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Abstract

Both statistical (SMT) and neural (NMT) approaches to machine translation (MT) explore large
search spaces to produce and score translations. It is however well known that often the top
hypothesis as scored by such approaches may not be the best overall translation among those
that can be produced. Previous work on SMT has extensively explored re-ranking strategies
in attempts to find the best possible translation. In this paper, we focus on NMT and provide
an in-depth investigation to explore the influence of beam sizes on information content and
translation quality. We gather new insights using oracle experiments on the efficacy of exploit-
ing larger beams and propose a simple, yet novel consensus-based, n-best re-ranking approach
that makes use of different automatic evaluation metrics to measure consensus in n-best lists.
Our results reveal that NMT is able to cover more of the information content of the references
compared to SMT and that this leads to better re-ranked translations (according to human evalu-
ation). We further show that the MT evaluation metric used for the consensus-based re-ranking
plays a major role, with character-based metrics performing better than BLEU.

1 Introduction

There has a been a recent surge of interest and work in the field of end-to-end, encoder-decoder
neural machine translation (NMT). In the last two years, such approaches surpassed the state-
of-the-art results by the then de facto statistical machine translation approaches (SMT) (Bojar
etal.,2016a). While NMT systems are trained end-to-end using as a single model, SMT systems
use a pipeline-based approach that make use of several components. This means that NMT
systems are jointly optimised for both better encoding and better decoding. SMT systems,
on the other hand, decompose the problem by first finding plausible sub-sentence translation
candidates given some training data, such as phrases in phrase-based SMT (Koehn et al., 2003),
and then scoring such candidates utilising components such as the translation and language
models. Both types of systems are markedly different in their approaches to transform source
into target language and in the information they explore.

Given a source sentence, at decoding time both types of approaches can explore hypotheses
spaces to pick the best possible translation. Most of current implementations of both statistical
and neural MT approaches use beam search for that. It has been observed that NMT systems,
when compared to their statistical counterparts, use smaller beam sizes, and yet are able to
obtain better translations for the same source sentences (Bahdanau et al., 2014; Stahlberg et al.,
2017). Smaller beam sizes boost the speed of decoders (Luong et al., 2015; Bahdanau et al.,
2014). In addition, it has been reported (Stahlberg et al., 2016) that neural approaches do not
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significantly benefit from large beam sizes. In fact, beam sizes of 8—12 are the most common in
NMT. Statistical approaches, on the other hand, usually search over larger beam sizes (of orders
of 100s) (Lopez, 2008).

There have been multiple approaches proposed in the context of SMT that explore the n-
best generated translation hypotheses using beam search (Och et al., 2004; Shen et al., 2004;
Lambert and Banchs, 2006; Hasan et al., 2007; Duh and Kirchhoff, 2008). Since models used
for scoring translation hypotheses and metrics used to evaluate the final translation quality are
different, one of the strategies is to learn a re-ranking model for n-best hypotheses based on the
evaluation metric of interest. We further detail this and other strategies in Section 2. However,
to the best of our knowledge, there is little research that systematically looks at the effect of
beam sizes or explores n-best hypotheses in the context of NMT.

We summarise our contributions in this paper as follows: (a) We investigate the influence
of beam size on the search space, as well as on the information content of translations (Section
4); and (b) We present a new re-scoring approach for n-best re-ranking based on information
overlap amongst MT candidates within the n-best list according to different automatic MT
evaluation metrics. We report results that include human evaluation to assess the quality of
alternative translations produced by this approach versus baseline systems (Section 5). We
observe that our approach leads to better translation choices. We also observe that in most cases
the best translation hypothesis is chosen among those generated from using larger beam sizes.
These results are based on four language pairs and different datasets and evaluation metrics
(Section 3).

2 Background

In what follows, we briefly describe background on the decoding process in SMT and NMT
approaches, as well as related work on exploring n-best lists for improved translation quality.

Beam search decoding in SMT In SMT decoding, the standard procedure is to perform the
search for the best translation given the (often pruned) space of possible translations based on
a combination of the scores estimated for its model components, each component capturing a
different aspect of translation (word order, translation probability, etc.). This is done through
a heuristic method using stack-based beam search. In phrase-based SMT (Koehn et al., 2003),
given a source sentence, the decoder fetches phrase translations available in the phrase table and
builds a graph starting with an initial state where no source words have been translated and no
target words have been generated. New states are created in the graph by extending the target
output with a phrase translation that covers some of the source words not yet translated. At
every expansion, the current cost of the new state is the cost of the original state multiplied with
the model components under consideration. Final states in the search graph are hypotheses that
cover all source words. Among these, the hypothesis with the lowest cost (highest model score)
is selected as the best translation. Often a threshold is used to define a beam of good hypotheses
and prune the hypotheses that fall out of this beam. The beam follows the (presumably) best
hypothesis path, but with a certain width to allow the retention of comparable hypotheses, i.e.
neighbouring hypotheses that are close in score from the best one (Koehn, 2010).

If an exhaustive search was to be performed, then all translation options, in different or-
ders, could be used to build alternative hypotheses. However, in practice the search space is
pruned in different ways and only the most promising hypotheses are kept, with early prun-
ing potentially eliminating good hypotheses from the search space. In principle, larger beams
would thus allow for more variation in the n-best lists, while potentially introducing lower qual-
ity candidates, but also giving seemingly bad candidates a chance to obtain higher scores in later
stages of decoding. There is therefore a direct relationship between the size of the beam and the
maximum number of candidates that can be generated in the n-best list. However, the actual
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candidates in the n-best list are also affected by other design choices, such as the pruning and
hypotheses combination strategies used (Lambert and Banchs, 2006; Duh and Kirchhoff, 2008;
Hasan et al., 2007).

In addition, different approaches have been proposed to specifically promote diverse trans-
lations in SMT systems’ n-best lists. These include using compact representations like lattices
and hypergraphs (Tromble et al., 2008; Kumar and Byrne, 2004) and establishing explicit con-
ditions during decoding. Gimpel et al. (2013), for example, add a dissimilarity function based
on n-gram overlaps, choosing translations that have high model scores but are distinct from
already-generated ones.

Beam search decoding in NMT NMT decoding also relies on beam search, but the process is
much more expensive than in SMT and thus a limited beam size is often used, leading to narrow
hypotheses spaces (Li and Jurafsky, 2016; Vijayakumar et al., 2016). Given a certain pre-
specified beam size k, k-best lists are generated in a greedy left-right fashion retaining only the
top-k candidates as follows: at the first time step in decoding, a fixed-number k hypotheses are
retained based on the highest log-probability (model score) of each generated word. Each of the
k hypotheses is expanded at each time-step by selecting top k word translations. This continues
until the end-of-sequence symbol is obtained. The highest scoring candidate is retained and
stored into the final candidate list followed by a decrease of beam by one. The whole process
continues until the beam is reduced to zero. Finally, the best translation hypothesis amongst the
list is the one with highest log-probability. We note here that in most NMT approaches both the
set of hypotheses and the beam size are equivalent. Essentially, the NMT decoder obtains the
top translation hypotheses that maximise the conditional probability given by the model.

Li and Jurafsky (2016) increase diversity in the n-best list by adding an additional compo-
nent to the score used by the decoder to rank k hypotheses at each time step. This component
rewards top-ranked hypotheses generated from each ancestor, instead of ranking all candidates
from all ancestors together. Similarly, Vijayakumar et al. (2016) propose Diverse Beam Search,
where they optimise an objective with two terms: the standard cross entropy loss and a dissim-
ilarity term that encourages beams across groups to differ.

