PB-SMT to im-
prove translation quality. Specifically, we first use the trained NMT system to pre-translate
the training data, and then employ the pre-translated training data to build an SMT system and
tune parameters using the pre-translated development set. Finally, the SMT system is utilised
as a post-processing step to re-decode the pre-translated test set and produce the final result.
Experiments conducted on Japanese→English and Chinese→English show that the proposed
cascaded hybrid framework can significantly improve performance by 2.38 BLEU points and
4.22 BLEU points, respectively, compared to the baseline NMT system.

1 Introduction

In recent years, NMT has made impressive progress (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2015). The state-of-the-art NMT model
employs an encoder–decoder architecture with an attention mechanism, in which the encoder
summarizes the source sentence into a vector representation, the decoder produces the target
string word by word from vector representations, and the attention mechanism learns the soft
alignment of a target word against source words (Bahdanau et al., 2015). NMT systems have
outperformed the state-of-the-art SMT model on various language pairs in terms of translation
quality (Luong et al., 2015a; Bentivogli et al., 2016; Junczys-Dowmunt et al., 2016; Wu et al.,
2016; Toral and Sánchez-Cartagena, 2017). However, due to some deficiencies of NMT systems
such as the limited vocabulary size, and meaningless translations, much research work has
involved combining NMT and SMT to improve translation performance (Cho et al., 2014; He
et al., 2016; Niehues et al., 2016; Wang et al., 2017).

HMT is a strategy that combines different types of translation systems and fully takes ad-
vantage of the strengths of each system to improve translation performance. A typical example
of HMT involves a rule-based system’s predictable and consistent translations with an SMT
system used for post-processing to further improve translation quality (Groves and Way, 2005;
Paul et al., 2005; Groves and Way, 2006; Chen et al., 2007; Sánchez-Martı́nez et al., 2007;
Enache et al., 2012; Li et al., 2015).1 NMT is a new MT paradigm which can produce highly

1A huge amount of work has been done on this topic in the past decades, so we only list a representative sample
here.
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fluent translations. However, NMT sometimes generates translations that have a totally different
meaning compared to the source sentences, which testifies to its strong language modeling but
weak translation modeling capabilities. By contrast, PB-SMT is good at reflecting the adequacy
of source sentences by means of the ‘hard word alignment’. Intuitively, if we take the fluent
but wrong translations as another language and perform word alignment, then we can perhaps
restore the original meaning of source sentences to some extent using SMT. Moreover, for any
source-side out-of-vocabulary (OOV) words in NMT, if we can keep them in the translations,
then we can fully utilise the advantage of SMT to translate them.

Some work has been done on combining the adequacy of SMT and fluency of NMT. To
the best of our knowledge, the most similar work is the pre-translation framework proposed
in Niehues et al. (2016). In their framework, the SMT system is first used to pre-translate
the input and then an NMT system generates the final hypothesis using the pre-translation as
input. However, in their experiments, the “SMT⇒NMT” framework without integrating source
information did not beat the pure NMT system and was not able to combine the strengths of
both systems.

In this paper, we propose an “NMT⇒SMT” hybrid strategy to utilise SMT and NMT
by considering (i) that NMT systems significantly outperform SMT systems, so using a higher-
quality system as a post-processing step may indeed improve the performance of a lower-quality
MT system, but might be difficult to outperform the higher-quality system; (ii) that NMT is
more sensitive to noisy data compared to SMT, so using pre-translated data to train NMT will
cause translation performance to deteriorate. Accordingly, the NMT system trained on the pre-
translated data will not be able to correct errors from the SMT system. Experiments conducted
on Japanese→English and Chinese→English demonstrate that our proposed “NMT⇒SMT” hy-
brid strategy can alleviate the above problems and further improve translation quality compared
to pure NMT systems. The main contributions of this work include:

• We re-implement the “SMT⇒NMT” strategy on two different language pairs and four di-
rections, namely Japanese↔English and Chinese↔English. Results show that this frame-
work indeed cannot outperform the baseline NMT system.

• We propose an “NMT⇒SMT” hybrid framework that can better combine SMT and NMT
by using their different strengths.

