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Abstract
Neural machine translation (NMT), a new approach to machine translation, has achieved
promising results comparable to those of traditional approaches such as statistical machine
translation (SMT). Despite its recent success, NMT cannot handle a larger vocabulary because
the training complexity and decoding complexity proportionally increase with the number of
target words. This problem becomes even more serious when translating patent documents,
which contain many technical terms that are observed infrequently. In this paper, we pro-
pose to select phrases that contain out-of-vocabulary words using the statistical approach of
branching entropy. This allows the proposed NMT system to be applied to a translation task
of any language pair without any language-specific knowledge about technical term identifica-
tion. The selected phrases are then replaced with tokens during training and post-translated by
the phrase translation table of SMT. Evaluation on Japanese-to-Chinese, Chinese-to-Japanese,
Japanese-to-English and English-to-Japanese patent sentence translation proved the effective-
ness of phrases selected with branching entropy, where the proposed NMT model achieves a
substantial improvement over a baseline NMT model without our proposed technique. More-
over, the number of translation errors of under-translation by the baseline NMT model without
our proposed technique reduces to around half by the proposed NMT model.

1 Introduction

Neural machine translation (NMT), a new approach to solvingmachine translation, has achieved
promising results (Bahdanau et al., 2015; Cho et al., 2014; Jean et al., 2014; Kalchbrenner and
Blunsom, 2013; Luong et al., 2015a,b; Sutskever et al., 2014). An NMT system builds a simple
large neural network that reads the entire input source sentence and generates an output transla-
tion. The entire neural network is jointly trained to maximize the conditional probability of the
correct translation of a source sentence with a bilingual corpus. Although NMT offers many
advantages over traditional phrase-based approaches, such as a small memory footprint and
simple decoder implementation, conventional NMT is limited when it comes to larger vocabu-
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Figure 1: Example of translation errors when translating patent sentences with technical terms
using NMT

laries. This is because the training complexity and decoding complexity proportionally increase
with the number of target words. Words that are out of vocabulary are represented by a single
“〈unk〉” token in translations, as illustrated in Figure 1. The problem becomes more serious
when translating patent documents, which contain several newly introduced technical terms.

There have been a number of related studies that address the vocabulary limitation of
NMT systems. Jean et al. (2014) provided an efficient approximation to the softmax function
to accommodate a very large vocabulary in an NMT system. Luong et al. (2015b) proposed
annotating the occurrences of the out-of-vocabulary token in the target sentence with positional
information to track its alignments, after which they replace the tokens with their translations
using simple word dictionary lookup or identity copy. Li et al. (2016) proposed replacing out-
of-vocabulary words with similar in-vocabulary words based on a similarity model learnt from
monolingual data. Sennrich et al. (2016) introduced an effective approach based on encoding
rare and out-of-vocabulary words as sequences of subword units. Luong and Manning (2016)
provided a character-level and word-level hybrid NMT model to achieve an open vocabulary,
and Costa-Jussà and Fonollosa (2016) proposed an NMT system that uses character-based em-
beddings.

However, these previous approaches have limitations when translating patent sentences.
This is because their methods only focus on addressing the problem of out-of-vocabularywords
even though the words are parts of technical terms. It is obvious that a technical term should
be considered as one word that comprises components that always have different meanings and
translations when they are used alone. An example is shown in Figure 1, where the Japanese
word “ ”(bridge) should be translated to Chinese word “ ” when included in technical
term “bridge interface”; however, it is always translated as “ ”.

To address this problem, Long et al. (2016) proposed extracting compound nouns as tech-
nical terms and replacing them with tokens. These compound nouns then are post-translated
with the phrase translation table of the statistical machine translation (SMT) system. However,
in their work on Japanese-to-Chinese patent translation, Japanese compound nouns are identi-
fied using several heuristic rules that use specific linguistic knowledge based on part-of-speech
tags of morphological analysis of Japanese language, and thus, the NMT system has limited
application to the translation task of other language pairs. In this paper, based on the approach
of training an NMT model on a bilingual corpus wherein technical term pairs are replaced with
tokens as in Long et al. (2016), we aim to select phrase pairs using the statistical approach of
branching entropy; this allows the proposed technique to be applied to the translation task on
any language pair without needing specific language knowledge to formulate the rules for tech-
nical term identification. Based on the results of our experiments on many pairs of languages:
Japanese-to-Chinese, Chinese-to-Japanese, Japanese-to-English and English-to-Japanese, the
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proposed NMT model achieves a substantial improvement over a baseline NMT model without
our proposed technique. Our proposed NMT model achieves an improvement of 1.2 BLEU
points over a baseline NMT model when translating Japanese sentences into Chinese, and an
improvement of 1.7 BLEU points when translating Chinese sentences into Japanese. Our pro-
posed NMT model achieves an improvement of 1.1 BLEU points over a baseline NMT model
when translating Japanese sentences into English, and an improvement of 1.4 BLEU points
when translating English sentences into Japanese. Moreover, the number of translation error of
under-translations1 by the the baseline NMT model without our proposed technique reduces to
around half by the proposed NMT model.

