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Abstract
Both statistical (SMT) and neural (NMT) approaches to machine translation (MT) explore large
search spaces to produce and score translations. It is however well known that often the top
hypothesis as scored by such approaches may not be the best overall translation among those
that can be produced. Previous work on SMT has extensively explored re-ranking strategies
in attempts to find the best possible translation. In this paper, we focus on NMT and provide
an in-depth investigation to explore the influence of beam sizes on information content and
translation quality. We gather new insights using oracle experiments on the efficacy of exploit-
ing larger beams and propose a simple, yet novel consensus-based, n-best re-ranking approach
that makes use of different automatic evaluation metrics to measure consensus in n-best lists.
Our results reveal that NMT is able to cover more of the information content of the references
compared to SMT and that this leads to better re-ranked translations (according to human evalu-
ation). We further show that the MT evaluation metric used for the consensus-based re-ranking
plays a major role, with character-based metrics performing better than BLEU.

1 Introduction

There has a been a recent surge of interest and work in the field of end-to-end, encoder-decoder
neural machine translation (NMT). In the last two years, such approaches surpassed the state-
of-the-art results by the then de facto statistical machine translation approaches (SMT) (Bojar
et al., 2016a). While NMT systems are trained end-to-end using as a single model, SMT systems
use a pipeline-based approach that make use of several components. This means that NMT
systems are jointly optimised for both better encoding and better decoding. SMT systems,
on the other hand, decompose the problem by first finding plausible sub-sentence translation
candidates given some training data, such as phrases in phrase-based SMT (Koehn et al., 2003),
and then scoring such candidates utilising components such as the translation and language
models. Both types of systems are markedly different in their approaches to transform source
into target language and in the information they explore.

Given a source sentence, at decoding time both types of approaches can explore hypotheses
spaces to pick the best possible translation. Most of current implementations of both statistical
and neural MT approaches use beam search for that. It has been observed that NMT systems,
when compared to their statistical counterparts, use smaller beam sizes, and yet are able to
obtain better translations for the same source sentences (Bahdanau et al., 2014; Stahlberg et al.,
2017). Smaller beam sizes boost the speed of decoders (Luong et al., 2015; Bahdanau et al.,
2014). In addition, it has been reported (Stahlberg et al., 2016) that neural approaches do not
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significantly benefit from large beam sizes. In fact, beam sizes of 8–12 are the most common in
NMT. Statistical approaches, on the other hand, usually search over larger beam sizes (of orders
of 100s) (Lopez, 2008).

There have been multiple approaches proposed in the context of SMT that explore the n-
best generated translation hypotheses using beam search (Och et al., 2004; Shen et al., 2004;
Lambert and Banchs, 2006; Hasan et al., 2007; Duh and Kirchhoff, 2008). Since models used
for scoring translation hypotheses and metrics used to evaluate the final translation quality are
different, one of the strategies is to learn a re-ranking model for n-best hypotheses based on the
evaluation metric of interest. We further detail this and other strategies in Section 2. However,
to the best of our knowledge, there is little research that systematically looks at the effect of
beam sizes or explores n-best hypotheses in the context of NMT.

We summarise our contributions in this paper as follows: (a) We investigate the influence
of beam size on the search space, as well as on the information content of translations (Section
4); and (b) We present a new re-scoring approach for n-best re-ranking based on information
overlap amongst MT candidates within the n-best list according to different automatic MT
evaluation metrics. We report results that include human evaluation to assess the quality of
alternative translations produced by this approach versus baseline systems (Section 5). We
observe that our approach leads to better translation choices. We also observe that in most cases
the best translation hypothesis is chosen among those generated from using larger beam sizes.
These results are based on four language pairs and different datasets and evaluation metrics
(Section 3).

2 Background

In what follows, we briefly describe background on the decoding process in SMT and NMT
approaches, as well as related work on exploring n-best lists for improved translation quality.

Beam search decoding in SMT In SMT decoding, the standard procedure is to perform the
search for the best translation given the (often pruned) space of possible translations based on
a combination of the scores estimated for its model components, each component capturing a
different aspect of translation (word order, translation probability, etc.). This is done through
a heuristic method using stack-based beam search. In phrase-based SMT (Koehn et al., 2003),
given a source sentence, the decoder fetches phrase translations available in the phrase table and
builds a graph starting with an initial state where no source words have been translated and no
target words have been generated. New states are created in the graph by extending the target
output with a phrase translation that covers some of the source words not yet translated. At
every expansion, the current cost of the new state is the cost of the original state multiplied with
the model components under consideration. Final states in the search graph are hypotheses that
cover all source words. Among these, the hypothesis with the lowest cost (highest model score)
is selected as the best translation. Often a threshold is used to define a beam of good hypotheses
and prune the hypotheses that fall out of this beam. The beam follows the (presumably) best
hypothesis path, but with a certain width to allow the retention of comparable hypotheses, i.e.
neighbouring hypotheses that are close in score from the best one (Koehn, 2010).