• We examine the effectiveness of the proposed framework on different NMT systems,
namely the single NMT, factored NMT and ensemble NMT systems.

The rest of the paper is organised as follows. In Section 2, related work to the proposed
neural hybrid MT framework is introduced. Section 3 describes the attentional encoder–decoder
framework for NMT, and Section 4 introduces factored NMT and our proposed input features
for NMT. In Section 5, we detail our proposed neural hybrid MT framework. In Section 6, we
report the results of two sets of experiments on Chinese–English and Japanese–English tasks.
Then a qualitative analysis is carried out, and some examples for comparing different systems
are also illustrated in this section. Section 7 concludes and gives avenues for future work.

2 Related Work

The combination of NMT and SMT can be roughly categorised into three categories:

• NMT in post-processing: in this scenario, translations from SMT can be post-processed
using NMT. For example, using NMT or neural networks to re-rank the outputs from
SMT (Zhao et al., 2014; Lee et al., 2015; Neubig et al., 2015; Ding et al., 2016; Farajian
et al., 2016), or using pre-translated results from SMT to build an NMT system (Niehues
et al., 2016).
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• Integrating SMT into NMT: in this scenario, SMT is used to guide translation in NMT,
e.g. incorporating the translation model or language model into the decoding process of
NMT (He et al., 2016; Wang et al., 2017).

• Integrating NMT into SMT: in this category, it is essentially integrating neural network-
based features into SMT, such as the neural reordering model, neural language model,
neural semantic model etc., e.g. Cho et al. (2014); Li et al. (2014); Passban et al. (2015).

In terms of the second category, He et al. (2016) incorporate SMT features, such as a
translation model and an n-gram language model, with the NMT model under the log-linear
framework. Their experiments show that the proposed method significantly improves transla-
tion quality of the baseline NMT system on Chinese→English translation tasks.

Wang et al. (2017) propose to incorporate an SMT model into the NMT framework in
which at each decoding step, SMT offers additional recommendations of generated words based
on the decoding information from NMT, and then an auxiliary classifier is employed to score
the SMT recommendations and a gating function is used to combine the SMT recommendations
with NMT generations, both of which are jointly trained within the NMT architecture in an end-
to-end manner. Experimental results on Chinese-to-English translation show that the proposed
approach achieves significant and consistent improvements over state-of-the-art NMT and SMT
systems.

The proposed hybrid framework in this paper can be defined as a novel fourth category
where we use SMT to post-process translations from NMT, which is completely different from
the “SMT⇒NMT” framework in Niehues et al. (2016). In their framework, the SMT system
is used to pre-translate the input and then an NMT system generates the final hypothesis using
the pre-translation. In their experiments, the basic pre-translation system did not beat the NMT
system either on natural order or pre-reordered data. By concatenating the source-side sen-
tences with pre-translations as input to NMT, the final translation performance outperformed
the baseline NMT system. From their results, we can see that the framework still needs the
source information, and it is difficult to tell whether the improvements are mainly contributed
by the pre-translation or source information.

3 Neural Machine Translation

The basic principle of an NMT system is that it can map a source-side sentence x =
(x1, . . . , xm) to a target sentence y = (y1, . . . , yn) in a continuous vector space, where all
sentences are assumed to terminate with a special “end-of-sentence” token < eos >. Concep-
tually, an NMT system employs neural networks to solve the conditional distributions in (1):

p(y|x) =
n∏

i=1

p(yi|y<i, x≤m) (1)

We utilise the NMT architecture in Bahdanau et al. (2015), which is implemented as an
attentional encoder-decoder network with recurrent neural networks (RNN).