N-best re-ranking in SMT In addition to having access to only a subset of the search space,
the model components used in SMT only provide an estimate of translation quality. As a con-
sequence, using only the hypothesis ranked as the best by the decoder often leads to suboptimal
results (Wisniewski et al., 2010; Sokolov et al., 2012a). Therefore, it is common practice in
SMT to explore other hypotheses in the search space, the so called n-best list. Re-ranking an
n-best list of candidates produced by an SMT system has been a long standing practice. The
general motivation for doing so is the ability to use additional information in the process, which
is unavailable or too costly to compute at decoding time, e.g. syntactic features of the entire
sentence (Och et al., 2004), estimates on overall sentence translation quality (Blatz et al., 2003),
word sense disambiguation scores (Specia et al., 2008), large language model scores (Zhang
et al., 2006), and translation probability from a neural MT model (Neubig et al., 2015), among
others.

This additional information is usually treated as new model components and combined
with the existing ones. Various techniques have been proposed to perform n-best list re-ranking.
They generally learn weights to combine the new and existing model components using algo-
rithms such as MIRA (Crammer and Singer, 2003) with linear! or non-linear functions (Sokolov
et al., 2012b), as well as more advanced methods, such as multi-task learning (Duh et al., 2010).
Hasan et al. (2007) provides a study on the potential improvements on final translation quality
by exploring n-best lists of different sizes. They show that even though oracle-based re-ranking

'https://github.com/moses—smt/mosesdecoder/tree/master/scripts/nbest-rescore
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on very large (100,000 hypotheses) n-best lists yields the best translation quality, automatic
re-ranking methods reach a plateau on the improvement after 1,000 hypotheses. Very large n-
best lists will contain very many noisy translations, so they suggest that only with extremely
accurate re-ranking methods one should explore such large spaces.

In an attempt to have a more reliable way to score translation candidates, Kumar and Byrne
(2004) introduced the Minimum Bayes Risk (MBR) decoding approach and used it to re-rank
n-best hypotheses such that the best hypothesis is the one that minimises the Bayes-risk defined
in terms of the model score (translation probability) and a loss function computed between the
translation hypothesis and a gold translation (e.g. a translation quality metric such as BLEU
(Papineni et al., 2002)). This method has been shown to be beneficial for many translation tasks
(Ehling et al., 2007; Tromble et al., 2008; Blackwood et al., 2010). They have however only
experimented a fixed n (1,000).

N-best re-ranking in NMT While there is a large body of literature that investigates different
strategies for exploring n-best hypotheses spaces in SMT, there have been very few attempts at
exploring such spaces in NMT. Stahlberg et al. (2017) adapt MBR decoding to the context of
NMT and to be used for partial hypotheses rather than entire translations. The NMT score is
combined with the Bayes-risk of the translation according to the SMT lattice. This approach
goes beyond re-scoring of n-best lists or lattices as the neural decoder is not restricted to the
SMT search space. The resulting MBR decoder produces new hypotheses that are different
from those in the SMT search space.

Li and Jurafsky (2016) propose an alternative objective function for NMT that maximises
the mutual information between the source and target sentences. They implement the model
with a simple re-ranking method. This is equivalent to linearly combining the probability of the
target given the source, and vice-versa. An NMT model is trained for each translation direction,
and the source—target model is used to generate n-best lists. These are then re-ranked using the
score from the target—source model. Shu and Nakayama (2017) studies the effect of beam size
in NMT MBR decoding. They considered beams of size 5, 20 and 100 and found that while in
standard decoding increasing the beam size is not beneficial, MBR re-ranking is more effective
with a large beam size.

Comparison between NMT and SMT There has been increasing interest in systematically
studying differences between NMT and SMT approaches. Bentivogli et al. (2016) conducted an
analysis for English—German translations by both NMT and SMT systems. They conclude that
the outputs of the NMT system are better suited in terms of syntax and semantics, with better
word order and less human post-editing effort required to fix the translations. They observe that
the average sentence length in an SMT system is always longer than in an NMT system. This
could be attributed to the optimisation of the cross-entropy loss and the fact that the outputs are
chosen on the basis of the log-probability scores in NMT systems.

Toral and Sanchez-Cartagena (2017) conducted an in-depth analysis on a set of nine lan-
guage pairs to contrast the differences between SMT and NMT systems. They observe that the
outputs of NMT systems are more fluent and have better word order when compared to SMT
systems. They note that despite the smaller beam sizes in NMT in general the top outputs of
the NMT system for a given source sentence are more distinct than the top outputs from SMT
systems. However, it is not clear whether or not they explore distinct n-best options from the
SMT or a mixture of distinct and non-distinct options. Both previous studies conclude that the
NMT systems perform poorly when translating very long sentences.
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3 Experimental Settings

In this section we describe the data, tools, metrics and settings used in our experiments to
investigate the influence of beam size in the generated translations.

Language Pairs We report results with NMT systems — the focus of this paper — for four
language pairs: English<>German and English<+Czech. For English<+Czech we also report
results with SMT systems for comparison.

NMT Systems We use the freely available Nematus (Sennrich et al., 2016) toolkit and its pre-
trained models® for English<>German and English<>Czech. The Nematus systems are based
on attentional encoder-decoder neural machine translation approach (Bahdanau et al., 2014)
and were built after Byte-Pair Encoding (Sennrich et al., 2015b).3> The models were trained as
described in (Sennrich et al., 2016) using both parallel and synthetic (Sennrich et al., 2015a)
data under the constrained variant of the WMT16 MT shared task, mini batches of size 80, a
maximum sentence length of 50, word-embeddings of size 500, a hidden layers of size 1024,
and Adadelta as optimiser (Zeiler, 2012), reshuffling the training corpus between epochs.These
models were chosen as they have been highly ranked in the evaluation campaign of the WMT16
Conference (Bojar et al., 2016c¢).

SMT Systems We use pre-trained models from the Tuning shared task of WMT16 for
English<+Czech to build SMT systems for comparison. These models were built using the
Moses toolkit (Koehn et al., 2007) trained on the CzEng1.6pre*, (Bojar et al., 2016b) a 51M par-
allel sentences corpus built from eight different sources. The data was tokenised using Moses
tokeniser (Koehn et al., 2007) and lowercased; sentences longer than 60 words and shorter
than 4 words were removed before training. The weights were determined as the average over
three optimisation runs using MIRA (Crammer and Singer, 2003) towards BLEU. Word align-
ment was done using fast-align (Dyer et al., 2013) and for all other steps the standard Moses
pipeline was used for model building and decoding. This was reported as the best system for
English<+Czech (Jawaid et al., 2016).

By using pre-trained and freely available models for our NMT and SMT systems, we
have consistent models amongst the different language pairs and results can be more easily
reproducible.

Beam Settings SMT systems usually employ a large beam. In the training pipeline of the
Moses decoder, the beam size is set by default to 200. NMT systems, on the other hand,
normally use a much smaller beam size of 8 to 12. This is assumed to offer a good trade
off between quality and computational complexity. We note that the implementations of n-
best decoding is different in both NMT and SMT. In most NMT systems, there is a 1-to-1
correspondence between the beam size and the n-best list size. Therefore, we will use the term
n-best to refer to the output of an NMT system with a beam of size n, and to the n best outputs
of an SMT system, where the beam size has been set, by default, to 200.

We also note that the translations in the n-best list produced by NMT are always different
from each other, even though only marginally in many cases (e.g. a single token). In SMT, one
can choose whether or not only distinct candidates should be considered. We report on distinct
options only to gather insights on the diversity in n-best lists in SMT versus NMT.