If an exhaustive search was to be performed, then all translation options, in different or-
ders, could be used to build alternative hypotheses. However, in practice the search space is
pruned in different ways and only the most promising hypotheses are kept, with early prun-
ing potentially eliminating good hypotheses from the search space. In principle, larger beams
would thus allow for more variation in the n-best lists, while potentially introducing lower qual-
ity candidates, but also giving seemingly bad candidates a chance to obtain higher scores in later
stages of decoding. There is therefore a direct relationship between the size of the beam and the
maximum number of candidates that can be generated in the n-best list. However, the actual
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candidates in the n-best list are also affected by other design choices, such as the pruning and
hypotheses combination strategies used (Lambert and Banchs, 2006; Duh and Kirchhoff, 2008;
Hasan et al., 2007).

In addition, different approaches have been proposed to specifically promote diverse trans-
lations in SMT systems’ n-best lists. These include using compact representations like lattices
and hypergraphs (Tromble et al., 2008; Kumar and Byrne, 2004) and establishing explicit con-
ditions during decoding. Gimpel et al. (2013), for example, add a dissimilarity function based
on n-gram overlaps, choosing translations that have high model scores but are distinct from
already-generated ones.

Beam search decoding in NMT NMT decoding also relies on beam search, but the process is
much more expensive than in SMT and thus a limited beam size is often used, leading to narrow
hypotheses spaces (Li and Jurafsky, 2016; Vijayakumar et al., 2016). Given a certain pre-
specified beam size k, k-best lists are generated in a greedy left-right fashion retaining only the
top-k candidates as follows: at the first time step in decoding, a fixed-number k hypotheses are
retained based on the highest log-probability (model score) of each generated word. Each of the
k hypotheses is expanded at each time-step by selecting top k word translations. This continues
until the end-of-sequence symbol is obtained. The highest scoring candidate is retained and
stored into the final candidate list followed by a decrease of beam by one. The whole process
continues until the beam is reduced to zero. Finally, the best translation hypothesis amongst the
list is the one with highest log-probability. We note here that in most NMT approaches both the
set of hypotheses and the beam size are equivalent. Essentially, the NMT decoder obtains the
top translation hypotheses that maximise the conditional probability given by the model.

Li and Jurafsky (2016) increase diversity in the n-best list by adding an additional compo-
nent to the score used by the decoder to rank k hypotheses at each time step. This component
rewards top-ranked hypotheses generated from each ancestor, instead of ranking all candidates
from all ancestors together. Similarly, Vijayakumar et al. (2016) propose Diverse Beam Search,
where they optimise an objective with two terms: the standard cross entropy loss and a dissim-
ilarity term that encourages beams across groups to differ.

N-best re-ranking in SMT In addition to having access to only a subset of the search space,
the model components used in SMT only provide an estimate of translation quality. As a con-
sequence, using only the hypothesis ranked as the best by the decoder often leads to suboptimal
results (Wisniewski et al., 2010; Sokolov et al., 2012a). Therefore, it is common practice in
SMT to explore other hypotheses in the search space, the so called n-best list. Re-ranking an
n-best list of candidates produced by an SMT system has been a long standing practice. The
general motivation for doing so is the ability to use additional information in the process, which
is unavailable or too costly to compute at decoding time, e.g. syntactic features of the entire
sentence (Och et al., 2004), estimates on overall sentence translation quality (Blatz et al., 2003),
word sense disambiguation scores (Specia et al., 2008), large language model scores (Zhang
et al., 2006), and translation probability from a neural MT model (Neubig et al., 2015), among
others.

This additional information is usually treated as new model components and combined
with the existing ones. Various techniques have been proposed to perform n-best list re-ranking.
They generally learn weights to combine the new and existing model components using algo-
rithms such as MIRA (Crammer and Singer, 2003) with linear1 or non-linear functions (Sokolov
et al., 2012b), as well as more advanced methods, such as multi-task learning (Duh et al., 2010).
Hasan et al. (2007) provides a study on the potential improvements on final translation quality
by exploring n-best lists of different sizes. They show that even though oracle-based re-ranking

1https://github.com/moses-smt/mosesdecoder/tree/master/scripts/nbest-rescore
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on very large (100,000 hypotheses) n-best lists yields the best translation quality, automatic
re-ranking methods reach a plateau on the improvement after 1,000 hypotheses. Very large n-
best lists will contain very many noisy translations, so they suggest that only with extremely
accurate re-ranking methods one should explore such large spaces.