In this framework, the encoder is a bidirectional neural network (Sutskever et al., 2014)
with gated recurrent units (Cho et al., 2014) where a source-side sequence x is converted
to a one-hot vector and fed in as the input, and then a forward sequence of hidden states
(
−→
h 1, . . . ,

−→
hm) and a backward sequence of hidden states (

←−
h 1, . . . ,

←−
hm) are calculated and

concatenated to form the annotation vector hj . The decoder is also an RNN that predicts a
target sequence y word by word where each word yi is generated conditioned on the decoder
hidden state si, the previous target word yi−1, and the source-side context vector ci, as in (2):
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p(yi|y<i,x) = g(yi−1, si, ci) (2)

where g is the activation function that outputs the probability of yi, and ci is calculated as a
weighted sum of the annotations hj . The weight αij is computed as in (3):

αij =
exp(eij)

m∑
k=1

exp(eik)
(3)

where

eij = a(si−1, hj)

is an alignment model which models the probability that the inputs around position j are aligned
to the output at position i. The alignment model is a single-layer feedforward neural network
that is learned jointly through backpropagation.

4 Factored NMT Using Linguistic Features

Factored NMT, introduced in Sennrich and Haddow (2016), represents the encoder input as a
combination of features as in (4):

−→
h j = g(

−→
W (

|F |n

k=1

Ekxjk) +
−→
U
−→
h j−1) (4)

where ‖ is the vector concatenation, Ek ∈ Rmk×Kk are the feature-embedding matrices, with∑|F |
k=1mk = m, Kk is the vocabulary size of the kth feature, and |F | is the number of features

in the feature set F (Sennrich and Haddow, 2016).
In factored NMT, the features can be any form of knowledge which might be useful to

NMT systems, such as POS tags, lemmas, morphological features and dependency labels as
used in Sennrich and Haddow (2016). In our work, besides POS tags, we also use a new feature
– word class (WoC) – in the NMT system. We define “POS+WoC” as pre-reordering features
because they are used for pre-reordering source-side sentences in SMT (Neubig et al., 2012;
Nakagawa, 2015).

Figure 1: The Cascaded framework for neural HMT
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5 Cascaded Hybrid Machine Translation

NMT can produce more fluent translations than SMT. However, NMT often produces some
meaningless translations, i.e. the translation is totally different from the original meaning of
the source sentence (Toral and Sánchez-Cartagena, 2017), or repeatedly translates some source
words while mistakenly ignoring other words (Tu et al., 2017). We infer that this problem is
due to the lack of an explicit translation model in NMT and the whole framework of NMT is
regarded as a language model.

Although the soft-attention mechanism is helpful to guide the prediction of target words
using the source information, and a reconstructor in NMT can manage to reconstruct the in-
put source sentence from the hidden layer of the output target sentence to avoid the duplicate
translation of source words (Tu et al., 2017), it still cannot explicitly and fully use the source
information as in SMT. Thus, if we regard the translation from NMT as another ‘language’,
and use SMT to perform word alignment and build a translation model, we might alleviate the
meaningless and duplicate translations to some extent.2

Therefore, we propose an “NMT⇒SMT” framework to combine NMT and SMT as a
multi-engine hybrid MT system as illustrated in Figure 1. In this pipeline, the first step is
to train an NMT system using the initial training data, and then translate the training data,
development set (devset) and test set (testset) into pre-translations; the second step is to use
the pre-translated training data to build a target–target SMT system and tune the parameters
using the pre-translated devset; the last step is to use the tuned SMT system to decode the
pre-translated test set and produce the final output.

During pre-translation using NMT to translate the training data, devset and testset, we
allow NMT to generate the ‘UNK’ token if an OOV occurs in the source sentence. Then, we
propose a very simple but effective method to replace the “UNK” token in the translation by the
corresponding source word. The method is shown in Algorithm 1.

Algorithm 1 Replacing UNK by source words
Require: A source sentence f l1, the translation em1 with UNK tokens, and the limited source-

side vocabulary V for NMT.
source position = 1
for i = 1 to m do

if ei == UNK then
for j =source position to l do

if fj not in V then
ei = fj
source position = j + 1
break

end if
end for

end if
end for

The mechanism of Algorithm 1 is different from that in Jean et al. (2015) where they use
the soft word-alignment information from the NMT system to guide the substitution process.
However, generating the word-alignment information from NMT is quite time-consuming, es-
pecially for the translation of the training data. Therefore, our algorithm simply traverses the

2This is an open question. Intuitively, this depends on what word alignments are learned and what phrase pairs are
extracted.
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translation and its corresponding source sentence. Specifically, when we encounter the ‘UNK’
token, we will look up the source words in order in the NMT source-side vocabulary. If the
source word does not exist in the vocabulary, then we replace the ‘UNK’ with this source word.
We repeat this process to the end of the translation sentence. There might exist the wrong re-
placement due to different word order between the source sentence and the target sentence.3

However, we believe that the SMT system will use its local reordering capability to reorder the
OOVs to some extent and translate them.