Metrics For our experiments we consider three automatic evaluation metrics amongst the
most widely used and which have been shown to correlate well with human judgements (Bojar

2http://data.statmt.org/rsennrich/wntl6_systems/

3The models were obtained from http://statmt.org/rsennrich/wnt16_systems/
4http://ufal.mff.cuni.cz/czeng/czenglépre
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et al., 2016¢c): BLEU, an n-gram-based precision metric which works similarly to position-
independent word error rate, but considers matches of larger n-grams with the reference trans-
lation; BEER (Stanojevic and Sima’an, 2014), a trained evaluation metric with a linear model
that combines features capturing character n-grams and permutation trees; and ChrF (Popovic,
2015), which computes the F-score of character n-grams. These metrics are used both for evalu-
ating final translation quality and for measuring similarity among translations in our consensus-
based re-ranking approach.

4 Effect of Beam Size

Current work in NMT takes a beam size of around 10 to be the optimal setting (Sennrich et al.,
2016). We empirically evaluate the effect of increasing the beam size in NMT to explore n-best
of sizes 10, 100 and 500. The goals are to understand (a) the informativeness of the transla-
tions produced; (b) the scope for obtaining better translations by simply exploiting the n-best
candidates, similarly to previous work in SMT.

4.1 Effect of Beam Size on Information Content of Translations

We define information content as the word overlap rate between the system generated translation
and the reference translation. We further break this into two categories:

1. % covered: This indicates the average proportion of words that are shared between the (a)
1-best output of the MT system and the reference translation, or (b) all the n-best outputs
and the reference translation. It is computed by looking at the intersection between the
vocabulary of the MT candidate(s) and the one of the reference, averaged at corpus-level.

2. % exact match: This indicates the proportion of sentences that are exact matches between
(a) the 1-best of the MT system and the reference translation, and (b) all the n-best outputs
and the reference translation.

This is similar to the approach in (Lala et al., 2017) where the authors measure word over-
lap with respect to system outputs, but their focus is on multimodal NMT. % covered approxi-
mates indicates the word-level precision of the MT system, given the n or 1-best candidates and
the reference translation, and % exact match approximately indicates the sentence-level recall
given the n or 1-best candidates and the reference translation.

Our intuition here is that if the systems are adequately trained, increasing the beam size
— and thereby the n-best list length — should result in obtaining a larger word overlap with
reference translation, and potentially a larger number of exact matches at the sentence level,
although the latter is a much taller order. We note that since only one reference translation is
available, mismatches between words in the MT output and reference translations could reflect
acceptable variances in translation.

Observations and Discussion In Table 1 we report the scores of each MT system using
BLEU, BEER and ChrF3 on the WMT 16 test sets with different sizes of n-best lists: for NMT
we report sizes 10, 100 and 500, while for SMT we report a 500-best list with a beam size set to
the default size of 200. Since there is no 1-to-1 relationship between beam sizes and n-best list
sizes in SMT, reporting on different beam sizes would require arbitrarily choosing a specific n
for each beam size. We instead chose the largest n also used for the NMT experiments (500),
and a large enough beam size (200). The metric scores are computed on the 1-best translation,
which may vary if different beam sizes are used. We observe that for NMT increasing the n-
best size from 10 to 100 helps improve the performances for English<+»German translations. For
English<+Czech, we do not observe any gain, but rather a significant drop. Also, if the beam
size is too large (500 in our case), the performance drops for all language pairs. This indicates
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that larger beam sizes do not necessarily lead to better 1-best translations, and that the choice
can be a function of the language pair and the dataset. This seems to suggest that with such large
beam sizes many translation candidates, including spurious ones, end up being ranked as the
1-best, most likely because of limitations in the functions used to score translation candidates.

NEURAL MT English— German German— English

n-best BLEU BEER ChrF3 || BLEU BEER ChrF3
n=10 26.73  60.20 5920 || 32.58 61.84 60.61
n=100 26.82 60.25 59.33 32.68 6191 60.74
n=500 26.18 60.12  59.12 3270 6191  60.75

English— Czech Czech—English
n-best BLEU BEER ChrF3 || BLEU BEER ChrF3
n=10 18.50 5390 5145 2626  58.03  56.00
n=100 18.31  53.83 51.37 26.17  58.00 56.00
n=500 17.81  53.67 51.25 24.19  57.57 55.62

STATISTICAL MT English— Czech Czech— English
n-best BLEU BEER ChrF3 || BLEU BEER ChrF3
n=10/100/500 10.64 48.88  46.51 18.19 5259 51.32

Table 1: Translation quality results on the WMT16 test sets for both NMT and SMT systems
using n-best lists of sizes 10, 100 and 500. The scores are computed on the 1-best translation
towards the reference translation.

In Table 2 we report our empirical observations on word coverage. Here, we observe that
the larger the n-best list the higher proportion of words covered (% covered). Interestingly, we
also observe similar trends for % exact match, but only if all n-best candidates are considered.
It also interesting to note the difference in the impressive increase in % exact match from 1-
best to all-best for NMT, which does not happen for SMT. These results show that for NMT
larger beam sizes lead to more information content in translation candidates. Therefore, clever
techniques to explore the space of hypotheses should lead to better translations.

Even though the NMT vs SMT figures are not directly comparable since the NMT and
SMT systems are trained on different data, we note that despite the SMT system using a beam
size of 200 and producing 500-best translation hypotheses, its translations have much lower
word overlap than those from the NMT system with a beam size of 10 for English<+Czech.
These results further corroborate the reasons for the insignificant gains obtained in the WMT16
SMT system Tuning shared task (Jawaid et al., 2016). In fact, if larger hypotheses spaces do not
lead to more words that can potentially lead to translations that match the reference, the tuning
algorithms do not have much to learn from.

4.2 Oracle Exploration

Based on the encouraging observations in the previous experiment with word overlap between
candidates in the n-best list and the reference translation, here we attempt to quantify the poten-
tial gain from optimally exploring the space of hypotheses. We perform experiments assuming
that we have an ‘oracle’ which helps us choose the best possible translation, under an evalua-
tion metric against the reference, given an n-best list of translation hypotheses. This provides
an upper-bound on the performance of the MT system. Positive results in this experiment will
indicate that the MT system is capable of producing better translation candidates, but fails at
scoring them as the best ones.

In this oracle experiment, the translation of a source sentence is chosen based on com-
parisons among the translation hypotheses and the reference translation — the oracle — under a
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NEURAL MT 10-best 100-best 500-best
1-best all 1-best all 1-best all

English— German
Jocovered || 53.99 62.75 | 53.99 7193 | 53.83 77.69

% exact match 2.20 6.47 220  12.07 | 220 18.24
German— English
Yocovered || 57.32 6598 | 5743 7442 | 5743 79.55

% exact match 270  7.70 270 1540 | 2.70 2294
English—Czech
Yocovered || 45.97 5527 | 45.85 65.61 | 4572 72.55

% exact match 1.63 490 1.63 9.40 1.63 1477
Czech—English
Yocovered || 5230 61.26 | 52.33 7024 | 51.92 75.61

% exact match 1.67 1444 | 1.67 1147 | 1.60 16.97

STATISTICAL MT 10-best 100-best 500-best
(beam=200, distinct) || 1-best all 1-best all 1-best all
English—Czech

% covered || 39.20 46.58 | 39.20 54.05 | 39.20 57.86

% exact match 0.07 0.07 0.07 0.37 0.07 0.37
Czech—English
% covered || 48.35 54.79 | 48.35 60.30 | 48.35 62.89

% exact match 0.16 0.50 0.16 0.83 0.16 0.83

Table 2: Proportion of words overlapping between candidates and reference translations for
different values of the n-best, as well as proportion of MT output sentences that exactly match
the reference, considering either the 1-best or all the MT candidates in the n-best list.

certain MT evaluation metric. We consider the outputs of NMT systems for beam sizes of 10,
100 and 500 and with the following metrics: BLEU with n-gram max length = 4 and default
brevity penalty settings, BEER2.0 with default settings, and ChrF with n-gram max length = 6
and 5 = 3. By exploring multiple metrics we will gain insights on how well different metrics
do at spotting the best candidates: ideally, better metrics should lead to larger improvements
from the original top translation.