In an attempt to have a more reliable way to score translation candidates, Kumar and Byrne
(2004) introduced the Minimum Bayes Risk (MBR) decoding approach and used it to re-rank
n-best hypotheses such that the best hypothesis is the one that minimises the Bayes-risk defined
in terms of the model score (translation probability) and a loss function computed between the
translation hypothesis and a gold translation (e.g. a translation quality metric such as BLEU
(Papineni et al., 2002)). This method has been shown to be beneficial for many translation tasks
(Ehling et al., 2007; Tromble et al., 2008; Blackwood et al., 2010). They have however only
experimented a fixed n (1,000).

N-best re-ranking in NMT While there is a large body of literature that investigates different
strategies for exploring n-best hypotheses spaces in SMT, there have been very few attempts at
exploring such spaces in NMT. Stahlberg et al. (2017) adapt MBR decoding to the context of
NMT and to be used for partial hypotheses rather than entire translations. The NMT score is
combined with the Bayes-risk of the translation according to the SMT lattice. This approach
goes beyond re-scoring of n-best lists or lattices as the neural decoder is not restricted to the
SMT search space. The resulting MBR decoder produces new hypotheses that are different
from those in the SMT search space.

Li and Jurafsky (2016) propose an alternative objective function for NMT that maximises
the mutual information between the source and target sentences. They implement the model
with a simple re-ranking method. This is equivalent to linearly combining the probability of the
target given the source, and vice-versa. An NMT model is trained for each translation direction,
and the source→target model is used to generate n-best lists. These are then re-ranked using the
score from the target→source model. Shu and Nakayama (2017) studies the effect of beam size
in NMT MBR decoding. They considered beams of size 5, 20 and 100 and found that while in
standard decoding increasing the beam size is not beneficial, MBR re-ranking is more effective
with a large beam size.

Comparison between NMT and SMT There has been increasing interest in systematically
studying differences between NMT and SMT approaches. Bentivogli et al. (2016) conducted an
analysis for English→German translations by both NMT and SMT systems. They conclude that
the outputs of the NMT system are better suited in terms of syntax and semantics, with better
word order and less human post-editing effort required to fix the translations. They observe that
the average sentence length in an SMT system is always longer than in an NMT system. This
could be attributed to the optimisation of the cross-entropy loss and the fact that the outputs are
chosen on the basis of the log-probability scores in NMT systems.

Toral and Sánchez-Cartagena (2017) conducted an in-depth analysis on a set of nine lan-
guage pairs to contrast the differences between SMT and NMT systems. They observe that the
outputs of NMT systems are more fluent and have better word order when compared to SMT
systems. They note that despite the smaller beam sizes in NMT in general the top outputs of
the NMT system for a given source sentence are more distinct than the top outputs from SMT
systems. However, it is not clear whether or not they explore distinct n-best options from the
SMT or a mixture of distinct and non-distinct options. Both previous studies conclude that the
NMT systems perform poorly when translating very long sentences.
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3 Experimental Settings

In this section we describe the data, tools, metrics and settings used in our experiments to
investigate the influence of beam size in the generated translations.

Language Pairs We report results with NMT systems – the focus of this paper – for four
language pairs: English↔German and English↔Czech. For English↔Czech we also report
results with SMT systems for comparison.

NMT Systems We use the freely available Nematus (Sennrich et al., 2016) toolkit and its pre-
trained models2 for English↔German and English↔Czech. The Nematus systems are based
on attentional encoder-decoder neural machine translation approach (Bahdanau et al., 2014)
and were built after Byte-Pair Encoding (Sennrich et al., 2015b).3 The models were trained as
described in (Sennrich et al., 2016) using both parallel and synthetic (Sennrich et al., 2015a)
data under the constrained variant of the WMT16 MT shared task, mini batches of size 80, a
maximum sentence length of 50, word-embeddings of size 500, a hidden layers of size 1024,
and Adadelta as optimiser (Zeiler, 2012), reshuffling the training corpus between epochs.These
models were chosen as they have been highly ranked in the evaluation campaign of the WMT16
Conference (Bojar et al., 2016c).

SMT Systems We use pre-trained models from the Tuning shared task of WMT16 for
English↔Czech to build SMT systems for comparison. These models were built using the
Moses toolkit (Koehn et al., 2007) trained on the CzEng1.6pre4, (Bojar et al., 2016b) a 51M par-
allel sentences corpus built from eight different sources. The data was tokenised using Moses
tokeniser (Koehn et al., 2007) and lowercased; sentences longer than 60 words and shorter
than 4 words were removed before training. The weights were determined as the average over
three optimisation runs using MIRA (Crammer and Singer, 2003) towards BLEU. Word align-
ment was done using fast-align (Dyer et al., 2013) and for all other steps the standard Moses
pipeline was used for model building and decoding. This was reported as the best system for
English↔Czech (Jawaid et al., 2016).