Finally, different from using a back-off dictionary to post-process these unknown words
in Luong et al. (2015b), we employ an SMT system to translate by considering more context.

6 Experiments

As Japanese and Chinese languages differ drastically from English in terms of word order and
grammatical structure, we select Japanese–English and Chinese–English translations4 to verify
the proposed framework.

We also re-implement the “SMT⇒NMT” pipeline proposed in Niehues et al. (2016) as
a comparison with our proposed framework. Therefore, two sets of experiments are set up as
follows:

• “SMT⇒NMT”: four translation directions (JP↔EN and ZH↔EN) are evaluated on
natural-order and pre-reordered data. We employ the top-down BTG-based pre-reordering
method to reorder source-side sentences (Nakagawa, 2015).

• “NMT⇒SMT”: we test our proposed framework by integrating different types of NMT
systems on JP→EN and ZH→EN tasks.

In the following sections, we report our experimental setup and results in terms of these
two experiments.

6.1 Experimental Settings
For JP–EN translation tasks, the training data is the first part (train-1) of the JP–EN Scientific Pa-
per Abstract Corpus (ASPEC-JE) that contains 1M sentence pairs, the development/validation
set contains 1,790 sentence pairs, and the test set contains 1,812 sentence pairs (Nakazawa et al.,
2016). There is only one reference for each source-side sentence in the validation and test sets.

For ZH–EN tasks, we use 1.4M sentence pairs extracted from LDC ZH–EN corpora as
the training data, and NIST 2004 current set as the development/validation set that contains
1,597 sentences, and NIST 2005 current set as the test set that contains 1,082 sentences. There
are four references for each Chinese sentence and there is only one reference for each English
sentence in the validation and test sets. For the EN→ZH direction, we use the first reference
out of four references for Chinese as the input (English).

For factored NMT, we use POS tags and word class as input features, which are obtained
as follows:

• POS tag: the Japanese data are segmented and tagged using KyTea (Neubig et al., 2011),
and the Chinese data are segmented and tagged using the ICTCLAS toolkit (Zhang et al.,
2003).

• Word Class (WoC): the word classes of the training data are obtained using “mkcls” by
setting the number of classes to 50. For an OOV word in the validation and test sets, we
randomly allocate a class between (1, 50) to it.

3Noting that the number of OOVs in the source sentence is not always precisely the same as the number of UNKs
in the translation of NMT. In our method, we take the minimum of these two numbers to replace the OOVs.

4In the rest of the paper, we use JP, ZH and EN to denote Japanese, Chinese and English, respectively.
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Chinese and Japanese are not suitable for using the Byte Pair Encoding (BPE)
method (Sennrich et al., 2016) to encode words as subword units, so we keep the words as
translation units. We use Moses (Koehn et al., 2007) with default settings as the standard PB-
SMT system, and use KenLM (Heafield et al., 2013) to train a 5-gram language model. We use
Nematus (Sennrich et al., 2017) as the NMT system, and set minibatches of size 80, a maxi-
mum sentence length of 60, word embeddings of size 600, and hidden layers of size 1024. The
vocabulary size for input and output is set to 45K. The models are trained with the Adadelta
optimizer (Zeiler, 2012), reshuffling the training corpus between epochs. We validate the model
every 5,000 minibatches via BLEU (Papineni et al., 2002) scores on the validation set and save
the model every 30,000 iterations.

As in Sennrich and Haddow (2016), for factored NMT systems, in order to ensure that per-
formance improvements are not simply due to an increase in the number of model parameters,
we keep the total size of the embedding layer fixed to 600. Tables 1 and 2 show the vocabulary
size and embedding size for pre-reordering features and the word as the input for the JP→EN
and ZH→EN systems, respectively.