Observations and Discussion We report the results of the oracle experiment in Figure 1.
For each system, we report the relative improvement (delta) between the oracle translation
chosen by the three metrics — BLEU, BEER and ChrF3 — compared to the 1-best of the system
for a given n-best list size. Using any of the metrics we are able to find an alternative MT
candidate which is better than the original 1-best translation, resulting in an overall increase in
translation quality in all datasets. Larger improvements are obtained with larger beam sizes.
However, while a large gain (almost double) is obtained from beam size 10 to 100, the rate
of increase in improvement seems to drop from beam size 100 to 500, indicating that more
additional translations are probably mostly spurious. This is consistent with the information
content experiment in Section 4.1.

Kumar and Byrne (2004) reports that their MBR decoder leads to improvements only ac-
cording to an evaluation metric that is also used as basis for their loss function. In our ex-
periments, to better understand the relationship between the re-ranking metric and the final
evaluation results, we further explore the oracle experiment by reporting results on the 500-
best output for NMT, which brings the best gains in Figure 1, but focus on the proportion of
improvement of the oracle translation over 1-best across metrics. In other words, we oracle re-
rank using each given metric and evaluate the final 1-best translation set performance using all
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Figure 1: Proportion of improvement in NMT results according to MT evaluation metrics based
on the oracle results over the original 1-best when the size of the beam is increased for decoding.
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Figure 2: Focusing on the 500-best output for NMT, which brings the best gains in Figure 1,
proportion of improvement of the oracle translation over the original 1-best when using different
metrics for the oracle computation: ChrF3, BEER and BLEU. Re-ranking is done with one
metric at a time, and the final performance is also measured with each of three metrics.

three metrics. This helps us assess the potential of each metric in selecting the best candidate.
Figure 2 shows the results. Contrary to what was suggested in Kumar and Byrne (2004) for
SMT, in chart (a) we see that the relative improvement is bigger in terms of the BLEU metric
when using either BEER or ChrF3 to obtain the 1-best translation than using BLEU itself. We
also observe in charts (b) and (c) that the character-based metrics always outperform BLEU and
extract better 1-best translations. BLEU also seems to fail at identifying better MT candidates
when translating into Czech, which is a morphologically rich language, while BEER and ChrF3
perform better. We note however that Kumar and Byrne (2004) also tune the log-linear loss
function, while in our case we are just selecting the candidates directly based on a metric.
Since sentence length is a often problem in NMT, we measure the impact of using different
evaluation metrics for oracle re-ranking on the sentence length of the 1-best translations chosen.
In Figure 3 we report variation in terms of sentence length average for all NMT systems after
the oracle translation selection with all three metrics, compared to the original 1-best translation
for each setting. We notice that the average length of oracle BLEU translations does not seem to
vary, however, an opposite trend is seen with BEER and ChrF3, which seem to make sentences
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shorter except for German—English. This is particularly interesting since i) we observe in
Table 2 a better coverage with bigger beam size, and ii) we observe an overall large BLEU
improvement our oracle experiments (Figure 2 (a)). This suggests that we are able to select
translation candidates that might be shorter than the original 1-best, but most similar to the
reference translation.

ENDE DEEN ENCS CSEN

ChrFé

Beer Emm 500best

m ] m 100best m
BLEU 10best

-0.4 -0.2 0.0 0.2 =0.1 0.0 0.1 0.2 0.3 -0.75 -0.50 -0.25 0.00 0.25 =15 -1.0 -0.5 0.0
Sentence length average (delta) Sentence length average (delta) Sentence length average (delta) Sentence length average (delta)

Figure 3: Delta in average sentence length for all NMT systems after 1-best oracle translation
selection by each metric, compared to the average sentence length of the original 1-best.

5 Consensus-based n-best re-ranking

As was shown in the previous section, increasing the size of the beam generally leads to better
word coverage and, more important, to higher chances of generating better translations among
the resulting n-best lists. In what follows we propose an approach to automatically re-rank
n-best lists to obtain better translations (without oracle translations).

Our approach is motivated by the work of DeNero et al. (2009) for SMT, where consensus-
based MBR decoding is used to guide the choices of the decoder towards hypotheses that share
partial translations. DeNero et al. (2009) experiment with different evaluation metrics (includ-
ing BLEU) to measure similarity among hypotheses within a n-best list. We propose to em-
pirically evaluate the contribution of consensus information in hypotheses in n-best lists from
NMT systems. This is simpler than using consensual information at decoding time, but we
believe that positive results at re-ranking stage will provide insights on whether or not this is a
promising path to follow in NMT decoding.

Given an n-best list and a certain similarity metric, we compute the metric scores for each
translation hypothesis against each of all n — 1 other hypotheses in the n-best list. We then
average the similarity scores of all n — 1 translation hypotheses to obtain a single score for each
translation hypothesis. We repeat this for all translation hypotheses and then sort the n-best list
based on these scores, such that the top (best) translation will be one that is similar to more of
the alternative candidates. Given that NMT systems produce translations are are “more likely”
given the model, this essentially corresponds to selecting as best translation the one that is the
most similar to all of n —1 the most likely translations. The size of the n-best list here is critical:
the more hypotheses in the list, the less confident the NMT system will be on the bottom part
of the list (less likely translations). However, longer n-best lists may provide stronger evidence
for consensual analysis. This is a classical exploration-exploitation issue.

Another remark is that larger search spaces require much more time to compute the
consensus-based re-ranking. We experiment with BLEU, BEER and ChrF3 as similarity met-
rics, since these are easily available and are either extremely popular (BLEU) or have proved
to correlate well with human judgements on translation quality (in terms of similarity with a
reference translation) in recent evaluation campaigns (BEER and ChrF3) (Bojar et al., 2016c).
While each pair of translation hypotheses can be scored independently, which allows parallel
processing, the running time for each metric to re-rank a complete n-best list is O(n?- k), where
k is the size of the corpus and n the size of the n-best list. This may be very time consuming:
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from hours up to a day® for easy-to-compute metrics such as BLEU or ChrF, to many days for
more complex metrics such as BEER.

Automatic evaluation We start by evaluating our consensus-based re-ranking approach using
BLEU as automatic evaluation metric. The results are shown in Table 3. A similar trend was
observed using BEER and ChrF3 as similarity metrics, however we omit these results due to
space constraints. Comparing the figures in this table against those in Table 1, we see that —
under the same beam size — re-ranking seems to degrade the results in all cases with BLEU
and ChrF, but not with BEER. An increase in BLEU scores can be observed for BEER-based
re-ranking as longer beam sizes superior to 10 are used for the two language pairs where re-
ranking under this metric was computed. It is not surprising to see that this improvement is
only observed for BEER as similarity metric, even though the final evaluation is in terms of
BLEU. This suggests that exploring other similarity metrics for the consensus analysis could be
beneficial. Overall, re-ranking using BEER as similarity metric leads to the best results.