By using pre-trained and freely available models for our NMT and SMT systems, we
have consistent models amongst the different language pairs and results can be more easily
reproducible.

Beam Settings SMT systems usually employ a large beam. In the training pipeline of the
Moses decoder, the beam size is set by default to 200. NMT systems, on the other hand,
normally use a much smaller beam size of 8 to 12. This is assumed to offer a good trade
off between quality and computational complexity. We note that the implementations of n-
best decoding is different in both NMT and SMT. In most NMT systems, there is a 1-to-1
correspondence between the beam size and the n-best list size. Therefore, we will use the term
n-best to refer to the output of an NMT system with a beam of size n, and to the n best outputs
of an SMT system, where the beam size has been set, by default, to 200.

We also note that the translations in the n-best list produced by NMT are always different
from each other, even though only marginally in many cases (e.g. a single token). In SMT, one
can choose whether or not only distinct candidates should be considered. We report on distinct
options only to gather insights on the diversity in n-best lists in SMT versus NMT.

Metrics For our experiments we consider three automatic evaluation metrics amongst the
most widely used and which have been shown to correlate well with human judgements (Bojar

2http://data.statmt.org/rsennrich/wmt16_systems/
3The models were obtained from http://statmt.org/rsennrich/wmt16_systems/
4http://ufal.mff.cuni.cz/czeng/czeng16pre
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et al., 2016c): BLEU, an n-gram-based precision metric which works similarly to position-
independent word error rate, but considers matches of larger n-grams with the reference trans-
lation; BEER (Stanojevic and Sima’an, 2014), a trained evaluation metric with a linear model
that combines features capturing character n-grams and permutation trees; and ChrF (Popovic,
2015), which computes the F-score of character n-grams. These metrics are used both for evalu-
ating final translation quality and for measuring similarity among translations in our consensus-
based re-ranking approach.

4 Effect of Beam Size

Current work in NMT takes a beam size of around 10 to be the optimal setting (Sennrich et al.,
2016). We empirically evaluate the effect of increasing the beam size in NMT to explore n-best
of sizes 10, 100 and 500. The goals are to understand (a) the informativeness of the transla-
tions produced; (b) the scope for obtaining better translations by simply exploiting the n-best
candidates, similarly to previous work in SMT.

4.1 Effect of Beam Size on Information Content of Translations
We define information content as the word overlap rate between the system generated translation
and the reference translation. We further break this into two categories:

1. % covered: This indicates the average proportion of words that are shared between the (a)
1-best output of the MT system and the reference translation, or (b) all the n-best outputs
and the reference translation. It is computed by looking at the intersection between the
vocabulary of the MT candidate(s) and the one of the reference, averaged at corpus-level.

2. % exact match: This indicates the proportion of sentences that are exact matches between
(a) the 1-best of the MT system and the reference translation, and (b) all the n-best outputs
and the reference translation.

This is similar to the approach in (Lala et al., 2017) where the authors measure word over-
lap with respect to system outputs, but their focus is on multimodal NMT. % covered approxi-
mates indicates the word-level precision of the MT system, given the n or 1-best candidates and
the reference translation, and % exact match approximately indicates the sentence-level recall
given the n or 1-best candidates and the reference translation.

Our intuition here is that if the systems are adequately trained, increasing the beam size
– and thereby the n-best list length – should result in obtaining a larger word overlap with
reference translation, and potentially a larger number of exact matches at the sentence level,
although the latter is a much taller order. We note that since only one reference translation is
available, mismatches between words in the MT output and reference translations could reflect
acceptable variances in translation.

Observations and Discussion In Table 1 we report the scores of each MT system using
BLEU, BEER and ChrF3 on the WMT16 test sets with different sizes of n-best lists: for NMT
we report sizes 10, 100 and 500, while for SMT we report a 500-best list with a beam size set to
the default size of 200. Since there is no 1-to-1 relationship between beam sizes and n-best list
sizes in SMT, reporting on different beam sizes would require arbitrarily choosing a specific n
for each beam size. We instead chose the largest n also used for the NMT experiments (500),
and a large enough beam size (200). The metric scores are computed on the 1-best translation,
which may vary if different beam sizes are used. We observe that for NMT increasing the n-
best size from 10 to 100 helps improve the performances for English↔German translations. For
English↔Czech, we do not observe any gain, but rather a significant drop. Also, if the beam
size is too large (500 in our case), the performance drops for all language pairs. This indicates
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that larger beam sizes do not necessarily lead to better 1-best translations, and that the choice
can be a function of the language pair and the dataset. This seems to suggest that with such large
beam sizes many translation candidates, including spurious ones, end up being ranked as the
1-best, most likely because of limitations in the functions used to score translation candidates.