Vocab. Size Embedding Size
Feature Corpus Model All Single
POS 21 21 10 10
WoC 51 51 10 10
Word 161,390 45K 580 590

Table 1: Vocabulary size, and size of embedding layer of pre-reordering features and words for
JP→EN

Vocab. Size Embedding Size
Feature ZH Model All Single
POS 36 36 10 10
WoC 51 51 10 10
Word 185,029 45K 580 590

Table 2: Vocabulary size, and size of embedding layer of pre-reordering features and words for
ZH→EN.

In Tables 1 and 2, the columns from left to right under “Vocab. Size” indicate the vocab-
ulary size of each feature. For example, “21” for “Corpus” indicates that there are a total of
21 POS tags in our Japanese corpus, and “21” for “Model” indicates that the vocabulary size
of POS tags configured in the NMT model is 21. The column “All” indicates the embedding
size of a feature when it combines with all other features, and “Single” indicates the embedding
size of a feature only combining with “Word”. In all NMT systems, the total embedding size is
fixed to 600. Therefore, “590” indicates that for each single feature, the word embedding size
for “Word” is obtained by [600− embedding size(feature) = 600− 10 = 590].

The NMT system with the best BLEU score is selected as our baseline, and in terms of the
ensemble NMT system, we use the last 5 models. The beam size for all NMT systems is set to
12.

We only employ the pre-translated training data and devset from the baseline NMT system
to train and tune the SMT engine. Then the tuned SMT system is employed to re-decode the
pre-translated test set using the baseline NMT, factored NMT and ensemble NMT systems,
respectively.
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JP→EN EN→JP
Non-reordered Pre-reordered Non-reordered Pre-reordered

SYS Validation Test Validation Test Validation Test Validation Test
SMT 18.25 17.64 21.79* 21.71* 27.03 26.32 33.67* 33.75*
NMT 24.16* 24.55* 20.42 21.43 35.25* 35.23* 32.75 32.98

SMT⇒NMT 18.01 17.83 20.39 20.91 27.64 27.57 33.23 33.43

Table 3: Results on JP–EN SMT⇒NMT experiments. “*” indicates translation performance is
significantly better.

ZH→EN EN→ZH
Non-reordered Pre-reordered Non-reordered Pre-reordered

SYS Validation Test Validation Test Validation Test Validation Test
SMT 33.13 29.24 34.63* 30.59* 14.50 12.77 16.12* 13.77*
NMT 35.49* 31.76* 33.95 30.23 15.97* 15.62* 14.14 13.53

SMT⇒NMT 32.87 28.86 33.84 29.69 14.51 12.94 15.45 13.36

Table 4: Results on ZH–EN SMT⇒NMT experiments

All results are reported by case-insensitive BLEU scores and statistical significance is cal-
culated via a bootstrap resampling significance test (Koehn, 2004).

6.2 Results and Analysis on SMT⇒NMT
Tables 3 and 4 show the results for JP↔EN and ZH↔EN with and without pre-reordered data,
respectively. The baseline system is a standard PB-SMT system trained on non-reordered and
pre-reordered data, respectively. “NMT” indicates the baseline NMT system as described in
Section 6.1.

From Table 3, we can see that:

• Non-reordered task: all “SMT⇒NMT” systems on JP→EN and EN→JP are significantly
worse than the baseline NMT systems. Except for the validation set of JP→EN, all other
“SMT⇒NMT” systems on JP→EN and EN→JP outperform the baseline SMT systems.

• Pre-reordered task: the “SMT⇒NMT” system is worse than both the pre-reordered NMT
system and pre-reordered SMT system on JP→EN, while it is better than the pre-reordered
NMT system on EN→JP.

For ZH↔EN tasks, the “SMT⇒NMT” system performs worse relative to JP↔EN tasks,
i.e. almost all “SMT⇒NMT” systems did not beat the NMT and SMT systems.

The observations from these experiments show that:

• if the translation quality of NMT is better than that of SMT, then using NMT as a post-
processing module without integrating source-side information to re-decode translations
from SMT cannot further improve translation performance.