2 Neural Machine Translation

NMT uses a single neural network trained jointly to maximize the translation performance
(Bahdanau et al., 2015; Cho et al., 2014; Kalchbrenner and Blunsom, 2013; Luong et al.,
2015a; Sutskever et al., 2014). Given a source sentence x = (x 1, . . . , xN ) and target sen-
tence y = (y1, . . . , yM ), an NMT model uses a neural network to parameterize the conditional
distributions

p(yz | y<z,x)

for 1 ≤ z ≤ M . Consequently, it becomes possible to compute and maximize the log probabil-
ity of the target sentence given the source sentence as

log p(y | x) =
M∑

l=1

log p(yz|y<z,x)

In this paper, we use an NMT model similar to that used by Bahdanau et al. (2015), which
consists of an encoder of a bidirectional long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and another LSTM as decoder. In the model of Bahdanau et al. (2015),
the encoder consists of forward and backward LSTMs. The forward LSTM reads the source
sentence as it is ordered (from x1 to xN ) and calculates a sequence of forward hidden states,
while the backward LSTM reads the source sentence in the reverse order (from xN to x1) ,
resulting in a sequence of backward hidden states. The decoder then predicts target words using
not only a recurrent hidden state and the previously predicted word but also a context vector as
followings:

p(yz | y<z,x) = g(yz−1, sz−1, cz)

where sz−1 is an LSTM hidden state of decoder, and cz is a context vector computed from both
of the forward hidden states and backward hidden states, for 1 ≤ z ≤ M .

3 Phrase Pair Selection using Branching Entropy

Branching entropy has been applied to the procedure of text segmentation (e.g., (Jin and Tanaka-
Ishii, 2006)) and key phrases extraction (e.g., (Chen et al., 2010)). In this work, we use the
left/right branching entropy to detect the boundaries of phrases, and thus select phrase pairs
automatically.

1It is known that NMTmodels tend to have the problem of the under-translation. Tu et al. (2016) proposed coverage-
based NMT which considers the problem of the under-translation.
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3.1 Branching Entropy
The left branching entropy and right branching entropy of a phrase w are respectively defined
as

Hl(w) = −
∑

v∈Vwl

pl(v) log2 pl(v)

Hr(w) = −
∑

v∈Vwr

pr(v) log2 pr(v)

where w is the phrase of interest (e.g., “ / ” in the Japanese sentence shown
in Figure 1, which means “bridge interface”), V w

l is a set of words that are adjacent to the
left of w (e.g., “ ” in Figure 1, which is a Japanese particle) and V w

r is a set of words that
are adjacent to the right of w (e.g., “388” in Figure 1). The probabilities p l(v) and pr(v) are
respectively computed as

pl(v) =
fv,w
fw

pr(v) =
fw,v

fw

where fw is the frequency count of phrase w, and fv,w and fw,v are the frequency counts
of sequence “v,w” and sequence “w,v” respectively. According to the definition of branching
entropy, when a phrase w is a technical term that is always used as a compound word, both
its left branching entropyHl(w) and right branching entropyHr(w) have high values because
many different words, such as particles and numbers, can be adjacent to the phrase. However,
the left/right branching entropy of substrings ofw have low values because words contained in
w are always adjacent to each other.

3.2 Selecting Phrase Pairs
Given a parallel sentence pair 〈Ss, St〉, all n-grams phrases of source sentence Ss and target
sentence St are extracted and aligned using phrase translation table and word alignment of
SMT according to the approaches described in Long et al. (2016). Next, phrase translation pair
〈ts, tt〉 obtained from 〈Ss, St〉 that satisfies all the following conditions is selected as a phrase
pair and is extracted:

(1) Either ts or tt contains at least one out-of-vocabulary word. 2

(2) Neither ts nor tt contains predetermined stop words.

(3) Entropies Hl(ts), Hl(tt), Hr(ts) and Hr(tt) are larger than a lower bound, while the
left/right branching entropy of the substrings of t s and tt are lower than or equal to the
lower bound.

Here, the maximum length of a phrase as well as the lower bound of the branching entropy are
tuned with the validation set.3 All the selected source-target phrase pairs are then used in the

2One of the major focus of this paper is the comparison between the proposed method and Luong et al. (2015b).
Since Luong et al. (2015b) proposed to pre-process and post-translate only out-of-vocabulary words, we focus only on
compound terms which include at least one out-of-vocabulary words.