NEURAL MT English→German German→English
n-best BLEU BEER ChrF3 BLEU BEER ChrF3
n=10 26.73 60.20 59.20 32.58 61.84 60.61
n=100 26.82 60.25 59.33 32.68 61.91 60.74
n=500 26.18 60.12 59.12 32.70 61.91 60.75

English→Czech Czech→English
n-best BLEU BEER ChrF3 BLEU BEER ChrF3
n=10 18.50 53.90 51.45 26.26 58.03 56.00
n=100 18.31 53.83 51.37 26.17 58.00 56.00
n=500 17.81 53.67 51.25 24.19 57.57 55.62

STATISTICAL MT English→Czech Czech→English
n-best BLEU BEER ChrF3 BLEU BEER ChrF3

n=10/100/500 10.64 48.88 46.51 18.19 52.59 51.32

Table 1: Translation quality results on the WMT16 test sets for both NMT and SMT systems
using n-best lists of sizes 10, 100 and 500. The scores are computed on the 1-best translation
towards the reference translation.

In Table 2 we report our empirical observations on word coverage. Here, we observe that
the larger the n-best list the higher proportion of words covered (% covered). Interestingly, we
also observe similar trends for % exact match, but only if all n-best candidates are considered.
It also interesting to note the difference in the impressive increase in % exact match from 1-
best to all-best for NMT, which does not happen for SMT. These results show that for NMT
larger beam sizes lead to more information content in translation candidates. Therefore, clever
techniques to explore the space of hypotheses should lead to better translations.

Even though the NMT vs SMT figures are not directly comparable since the NMT and
SMT systems are trained on different data, we note that despite the SMT system using a beam
size of 200 and producing 500-best translation hypotheses, its translations have much lower
word overlap than those from the NMT system with a beam size of 10 for English↔Czech.
These results further corroborate the reasons for the insignificant gains obtained in the WMT16
SMT system Tuning shared task (Jawaid et al., 2016). In fact, if larger hypotheses spaces do not
lead to more words that can potentially lead to translations that match the reference, the tuning
algorithms do not have much to learn from.

4.2 Oracle Exploration
Based on the encouraging observations in the previous experiment with word overlap between
candidates in the n-best list and the reference translation, here we attempt to quantify the poten-
tial gain from optimally exploring the space of hypotheses. We perform experiments assuming
that we have an ‘oracle’ which helps us choose the best possible translation, under an evalua-
tion metric against the reference, given an n-best list of translation hypotheses. This provides
an upper-bound on the performance of the MT system. Positive results in this experiment will
indicate that the MT system is capable of producing better translation candidates, but fails at
scoring them as the best ones.

In this oracle experiment, the translation of a source sentence is chosen based on com-
parisons among the translation hypotheses and the reference translation – the oracle – under a
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NEURAL MT 10-best 100-best 500-best
1-best all 1-best all 1-best all

English→German
%covered 53.99 62.75 53.99 71.93 53.83 77.69

% exact match 2.20 6.47 2.20 12.07 2.20 18.24
German→English

%covered 57.32 65.98 57.43 74.42 57.43 79.55
% exact match 2.70 7.70 2.70 15.40 2.70 22.94

English→Czech
%covered 45.97 55.27 45.85 65.61 45.72 72.55

% exact match 1.63 4.90 1.63 9.40 1.63 14.77
Czech→English

%covered 52.30 61.26 52.33 70.24 51.92 75.61
% exact match 1.67 14.44 1.67 11.47 1.60 16.97

STATISTICAL MT 10-best 100-best 500-best
(beam=200, distinct) 1-best all 1-best all 1-best all
English→Czech

% covered 39.20 46.58 39.20 54.05 39.20 57.86
% exact match 0.07 0.07 0.07 0.37 0.07 0.37

Czech→English
% covered 48.35 54.79 48.35 60.30 48.35 62.89

% exact match 0.16 0.50 0.16 0.83 0.16 0.83

Table 2: Proportion of words overlapping between candidates and reference translations for
different values of the n-best, as well as proportion of MT output sentences that exactly match
the reference, considering either the 1-best or all the MT candidates in the n-best list.

certain MT evaluation metric. We consider the outputs of NMT systems for beam sizes of 10,
100 and 500 and with the following metrics: BLEU with n-gram max length = 4 and default
brevity penalty settings, BEER2.0 with default settings, and ChrF with n-gram max length = 6
and β = 3. By exploring multiple metrics we will gain insights on how well different metrics
do at spotting the best candidates: ideally, better metrics should lead to larger improvements
from the original top translation.