• the pre-reordering in the source-side sentences is indeed helpful to SMT, while it hurts the
performance of NMT.

• we need a better pipeline to combine NMT and SMT without using the source-side infor-
mation.
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6.3 Results and Analysis on NMT⇒SMT
Results on the proposed NMT⇒SMT model are shown in Table 5, where “NMT⇒SMT-B”
indicates that the “NMT⇒SMT” pipeline re-decodes the translations of the baseline NMT sys-
tem, “NMT⇒SMT-F” indicates that the “NMT⇒SMT” pipeline re-decodes the translations
of the factored NMT system, and “NMT⇒SMT-E” indicates that the “NMT⇒SMT” system
re-decodes the translations of the ensemble NMT system.5

JP→EN ZH→EN
SYS Validation Test Validation Test
SMT 18.25 17.64 33.13 29.24
NMT 24.16 24.55 35.49 31.76

NMT⇒SMT-B 25.33* 25.66* 36.58* 32.38*
factored NMT 25.08 25.17 37.42 33.15
NMT⇒SMT-F 25.94* 26.08* 37.69* 33.39*
ensemble NMT 26.24 26.37 39.10 35.69
NMT⇒SMT-E 26.80* 26.93* 39.53* 35.98*

Table 5: Results of SMT⇒NMT experiments on JP→EN and ZH→EN. “*” indicates transla-
tion performance is significantly better.

We observe that:

• JP→EN: the NMT⇒SMT-B improves translation performance by 1.17 BLEU points and
1.11 BLEU points on validation and test sets, respectively, compared to the baseline NMT
system. The NMT⇒SMT-F improves by 0.86 BLEU points and 0.91 BLEU points on
the validation and test sets, respectively, compared to the factored NMT system. The
NMT⇒SMT-E improves by 0.56 BLEU points and 0.56 BLEU points on the validation
and test sets, respectively, compared to the ensemble NMT system, and improves by 2.64
BLEU points and 2.38 BLEU points on the validation and test sets, respectively, compared
to the baseline NMT system. All improvements are significantly better.

• ZH→EN: the NMT⇒SMT-B improves translation performance by 1.09 BLEU points and
0.62 BLEU points on validation and test sets, respectively, compared to the baseline NMT
system. The NMT⇒SMT-F improves by 0.27 BLEU points and 0.24 BLEU points on
the validation and test sets, respectively, compared to the factored NMT system. The
NMT⇒SMT-E improves by 0.43 BLEU points and 0.29 BLEU points on the validation
and test sets, respectively, compared to the ensemble NMT system, and improves by 4.04
BLEU points and 4.22 BLEU points on the validation and test sets, respectively, compared
to the baseline NMT system. All improvements are significantly better.

The results show that:

• Our proposed neural hybrid MT pipeline is more effective and feasible than the
SMT⇒NMT pipeline. In Niehues et al. (2016), the SMT⇒NMT pipeline only works
when integrating the source information into NMT. However, it increases the computa-
tional complexity by concatenating the pre-translated and source sentences as input to
NMT.

5In current experiments, we only ensemble the baseline NMT systems. In future, we also plan to ensemble the
factored NMT systems to verify the HMT performance.
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• Our proposed NMT⇒SMT framework only uses source-side information once, i.e. at
the stage of NMT training, while at the stage of post-processing, we only use the pre-
translations without the source information (except OOVs), which keeps the framework
simpler than the SMT⇒NMT framework.

• For different types of NMT systems, the proposed pipeline can significantly further im-
prove translation performance, and the pre-translated SMT system is only trained using
translations from the baseline NMT system. We would expect further improvements if we
use the translations from the factored NMT or ensemble NMT models to train the SMT
engine.

From the analysis on the results, we found that:

• OOVs rate in the test set is significantly decreased in the proposed framework, i.e. the
post-processing SMT system can translate some of the OOVs appearing in the test set due
to its larger vocabulary. For example, in the Chinese test set, the OOVs rate for NMT
system is 4.62%. In the final result of the proposed framework, the OOVs rate is reduced
to 2.36%.

• The improvement of translation performance is also attributed to the reordering and cor-
rection of phrases. We will carry out human evaluation and look into more details in future.