English—German German— English
re-ranked with re-ranked with
n-best || baseline | BLEU BEER ChrF3 || baseline | BLEU BEER ChrF3
n=10 26.93 26.51  26.77  26.38 32.58 32.10 3229  31.79
n=100 26.82 26.02 26.87 26.18 32.68 3190 3278  31.67

n=500 26.18 24.80 - 25.93 32.70 3141 3285 3225
English—Czech Czech—English
re-ranked with re-ranked with

n-best || baseline | BLEU BEER ChrF3 || baseline | BLEU BEER ChrF3
n=10 18.50 1798 1824 17.60 26.26 2581 26.10 2552
n=100 18.31 17.58 18.61 17.57 26.17 2547 2642 25.16
n=500 17.81 16.39 - 17.38 24.19 2444  26.57 24.80

Table 3: BLEU scores of our consensus-based re-ranking strategy on the WMT16 test sets
with NMT using n-best lists of sizes 10, 100 and 500. The scores are computed on the newly
ranked 1-best NMT candidate against the reference translation. The baseline scores correspond
to the original 1-best assessed towards the reference translation (see Table 1). The current
implementation of BEER makes our consensus-based re-ranking extremely time consuming
and virtually unfeasible, therefore we only show results for a subset of language pairs.

In Table 4 we illustrate some examples from the re-ranking approach. We observed that the
consensus-based re-ranking produced interesting sentences that included syntactic re-orderings,
new words, morphological variations and other nuances which were not captured by BLEU.
This motivated us to perform human evaluation of the translations to more quantitatively com-
pare the original 1-best versus the re-ranked 1-best.

Human evaluation We conducted a human evaluation using Appraise (Federmann, 2012),
an open-source web application for manual evaluation of MT output. Appraise collects human
judgements on translation output, implementing annotation tasks such as quality checking, error
classification, manual post-editing and, in our case, translation ranking. For a list of up to four
systems’ outputs for each source sentence, we requested human annotators to rank the set of
MT candidates from the best to the worst, allowing for ties, based on both the source sentence
and reference translation. If two system outputs are the same, the MT candidate was displayed
once and the same rank was assigned to both systems.

For this evaluation, we selected a subset of our systems based on our automatic evaluation
results: for each metric used for re-ranking in each language pair, we chose the systems that

SIndicative time it took to re-rank a corpus of 3,000 sentences, with n = 500 on a 40-cores CPU server.
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German— English
SRC: Das rund zehn bis zwolf Millionen Euro teure Vorhaben steht seit Monaten in der Diskus-
sion.

REF: The €| 10 - 12 | million project has been under for months.
Baseline: | the EUR million project has been under || discussion || for months.
BEER: the | approximately | EUR | 10 to 12 | million projects has been under for

months
ChrF3: the EUR million euro project has been under || discussion || for several months.
BLEU: the projects {around ten to twelve} million euros have been Flscussed “ for months.
Czech—English
SRC: Navic jsem si ze Zivota odnesl zkuSenost, Ze zasahovani do ekosystému nevede k tspéchu

a jednoho $kiidce miZe nahradit druhy.

REF: Furthermore, [in my experience], ‘ interfering ‘ with the ecosystem does not lead to suc-

cess and one pest can replace another.
Baseline: | moreover, I have learned that ‘interfering with || an ecosystem

” does not lead to success

BEER: moreover, | have learned |from my life | that | it is not possible to succeed in

|, and ’ one pest ‘ can replace another.

ecosystem, and one can replace ’ one of the pests ‘

ChrF3: moreover, [ have learned |from life| that | interfering with|[ an ecosystem

” does not lead to success
BLEU: moreover, I have learned that | interfering with || an ecosystem

” does not lead to success

|, and ’ one pest ‘ can replace one another.

|, and ‘ one pest ‘can replace one.

Table 4: Examples of alternative MT candidates chosen by consensus from n-best lists (with
n = 500). Boxes highlight the main differences between the reference translation, the base-
line (i.e. the original 1-best) and an alternative translation chose by our consensus re-ranking
approach using BLEU, BEER or ChrF.

performed the best according to the three metrics (averaged ranking among the three), along
with the original 1-best.

Each human translator was asked to complete at least one hit of twenty annotation tasks.
Incomplete hits were discarded from the evaluation. We collected 3,016 complete ranking re-
sults over the four NMT systems (159 for English—Czech, 1,365 for Czech—English, 911 for
English—German, 581 for German—English), from 208 annotators.

We borrowed a method from the WMT translation shared task to generate a global ranking
of systems from these judgements. Table 5 reports the ranking results according to the Expected
Wins method® for the four language pairs. The first column (#,,) indicates the ranking of the
systems amongst themselves according to the three automatic metrics, while the third column
(range) indicates the ranking from the human evaluation. For example, for English—German,
the BLEU-100best system was ranked first amongst the four by all three metrics, but it was
ranked last by human annotators.

Shttps://github.com/keisks/wmt-trueskill/blob/master/src/infer EW.py
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English—German German— English

#,, | score | range system #,, | score | range | system

4 | 0.578 1-2 BEER-100best 4 | 0.559 1-3 | BEER-500best
2 | 0.529 1-3 | Baseline (10best) 2 | 0.546 1-3 Baseline (10best)
3 10505 | 23 ChrF3-10best 3 | 0.525 1-3 | ChrF3-10best

1 | 0.388 4 BLEU-100best 1 | 0.393 4 BLEU-500best

English—Czech Czech—English

#m \ score \ range \ system #m \ score \ range \ system

2 | 0.583 1-3 | BEER-100best 4 | 0.526 1-3 | BEER-10best

4 ] 0.532 1-3 | ChrF3-100best 3 ]0.522 1-2 | ChrF3-500best

1 | 0493 1-4 | BLEU-100best 2 | 0.508 1-3 | Baseline (500best)
3 | 0.372 3-4 Baseline (100best) 1 0.453 3-4 BLEU-500best

Table 5: Results of the human evaluation for NMT. Systems are sorted according to human
assessments while #,, indicates the overall ranking of a system according to all three automatic
metrics. Scores and ranges are obtained with the Expected Wins method (Sakaguchi et al.,
2014). Lines between systems indicate clusters. Systems within a cluster are considered tied.
In gray are systems which have not significantly outperformed the baseline.

Our first observation is that the consensus-based re-ranking with BEER outperforms the
other two metrics for all the language pairs, confirming the results of the automatic evaluation.
Except for Czech—English, systems always benefit from a beam size larger than 10, which
suggests that we should consider exploiting a larger search spaces in NMT. Another interesting
outcome of the human evaluation is the ranking of our systems, which for most of the lan-
guage pairs refutes the ranking according to the automatic evaluation. Although those metrics
are known to be well correlated with human judgements, it seems that humans have different
perceptions on the quality of the translations.

6 Conclusions

In this paper we reported our experiments and results on the influence of the beam size in NMT.
While traditional approaches in NMT rely on smaller beam sizes or use greedy implementations,
our paper strongly motivates using a larger beam size. We investigate the informativeness of
larger beam size and highlighted the potential to improve translation quality by exploring larger
hypotheses spaces using an oracle experiment. Motivated by substantial potential gains in both
informativeness and oracle-based hypotheses re-ranking, we proposed a consensus-based NMT
n-best re-ranking approach, with insights into the use of different metrics to capture consensus-
based information. Our contribution strongly suggests further work in NMT to explore larger
beams and n-best lists.
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Abstract

Attention distributions of the generated translations are a useful bi-product of attention-based
recurrent neural network translation models and can be treated as soft alignments between the
input and output tokens. In this work, we use attention distributions as a confidence metric
for output translations. We present two strategies of using the attention distributions: filtering
out bad translations from a large back-translated corpus, and selecting the best translation in
a hybrid setup of two different translation systems. While manual evaluation indicated only a
weak correlation between our confidence score and human judgments, the use-cases showed
improvements of up to 2.22 BLEU points for filtering and 0.99 points for hybrid translation,
tested on English<»German and English<+Latvian translation.