Observations and Discussion We report the results of the oracle experiment in Figure 1.
For each system, we report the relative improvement (delta) between the oracle translation
chosen by the three metrics – BLEU, BEER and ChrF3 – compared to the 1-best of the system
for a given n-best list size. Using any of the metrics we are able to find an alternative MT
candidate which is better than the original 1-best translation, resulting in an overall increase in
translation quality in all datasets. Larger improvements are obtained with larger beam sizes.
However, while a large gain (almost double) is obtained from beam size 10 to 100, the rate
of increase in improvement seems to drop from beam size 100 to 500, indicating that more
additional translations are probably mostly spurious. This is consistent with the information
content experiment in Section 4.1.

Kumar and Byrne (2004) reports that their MBR decoder leads to improvements only ac-
cording to an evaluation metric that is also used as basis for their loss function. In our ex-
periments, to better understand the relationship between the re-ranking metric and the final
evaluation results, we further explore the oracle experiment by reporting results on the 500-
best output for NMT, which brings the best gains in Figure 1, but focus on the proportion of
improvement of the oracle translation over 1-best across metrics. In other words, we oracle re-
rank using each given metric and evaluate the final 1-best translation set performance using all
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Figure 1: Proportion of improvement in NMT results according to MT evaluation metrics based
on the oracle results over the original 1-best when the size of the beam is increased for decoding.

Figure 2: Focusing on the 500-best output for NMT, which brings the best gains in Figure 1,
proportion of improvement of the oracle translation over the original 1-best when using different
metrics for the oracle computation: ChrF3, BEER and BLEU. Re-ranking is done with one
metric at a time, and the final performance is also measured with each of three metrics.

three metrics. This helps us assess the potential of each metric in selecting the best candidate.
Figure 2 shows the results. Contrary to what was suggested in Kumar and Byrne (2004) for
SMT, in chart (a) we see that the relative improvement is bigger in terms of the BLEU metric
when using either BEER or ChrF3 to obtain the 1-best translation than using BLEU itself. We
also observe in charts (b) and (c) that the character-based metrics always outperform BLEU and
extract better 1-best translations. BLEU also seems to fail at identifying better MT candidates
when translating into Czech, which is a morphologically rich language, while BEER and ChrF3
perform better. We note however that Kumar and Byrne (2004) also tune the log-linear loss
function, while in our case we are just selecting the candidates directly based on a metric.

Since sentence length is a often problem in NMT, we measure the impact of using different
evaluation metrics for oracle re-ranking on the sentence length of the 1-best translations chosen.
In Figure 3 we report variation in terms of sentence length average for all NMT systems after
the oracle translation selection with all three metrics, compared to the original 1-best translation
for each setting. We notice that the average length of oracle BLEU translations does not seem to
vary, however, an opposite trend is seen with BEER and ChrF3, which seem to make sentences
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shorter except for German→English. This is particularly interesting since i) we observe in
Table 2 a better coverage with bigger beam size, and ii) we observe an overall large BLEU
improvement our oracle experiments (Figure 2 (a)). This suggests that we are able to select
translation candidates that might be shorter than the original 1-best, but most similar to the
reference translation.

Figure 3: Delta in average sentence length for all NMT systems after 1-best oracle translation
selection by each metric, compared to the average sentence length of the original 1-best.

5 Consensus-based n-best re-ranking

As was shown in the previous section, increasing the size of the beam generally leads to better
word coverage and, more important, to higher chances of generating better translations among
the resulting n-best lists. In what follows we propose an approach to automatically re-rank
n-best lists to obtain better translations (without oracle translations).

Our approach is motivated by the work of DeNero et al. (2009) for SMT, where consensus-
based MBR decoding is used to guide the choices of the decoder towards hypotheses that share
partial translations. DeNero et al. (2009) experiment with different evaluation metrics (includ-
ing BLEU) to measure similarity among hypotheses within a n-best list. We propose to em-
pirically evaluate the contribution of consensus information in hypotheses in n-best lists from
NMT systems. This is simpler than using consensual information at decoding time, but we
believe that positive results at re-ranking stage will provide insights on whether or not this is a
promising path to follow in NMT decoding.