6.4 Examples
To further analyse the proposed NMT⇒SMT framework, Table 6 shows two examples pro-
duced from the baseline NMT system and the corresponding NMT⇒SMT from the JP→EN
and ZH→EN tasks, respectively. The first example in Table 6 shows that the SMT system
has the capability of making local translations more fluent. We can see that the NMT⇒SMT-
B changes the phrase “the hydrogen bond network” in NMT to “hydrogen bond networks”
which exactly matches the reference. “NMT-OOV” in the second example indicates the pre-
translations after tracking the “UNK” symbols and replacing them by source-side OOVs. This
example shows the capability of SMT to make the translation more adequate by subsequently
translating the OOV.

Reference: next , the change of hydrogen bond networks which was a basis of the
motion of the water was explained .

NMT: next , the change of the hydrogen bond network which was a basis of the
movement of the water was explained .

NMT⇒SMT-B: next , the change of hydrogen bond networks which was a basis of the
movement of the water was explained .

Reference: barratt said : “ we have not achieved further information . ”
NMT: UNK said : “ we have yet to get any results . ”
NMT-OOV: 巴巴巴拉拉拉特特特 said : “ we have yet to get any results . ”
NMT⇒SMT-B: barratt said : “ we have yet to get any results . ”

Table 6: Examples

7 Conclusion

In this paper we propose a cascaded hybrid framework (NMT⇒SMT) to combine NMT and
SMT to improve translation performance. More specifically, we first employ a trained NMT
system to pre-translate the training data, and then train an SMT system using the pre-translated
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data. Finally, the tuned target–target SMT system is utilised to re-decode the pre-translated
test set and produce the final results. We compare the proposed NMT⇒SMT pipeline with
the SMT⇒NMT pipeline on JP–EN and ZH–EN tasks, and show that our framework is more
effective than SMT⇒NMT, resulting in improvements on the test set of 2.38 BLEU points
and 4.22 BLEU points on JP→EN and ZH→EN, respectively, compared to the baseline NMT
system.

As to future work, we expect more experiments on different language pairs and larger-
scale data sets to verify the proposed framework, and we will explore better combination of
NMT and SMT to further improve translation quality. Additionally, we also want to verify the
HMT framework without replacing OOVs in the NMT outputs.
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Sánchez-Martı́nez, F., Pérez-Ortiz, J. A., and Forcada, M. L. (2007). Integrating corpus-based and rule-
based approaches in an open-source machine translation system. In Proceedings of the METIS-II Work-
shop: New Approaches to Machine Translation, Leuven, Belgium.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 39



Toral, A. and Sánchez-Cartagena, V. M. (2017). A multifaceted evaluation of neural versus phrase-based
machine translation for 9 language directions. In Proceedings of the Conference of the European Chap-
ter of the Association for Computational Linguistics, Valencia, Spain.

Tu, Z., Liu, Y., Shang, L., Liu, X., and Li, H. (2017). Neural machine translation with reconstruction. In
Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI), San Francisco, USA.

Wang, X., Lu, Z., Tu, Z., Li, H., Xiong, D., and Zhang, M. (2017). Neural machine translation advised by
statistical machine translation. In Proceedings of the AAAI Conference on Artificial Intelligence, San
Francisco, California, USA.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T.,
Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick,
A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J. (2016). Google’s neural machine translation
system: Bridging the gap between human and machine translation. In arXiv:1609.08144.

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. In CoRR, abs/1212.5701.

Zhang, H., Yu, H., Xiong, D., and Liu, Q. (2003). HHMM-based chinese lexical analyzer ICTCLAS.
In Proceedings of the Second SIGHAN Workshop on Chinese Language Processing, pages 184–187,
Sapporo, Japan.

Zhao, Y., Huang, S., Chen, H., and Chen, J. (2014). Investigation on statistical machine translation with
neural language models. In Proceedings of Chinese Computational Linguistics and Natural Language
Processing Based on Naturally Annotated Big Data, pages 175–186.

14

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 40

takeokouji
タイプライターテキスト

takeokouji
タイプライターテキスト

takeokouji
タイプライターテキスト