1 Introduction

Neural machine translation (NMT) has recently redefined the state-of-the-art in machine trans-
lation (Sennrich et al., 2016a; Wu et al., 2016a), with one of the ground-breaking innovations
that enabled this being the introduction of the attention mechanism (Bahdanau et al., 2014). It
enables the model to find parts of a source sentence that are relevant to predicting a target word
(pay attention), without the need to form these parts as a hard segment explicitly. Decoding sen-
tences with the attention-based model resulted in a useful by-product — soft alignments between
tokens of source and target sentences. These can be used for many purposes, such as replacing
unknown words with back-off translations from a dictionary (Jean et al., 2015) and visualizing
the soft alignments (Rikters et al., 2017).

In this paper, we propose using the attention alignments as an indicator of the translation
output quality and the confidence of the decoder. We define metrics of confidence that detect
and penalize under-translation and over-translation (Tu et al., 2016) as well as input and output
tokens with no clear alignment, assuming that all these cases most likely mean that the quality
of the translation output is bad.

We apply these attention-based metrics to two use-cases: scoring translations of an NMT
system and filtering out the seemingly unsuccessful ones, and comparing translations from two
different NMT systems, in order to select the best one.

The structure of this paper is as follows: Section 2 summarizes related work in back-
translating with NMT, machine translation combination approaches and confidence estimation.
Section 3 introduces the problem of faulty attention distributions and a way to quantify it as a
confidence score. Sections 4 and 5 outline the two use-cases for this score — translation filtering
and hybrid selections. Finally, we conclude in Section 6 and mention directions for future work
in Section 7.
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2 Related Work

Back-translation of Monolingual Data

One of the first uses of back-translation of monolingual data as an additional source of train-
ing data was reported by (Sennrich et al., 2016a) in their submission for the WMT16 news
translation shared task. They translated target-language monolingual corpora into the source
language of the respective language pair, and then used the resulting synthetic parallel corpus
as additional training data. They performed experiments in ranges from 2 million to 10 million
back-translated sentences and reported an increase of 2.2 - 7.7 BLEU (Papineni et al., 2002)
for translating between English and Czech, German, Romanian and Russian. The authors also
experimented with different amounts of back-translated data and found that adding more data
gradually improves performance.

In a later paper Sennrich et al. (2016b) explored other methods of using monolingual data.
They experimented with adding an enormous amount of monolingual sentences as targets with-
out any sources to the parallel corpus and compared that to performing back-translation on
a part of the monolingual data. While both methods outperform using just parallel data, the
back-translated synthetic parallel corpus is a much more powerful addition than the mono data
alone.

Pinnis et al. (2017) experimented with using large and even larger amounts of back-
translated data and came to a conclusion that any amount is an improvement, but using double
the amount gives lower results, while still better than not using any at all. These results hint that
it may be possible to get even better results when using only the part of the data selected with
some criterion. One of the aims of our work is to provide one such criterion.

Machine Translation System Combination

Zhou et al. (2017) used attention to combine outputs from NMT and SMT systems. The au-
thors first trained intermediate NMT, SMT and hierarchical SMT systems with one-half of the
training data. Afterwards, they used each system to translate the target side of the other half
of the training data. Finally, the three translated parts as source sentence variants along side
the clean target sentence were used for training the combination neural network. This approach
gave the network more choices of where to pay attention and which parts should be ignored in
the training process. They perform experiments on Chinese—English and report BLEU score
improvement by 5.3 points over the best single system and 3.4 points over traditional MT com-
bination methods.

Peter et al. (2016) perform MT system combination in a more traditional manner - using
confusion networks. They use 12 different SMT and NMT systems to generate hypothesis
translations, align and reorder each hypothesis to match one skeleton hypothesis, creating a
confusion network. For the final output is generated by finding the best path in the network.
The authors report an improvement of 1.0 BLEU compared to the best single system, translating
from English into Romanian.

Translation Confidence Metrics

Lately the idea of modeling coverage in NMT was introduced, for example, Tu et al. (2016)
integrate it directly into the attention mechanism and report improved translation quality as a
result. On the simpler side of things, Wu et al. (2016b) perform tests with a baseline attention
that uses an additional coverage penalty at decoding time; they report no improvement com-
pared to the common length normalization. Our metrics are partially motivated by the coverage
penalty, though we apply them at the post-translation stage to determine the confidence of the
decoder and the quality of the already made translation, which makes it applicable regardless of
which software or approach were used.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 300



Another closely related task is quality estimation. The dominating approach there is col-
lecting post-edits and training a machine learning model to predict the quality score or classify
translations into usable/not, near-perfect/not, etc (Bach et al., 2011; Felice and Specia, 2012).
The main similarity between our work and quality estimation is their usage of glass-box fea-
tures (i.e. information about the MT system or the decoder’s internal parameters). While our
approach does not cover all aspects of quality estimation, it requires no data or training and can
be applied to any language and neural machine translation system.

3 Penalizing Attention Disorders

Before describing the confidence metrics based on attention weights, here is a brief overview of
the NMT architecture where the attention weights come from.

3.1 Source of Attention

Our work is built around the encoder-decoder machine translation approach (Sutskever et al.,
2014; Cho et al., 2014) with an attention mechanism (Bahdanau et al., 2014). In this approach
the source tokens are learned to be represented by an encoder, which consists of an embedding
layer and a bi-directional LSTM or GRU layer (or 8, Wu et al., 2016b), the outputs of which
serve as the learned representation.

There is also a decoder that consists of another layer (or 8, ibid.) of LSTM/GRU cells, with
an output layer for predicting the softmax-encoded raw probability distribution of each output
word, one at a time. The state of the decoder layer(s) and thus the output distribution depends
on the previous recurrent states, the previously produced output word and a weighted sum of
the representations of the source sentence tokens. The weights in this sum are generated for
every output word by the attention mechanism, which is a feed-forward neural network with the
previous state of the decoder and each input word representation as input and the raw weight of
that word for the next state as output. Finally, the attention weights are normalized as follows:

s — exp(e;;)
Y Y exp(en)

where e;; is the raw predicted weight and «;; — the final attention weight between the input
token j and output token i.

Once the encoder-decoder network has been trained, it can be used to produce translations
by predicting the probability for each next word, which can serve as the basis for sampling,
greedy search or beam search (Sennrich et al., 2017). We refer the reader for a complete de-
scription to (Bahdanau et al., 2014) and ourselves turn on to the main topic of the paper that
uses the weights «a;; to estimate the confidence of the translations.

Together with the translation, it is also possible to save the attention values between the
input tokens and each produced output token. These values can be interpreted as the influence
of the input token on the output token, or the strength of the connection between them. Thus,
weak or dispersed connections should intuitively indicate a translation with low confidence,
while high values and strong connections between one or two tokens on both sides should
indicate higher confidence. Next, we present our take at formalizing this intuition.

3.2 Measuring Attention

Figure 1 shows an example of a translation that has little or nothing to do with the input, a
frequent occurrence in NMT. Besides the text of the translation, it is clear already by looking at
the attention weights of this pair that the translation is weak:

e some input tokens (like the sentence-final full-stop) are most strongly connected to several
unrelated output tokens, in other words, their coverage is too high,
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Figure 1: Attention alignment visualization of a bad translation. Reference translation: 71
traffic accidents in which 16 persons were injured have happened in Latvia during the last 24
hours., hypothesis translation: the latest , in the last few days , the EU has been in the final day
of the EU ’s ”” European Year of Intercultural Dialogue ”. CDP = —0.900, AP,,; = —2.809,
AP;, = —2.137, Total = —5.846.

e most of the input token attentions, as well as some output token attentions, are highly
dispersed, without one or two clear associations on the counterpart.