Given an n-best list and a certain similarity metric, we compute the metric scores for each
translation hypothesis against each of all n − 1 other hypotheses in the n-best list. We then
average the similarity scores of all n−1 translation hypotheses to obtain a single score for each
translation hypothesis. We repeat this for all translation hypotheses and then sort the n-best list
based on these scores, such that the top (best) translation will be one that is similar to more of
the alternative candidates. Given that NMT systems produce translations are are “more likely”
given the model, this essentially corresponds to selecting as best translation the one that is the
most similar to all of n−1 the most likely translations. The size of the n-best list here is critical:
the more hypotheses in the list, the less confident the NMT system will be on the bottom part
of the list (less likely translations). However, longer n-best lists may provide stronger evidence
for consensual analysis. This is a classical exploration-exploitation issue.

Another remark is that larger search spaces require much more time to compute the
consensus-based re-ranking. We experiment with BLEU, BEER and ChrF3 as similarity met-
rics, since these are easily available and are either extremely popular (BLEU) or have proved
to correlate well with human judgements on translation quality (in terms of similarity with a
reference translation) in recent evaluation campaigns (BEER and ChrF3) (Bojar et al., 2016c).
While each pair of translation hypotheses can be scored independently, which allows parallel
processing, the running time for each metric to re-rank a complete n-best list isO(n2 ·k), where
k is the size of the corpus and n the size of the n-best list. This may be very time consuming:
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from hours up to a day5 for easy-to-compute metrics such as BLEU or ChrF, to many days for
more complex metrics such as BEER.

Automatic evaluation We start by evaluating our consensus-based re-ranking approach using
BLEU as automatic evaluation metric. The results are shown in Table 3. A similar trend was
observed using BEER and ChrF3 as similarity metrics, however we omit these results due to
space constraints. Comparing the figures in this table against those in Table 1, we see that –
under the same beam size – re-ranking seems to degrade the results in all cases with BLEU
and ChrF, but not with BEER. An increase in BLEU scores can be observed for BEER-based
re-ranking as longer beam sizes superior to 10 are used for the two language pairs where re-
ranking under this metric was computed. It is not surprising to see that this improvement is
only observed for BEER as similarity metric, even though the final evaluation is in terms of
BLEU. This suggests that exploring other similarity metrics for the consensus analysis could be
beneficial. Overall, re-ranking using BEER as similarity metric leads to the best results.

English→German German→English
re-ranked with re-ranked with

n-best baseline BLEU BEER ChrF3 baseline BLEU BEER ChrF3
n=10 26.93 26.51 26.77 26.38 32.58 32.10 32.29 31.79
n=100 26.82 26.02 26.87 26.18 32.68 31.90 32.78 31.67
n=500 26.18 24.80 - 25.93 32.70 31.41 32.85 32.25

English→Czech Czech→English
re-ranked with re-ranked with

n-best baseline BLEU BEER ChrF3 baseline BLEU BEER ChrF3
n=10 18.50 17.98 18.24 17.60 26.26 25.81 26.10 25.52
n=100 18.31 17.58 18.61 17.57 26.17 25.47 26.42 25.16
n=500 17.81 16.39 - 17.38 24.19 24.44 26.57 24.80

Table 3: BLEU scores of our consensus-based re-ranking strategy on the WMT16 test sets
with NMT using n-best lists of sizes 10, 100 and 500. The scores are computed on the newly
ranked 1-best NMT candidate against the reference translation. The baseline scores correspond
to the original 1-best assessed towards the reference translation (see Table 1). The current
implementation of BEER makes our consensus-based re-ranking extremely time consuming
and virtually unfeasible, therefore we only show results for a subset of language pairs.

In Table 4 we illustrate some examples from the re-ranking approach. We observed that the
consensus-based re-ranking produced interesting sentences that included syntactic re-orderings,
new words, morphological variations and other nuances which were not captured by BLEU.
This motivated us to perform human evaluation of the translations to more quantitatively com-
pare the original 1-best versus the re-ranked 1-best.

Human evaluation We conducted a human evaluation using Appraise (Federmann, 2012),
an open-source web application for manual evaluation of MT output. Appraise collects human
judgements on translation output, implementing annotation tasks such as quality checking, error
classification, manual post-editing and, in our case, translation ranking. For a list of up to four
systems’ outputs for each source sentence, we requested human annotators to rank the set of
MT candidates from the best to the worst, allowing for ties, based on both the source sentence
and reference translation. If two system outputs are the same, the MT candidate was displayed
once and the same rank was assigned to both systems.

For this evaluation, we selected a subset of our systems based on our automatic evaluation
results: for each metric used for re-ranking in each language pair, we chose the systems that

5Indicative time it took to re-rank a corpus of 3,000 sentences, with n = 500 on a 40-cores CPU server.
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German→English
SRC: Das rund zehn bis zwölf Millionen Euro teure Vorhaben steht seit Monaten in der Diskus-

sion.

REF: The e
�� ��10 - 12 million project has been under discussion for months.

Baseline: the EUR
�� ��10 million project has been under discussion for months.