On the other hand, a picture like Figure 2 intuitively corresponds to a good translation, with
strongly focused alignments. It is this intuition that our metrics formalize: penalizing transla-
tions with tokens with a total coverage of not just below but much higher than 1.0, as well as
tokens with a dispersed attention distribution.

Coverage Deviation Penalty

Previous work (Wu et al., 2016b) defines a coverage penalty, which is meant to punish transla-
tions for not paying enough attention to input tokens:

CP=p Z log(min(z @ji, 1.0)),
j 7

where i is the output token index, j — the input token index, 3 is used to control the influence of
the metric and C'P — the coverage penalty.

The first part of our metric draws inspiration from the coverage penalty; however, it penal-
izes not just lacking attention but also too much attention per input token. The aim is to penalize
the sum of attentions per input token for going too far from 1.0', so tokens with total attention
of 1.0 should get a score of 0.0 on the logarithmic scale, while tokens with less attention (like
0.2) or more attention (like 2.5) should get lower values. We thus define the coverage deviation
penalty:

1
CDP = —jzj:log 1+(1—z;aﬁ)2 ,

where J is the length of the input sentence. The metric is on a logarithmic scale, and it is
normalized by the length of the input sentence in order to avoid assigning higher scores to
shorter sentences”. See examples of the CDP metric’s values on Figures 1 and 2.

I'This could be replaced with the token’s expected fertility, which we leave for future work
2This is not required for choosing translations of the same sentence by the same system, but is required in our
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Figure 2: Attention alignment visualization of a good translation. Reference translation: He
was a kind spirit with a big heart., hypothesis translation: he was a good man with a broad
heart. CDP = —0.099, AP,,; = —1.077, AP;, = —0.847, Total = —2.024.

Absentmindedness Penalty

However, it is not enough to simply cover the input, we conjecture that more confident output
tokens will allocate most of their attention probability mass to one or a small number of input
tokens. Thus the second part of our metric is called the absentmindedness penalty and targets
scattered attention per output token, where the dispersion is evaluated via the entropy of the
predicted attention distribution. Again, we want the penalty value to be 1.0 for the lowest
entropy and head towards 0.0 for higher entropies.

APy = _% Z Zaji : IOg 71
i g

The values are again on the log-scale and normalized by the source sentence length .

The absentmindedness penalty can also be applied to the input tokens after normalizing
the distribution of attention per input token, resulting in the counter-part metric AP;,,. This is
based on the assumption that it is not enough to cover the input token, but rather the input token
should be used to produce a small number of outputs. See examples of both metric’s values on
Figures 1 and 2.

Finally, we combine the coverage deviation penalty with both the input and output absent-
mindedness penalties into a joint metric via summation:

confidence = CDP + APy + APy,

Next, we evaluate the metrics directly against human judgments and indirectly by applying
them to filtering translations and plugging them into a sentence-level hybrid translation scheme.
3.3 Human Evaluation

It is clear that the defined metrics only paint a partial picture, since they rely on the attention
weights only. For instance, they do not evaluate the lexical correspondence between the source
and hypothesis, and more generally, being confident does not mean being right. We wanted to
find out how much confidence in our case correlates with translation quality.

experiments described in the next sections.
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To do so we asked human volunteers to perform pairwise ranking of translations from two
baseline NMT systems: one done with Nematus (Sennrich et al., 2017) and the other — with
Neural Monkey (Helcl and Libovicky, 2017). The translations and measurements were done
for English-Latvian and Latvian-English, using corpora from the news translation shared task
of WMT’2017; further details can be found in Section 4. We selected 200 random sentences
for both translation directions and these were given to native Latvian speakers for evaluation.
The MT-EQuAI (Girardi et al., 2014) tool was used for the evaluation task. The evaluators
were shown one source sentence at a time along with the two different translations. They
were instructed to assign one of five categories for each translation: “worst”, “bad”, “ok”,
”good” or “best”, noting that both may be categorized as equally ”good” or bad”, etc. Differing
judgments for the same sentence were averaged. All 200 sentences were annotated by at least
one human annotator.

It makes more sense to treat the results as relative comparisons, not absolute scores, as the
annotators only see two translations at a time. We use these comparisons to compute the Kendall
rank correlation coefficient (Kendall, 1938) by only looking at the pairs where human scores
differ. Since we only have comparisons for each pair and not between different sentences, the
coefficient is computed as

pos — neg
T pos + neg’

where pos is the number of pairs where the metric agrees with the human judgment and neg is
the number of pairs where they disagree.

The results are presented in Table 1, and as we can see they indicate weak correlation, with
the absolute values of 7 between 0.012 and 0.200.

Language pair | CDP AP;, AP,,+ | Overall
En—Lv 0.099 | 0.074 | 0.123 | 0.086
Lv—En -0.012 | -0.153 | -0.200 | -0.153

Table 1: The Kendall’s Tau correlation between human judgments and the confidence scores.

Let us look closer at where the metrics disagree with human judgments. Figure 3 shows
an example of a translation which was rated highly by human annotators but poorly with our
metrics. While the sentence is a good translation, it does not follow the source word-by-word.
Some subword units and functional words do not have a clear alignment, even though they are
understood/generated correctly. This means that one problem with our metrics is that they might
be over-penalizing translations that deviate from a direct literal translation.

Next, we continue with the experiments of using our metrics to filter synthetic data and to
select translations in a hybrid MT scenario.
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Figure 3: Attention alignment visualization of a bad translation. Reference translation: a 2§-
year-old chef who had recently moved to San Francisco was found dead in the stairwell of a
local mall this week ., hypothesis translation: a 28-year-old old man who has recently moved
to San Francisco has died this week ., CDP = —0.250, AP,,; = —1.740, AP;,, = —1.46,
Total = —3.45.

4 Filtering Back-translated Data

4.1 Baseline Systems and Data

Our baseline systems were trained with two NMT frameworks - Nematus (NT) (Sennrich et al.,
2017) and Neural Monkey (NM) (Helcl and Libovicky, 2017). For all NMT models we used a
shared subword unit vocabulary (Sennrich et al., 2016¢) of 35000 tokens, clip the gradient norm
to 1.0 (Pascanu et al., 2013), dropout of 0.2, trained the models with Adadelta (Zeiler, 2012)
and performed early stopping after 7 days of training. For models with each NMT framework
we used the default settings as mentioned in the frameworks documentation:

e For NT models we used a maximum sentence length of 50, word embeddings of size 512,
and hidden layers of size 1000. For decoding with NT we used beam search with a beam
size of 12.

e For NM models we used a maximum sentence length of 70, word embeddings and hidden
layers of size 600. For decoding with NM a greedy decoder was used.

Training, development and test data for all systems in both language pairs and translation
directions was used from the WMT 17 news translation task 3. For the baseline systems, we used
all available parallel data, which is 5.8 million sentences for En«+De and 4.5 million sentences
for En<Lv.

4.2 Back-translating and Filtering

We used our baseline En—Lv and Lv—En NM and NT systems to translate all available Latvian
monolingual news domain data - 6.3 million sentences in total from News Crawl: articles
from 2014, 2015, 2016, and the first 6 million sentences from the English News Crawl 2016.
Much more monolingual data was available from other domains aside from news. Since the
development and test data was of the news domain, we only used that, considering it as in-
domain data for our systems.

3EMNLP 2017 Second Conference on Machine Translation - http://www.statmt.org/wmt17/
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For each translation, we used the attention provided from the NMT system to calculate
our confidence score, sorted all translations according to the score and selected the top half of
the translations along with the corresponding source sentences as the synthetic parallel corpus.
We used only the full confidence score (combination of CDP, AP,,; and AP;,) for filtering
instead of each individual score due to its smoother overall correlation with human judgments.
In between, we also removed any translation that contained any <unk> tokens.

To compare attention-based filtering with a different method, we trained a CharRNN* lan-
guage model (LM) with 4 million news sentences from each of the target languages. We used
these LM to get perplexity scores for all translations, order them and get the better half. Table
2 summarizes how much human evaluation overlaps with each of the filtering methods. The
final row indicates how much both filtering methods overlap with each other. While results
from either approach don’t look overly convincing, the LM-based approach has been proven
to correlate with human judgments close to the BLEU score and is a good evaluation method
for MT without reference translations (Gamon et al., 2005). Therefore the attention-based ap-
proach that does not require training of an additional model and overlaps with human judgments
to approximately the same level should be more desirable.

Filtering Method En—Lv | Lv—En
LM-based overlap with human 58% 56%
Attention-based overlap with human 52% 60%
LM-based overlap with Attention-based 34% 22%

Table 2: Human judgment overlap results on 200 random sentences from the newsdev2017
dataset compared to filtering methods.

4.3 NMT with Filtered Synthetic Data

0.000 2.000M 4.000M 6.000M 8.000M 10.00M 12.00M 14.00M 16.00M 18.00M 20.00M 22.00M

Figure 4: Automatic evaluation progression of Lv—En experiments on validation data. Orange
— baseline; dark blue — with full back-translated data; green — with LM-filtered back-translated
data; light blue — with attention-filtered back-translated data.

We shuffled each synthetic parallel corpus with the baseline parallel corpora and used
them to train NMT systems. In addition to the baseline and two types of filtered BT synthetic
data, we also trained a system with the full BT data for each translation direction. Figure 4

4Multi—layer Recurrent Neural Networks (LSTM, GRU, RNN) for character - level language models in Torch
https://github.com/karpathy/char-rnn
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shows a combined training progress chart for Lv—En on the full newsdev2017 dataset that was
used as the development set for training. Here the differences between all four approaches are
clearly visible. Further results on a subset of newsdev2017 and the full newstest2017 dataset
are summarized in Table 3. While for Lv—En and En<+De the attention-based approach is the
clear leader, for En—Lv it falls behind the LM filtered version. We were not able to identify a
clear reason for this and leave it for the future work. As expected, adding BT synthetic training
data allows to get higher BLEU scores in all cases. It can be observed that filtering out half of
the badly translated data and keeping only the best translations either does not decrease the final
output quality in some cases or even further increase the quality in others, when using the LM.
With filtering by attention, the results are more inconsistent - even higher in one direction while
deterioration in the other. A reason for this could be that for Lv—En attention-based filtering
the similarity with human judgments was higher than for En—Lv (Table 2), and it was also
more different from the LM-based one. While for the other direction it is the other way around.

BLEU
Dataset Dev \ Test Dev \ Test Dev \ Test Dev \ Test
System En—Lv Lv—En En—De De—En
Baseline 8.36 | 11.90 | 8.64 | 12.40 | 25.84 | 20.11 | 30.18 | 26.26
+ Full Synthetic 942 | 13.50 | 9.01 | 13.81 | 28.97 | 22.68 | 34.82 | 29.35
+ LM-Filtered Synthetic | 9.75 | 13.52 | 9.45 | 14.30 | 29.59 | 23.48 | 34.47 | 29.42
+ Attn.-Filtered Synth. | 8.99 | 12.76 | 11.23 | 14.83 | 30.19 | 23.16 | 35.19 | 29.47

Table 3: Experiment results in BLEU for translating between English<+Latvian with different
types of back-translated data using development (200 random sentences from newsdev2017)
and test (newstest2017) datasets.

5 Attention-based Hybrid Decisions

We translated the development set with both baseline systems for each language pair in each
direction. The hybrid selection of the best translation was performed similarly to filtering,
where we discarded the worst-scoring half of the translations. In the hybrid selection, we used
the same score to compare both translations of a source sentence and choose the better one.
Results of the hybrid selection experiments are summarized in Table 4. For translating between
En<Lv, where the difference between the baseline systems is not that high (0.06 and 1.55
BLEU), the hybrid method achieves some meaningful improvements. However, for En<De,
where differences between the baseline systems are bigger (3.46 and 4.46 BLEU), the hybrid
drags both scores down.

BLEU
System En—De | De—En | En—Lv | Lv—En
Neural Monkey 18.89 26.07 13.74 11.09
Nematus 22.35 30.53 13.80 12.64
Hybrid 20.19 27.06 14.79 12.65
Human 23.86 34.26 15.12 13.24

Table 4: Hybrid selection experiment results in BLEU on the development dataset (200 random
sentences from newsdev2017).

The last row of the results Table 4 shows BLEU scores for the scenario when human an-
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notator preferences were used to select each output sentence. An overview of human evaluator
preferred translation selections is visible in Table 5. The results show that out of all translations
the human evaluators deliberately prefer one or the other system. Aside from En—Lv, where
a slight tendency towards Neural Monkey translations can be observed, all others look more or
less equal. This highly contrasts with the BLEU scores from Table 4, where in both transla-
tion directions from English human evaluators prefer the lower-scoring system more often than
the higher-scoring one. The final row of Table 5 shows how much our attention-based score
matches the human judgments in selecting the best translation.

System En—De | De—En | En—Lv | Lv—En
Neural Monkey 54% 42% 61.5% 47%
Nematus 46% 58% 38.5% 53%
Overlaps with hybrid selection 57% 47% 62.5% 51%

Table 5: Human evaluation results on 200 random sentences from the newsdev2017 dataset
compared to attention-hybrid selection.

6 Conclusions

In this paper, we described how attentional data from neural machine translation systems can be
useful for more than just visualizations or replacing specific tokens in the output. We introduced
an attention-based confidence score that can be used for judging NMT output. Two applications
of using attentional data were investigated and compared to similar approaches. We used a
smaller dataset to perform manual evaluation and compared that to all automatically obtained
results. Our experiments showed interesting results and some increases in automated evaluation,
as well as a good correlation with human judgments.

In addition to the methods described in this paper, we release open-source scripts® for (1)
scoring, ordering and filtering NMT translations, (2) performing hybrid selections between two
different NMT outputs of the same source, and (3) software for inspecting attention alignments
that the NMT systems produce in the translation process (used for Figures 1 and 2). We also
provide all development subsets that we used for manual evaluation with anonymized human
annotations.

7 Future Work

This paper introduced the first steps in using NMT attention for less obvious intentions. It
seemed that the attention score can complement the LM perplexity score in distinguishing
good from bad translations. An idea for future experiments could be combining these scores to
achieve a higher correlation with human judgments.

Additional improvements can be made to the hybrid decisions as well. Since the score
represents the systems confidence, a badly trained NMT system can be more confident about
a bad translation than a good system about a decent translation. While a hybrid combination
of two similar quality NMT systems did put the attention score to good use, in the case with
different quality systems the confidence of the weaker one was a pitfall. This indicates that the
confidence score could be used in ensemble with a quality estimation score or used as a feature
in training an MT quality estimation system.

For filtering synthetic back-translated data we dropped the worst-scoring 50% of the data,
but this threshold may not be optimal for all scenarios. Several paths worth more exploration

SConfidence Through Attention - https://github.com/M4t1ss/Confidence ThroughAttention
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include exploring the effects of different static thresholds (e.g. 30% or 70%) or clustering
the data by confidence score and dropping the lowest-scoring one or two clusters. Another path
worth exploring for filtering would be to see how filtering by each individual score (CDP, AP;,,
AP,,;) compares to filtering by confidence.

In the near future, we also plan to supplement an attention inspection tool so that it displays
confidence metrics and additional visualizations based on these scores.
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