BEER: the
�� ��approximately EUR

�� ��10 to 12 million projects has been under discussion for
months

ChrF3: the EUR
�� ��10 million euro project has been under discussion for several months.

BLEU: the projects
�� ��around ten to twelve million euros have been discussed for months.

Czech→English
SRC: Navı́c jsem si ze života odnesl zkušenost, že zasahovánı́ do ekosystému nevede k úspěchu

a jednoho škůdce může nahradit druhý.

REF: Furthermore,
�� ��in my experience , interfering with the ecosystem does not lead to suc-

cess and one pest can replace another.

Baseline: moreover, I have learned
�� ��from life that interfering with an ecosystem

does not lead to success , and one pest can replace another.

BEER: moreover, I have learned
�� ��from my life that it is not possible to succeed in an

ecosystem, and one can replace one of the pests .

ChrF3: moreover, I have learned
�� ��from life that interfering with an ecosystem

does not lead to success , and one pest can replace one another.

BLEU: moreover, I have learned
�� ��from life that interfering with an ecosystem

does not lead to success , and one pest can replace one.

Table 4: Examples of alternative MT candidates chosen by consensus from n-best lists (with
n = 500). Boxes highlight the main differences between the reference translation, the base-
line (i.e. the original 1-best) and an alternative translation chose by our consensus re-ranking
approach using BLEU, BEER or ChrF.

performed the best according to the three metrics (averaged ranking among the three), along
with the original 1-best.

Each human translator was asked to complete at least one hit of twenty annotation tasks.
Incomplete hits were discarded from the evaluation. We collected 3,016 complete ranking re-
sults over the four NMT systems (159 for English→Czech, 1,365 for Czech→English, 911 for
English→German, 581 for German→English), from 208 annotators.

We borrowed a method from the WMT translation shared task to generate a global ranking
of systems from these judgements. Table 5 reports the ranking results according to the Expected
Wins method6 for the four language pairs. The first column (#m) indicates the ranking of the
systems amongst themselves according to the three automatic metrics, while the third column
(range) indicates the ranking from the human evaluation. For example, for English→German,
the BLEU-100best system was ranked first amongst the four by all three metrics, but it was
ranked last by human annotators.

6https://github.com/keisks/wmt-trueskill/blob/master/src/infer_EW.py
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English→German
#m score range system
4 0.578 1-2 BEER-100best
2 0.529 1-3 Baseline (10best)
3 0.505 2-3 ChrF3-10best
1 0.388 4 BLEU-100best

German→English
#m score range system
4 0.559 1-3 BEER-500best
2 0.546 1-3 Baseline (10best)
3 0.525 1-3 ChrF3-10best
1 0.393 4 BLEU-500best

English→Czech
#m score range system
2 0.583 1-3 BEER-100best
4 0.532 1-3 ChrF3-100best
1 0.493 1-4 BLEU-100best
3 0.372 3-4 Baseline (100best)

Czech→English
#m score range system
4 0.526 1-3 BEER-10best
3 0.522 1-2 ChrF3-500best
2 0.508 1-3 Baseline (500best)
1 0.453 3-4 BLEU-500best

Table 5: Results of the human evaluation for NMT. Systems are sorted according to human
assessments while #m indicates the overall ranking of a system according to all three automatic
metrics. Scores and ranges are obtained with the Expected Wins method (Sakaguchi et al.,
2014). Lines between systems indicate clusters. Systems within a cluster are considered tied.
In gray are systems which have not significantly outperformed the baseline.

Our first observation is that the consensus-based re-ranking with BEER outperforms the
other two metrics for all the language pairs, confirming the results of the automatic evaluation.
Except for Czech→English, systems always benefit from a beam size larger than 10, which
suggests that we should consider exploiting a larger search spaces in NMT. Another interesting
outcome of the human evaluation is the ranking of our systems, which for most of the lan-
guage pairs refutes the ranking according to the automatic evaluation. Although those metrics
are known to be well correlated with human judgements, it seems that humans have different
perceptions on the quality of the translations.

6 Conclusions

In this paper we reported our experiments and results on the influence of the beam size in NMT.
While traditional approaches in NMT rely on smaller beam sizes or use greedy implementations,
our paper strongly motivates using a larger beam size. We investigate the informativeness of
larger beam size and highlighted the potential to improve translation quality by exploring larger
hypotheses spaces using an oracle experiment. Motivated by substantial potential gains in both
informativeness and oracle-based hypotheses re-ranking, we proposed a consensus-based NMT
n-best re-ranking approach, with insights into the use of different metrics to capture consensus-
based information. Our contribution strongly suggests further work in NMT to explore larger
beams and n-best lists.
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