3Throughout the evaluations on patent translation of both language pairs of Japanese-Chinese and Japanese-English,
the maximum length of the extracted phrases is tuned as 7. The lower bounds of the branching entropy are tuned as
5 for patent translation of the language pair of Japanese-Chinese, and 8 for patent translation of the language pair of
Japanese-English. We also tune the number of stop words using the validation set, and use the 200 most-frequent
Japanese morphemes and Chinese words as stop words for the language pair of Japanese-Chinese, use the 100 most-
frequent Japanese morphemes and English words as stop words for the language pair of Japanese-English.
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Figure 2: NMT training after replacing phrase pairs with token pairs 〈T s
i , T

t
i 〉 (i = 1, 2, . . .)

next section as phrase pairs.4

4 NMT with a Large Phrase Vocabulary

In this work, the NMT model is trained on a bilingual corpus in which phrase pairs are replaced
with tokens. The NMT system is then used as a decoder to translate the source sentences and
replace the tokens with phrases translated using SMT.

4.1 NMT Training after Replacing Phrase Pairs with Tokens
Figure 2 illustrates the procedure for training the model with parallel patent sentence pairs in
which phrase pairs are replaced with phrase token pairs 〈T s

1 , T
t
1〉, 〈T s

2 , T
t
2〉, and so on.

In the step 1 of Figure 2, source-target phrase pairs that contain at least one out-of-
vocabulary word are selected from the training set using the branching entropy approach de-
scribed in Section 3.2. As shown in the step 2 of Figure 2, in each of the parallel patent sentence
pairs, occurrences of phrase pairs 〈ts1, tt1〉, 〈ts2, tt2〉, . . ., 〈tsk, ttk〉 are then replaced with token pairs
〈T s

1 , T
t
1〉, 〈T s

2 , T
t
2〉, . . ., 〈T s

k , T
t
k〉. Phrase pairs 〈ts1, tt1〉, 〈ts2, tt2〉, . . ., 〈tsk, ttk〉 are numbered in the

order of occurrence of the source phrases ts1 (i = 1, 2, . . . , k) in each source sentence Ss. Here
note that in all the parallel sentence pairs 〈Ss, St〉, the tokens pairs 〈T s

1 , T
t
1〉, 〈T s

2 , T
t
2〉, . . . that

are identical throughout all the parallel sentence pairs are used in this procedure. Therefore, for
example, in all the source patent sentences Ss, the phrase ts1 which appears earlier than other
phrases in Ss is replaced with T s

1 . We then train the NMTmodel on a bilingual corpus, in which
the phrase pairs are replaced by token pairs 〈T s

i , T
t
i 〉 (i = 1, 2, . . .), and obtain an NMT model

in which the phrases are represented as tokens.5

4We sampled 200 Japanese-Chinese sentence pairs, manually annotated compounds and evaluated the approach of
phrase extraction with the branching entropy. Based on the result, (a) 25% of them are correct, (b) 20% subsume correct
compounds as their substrings, (c) 18% are substrings of correct compounds, (d) 22% subsume substrings of correct
compounds but other than (b) nor (c), and (e) the remaining 15% are error strings such as functional compounds and
fragmental strings consisting of numerical expressions.

5We treat the NMT system as a black box, and the strategy we present in this paper could be applied to any NMT
system (Bahdanau et al., 2015; Cho et al., 2014; Kalchbrenner and Blunsom, 2013; Luong et al., 2015a; Sutskever et al.,
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Figure 3: NMT decoding with tokens “T s
i ” (i = 1, 2, . . .) and the SMT phrase translation

4.2 NMT Decoding and SMT Phrase Translation

Figure 3 illustrates the procedure for producing target translations by decoding the input source
sentence using the method proposed in this paper.

In the step 1 of Figure 3, when given an input source sentence, we first generate its trans-
lation by decoding of SMT translation model. Next, as shown in the step 2 of Figure 3, we
automatically extract the phrase pairs by branching entropy according to the procedure of Sec-
tion 3.2, where the input sentence and its SMT translation are considered as a pair of parallel
sentence. Phrase pairs that contains at least one out-of-vocabulary word are extracted and are
replaced with phrase token pairs 〈T s

i , T
t
i 〉 (i = 1, 2, . . .). Consequently, we have an input sen-

tence in which the tokens “T s
i ” (i = 1, 2, . . .) represent the positions of the phrases and a list of

SMT phrase translations of extracted Japanese phrases. Next, as shown in the step 3 of Figure 3,
the source Japanese sentence with tokens is translated using the NMT model trained according
to the procedure described in Section 4.1. Finally, in the step 4, we replace the tokens “T t

i ”
(i = 1, 2, . . .) of the target sentence translation with the phrase translations of the SMT.

5 Evaluation

5.1 Patent Documents

Japanese-Chinese parallel patent documents were collected from the Japanese patent documents
published by the Japanese Patent Office (JPO) during 2004-2012 and the Chinese patent doc-
uments published by the State Intellectual Property Office of the People’s Republic of China
(SIPO) during 2005-2010. From the collected documents, we extracted 312,492 patent fami-
lies, and the method of Utiyama and Isahara (2007) was applied 6 to the text of the extracted
patent families to align the Japanese and Chinese sentences. The Japanese sentences were seg-
mented into a sequence of morphemes using the Japanese morphological analyzer MeCab 7 with

2014).
6Herein, we used a Japanese-Chinese translation lexicon comprising around 170,000 Chinese entries.
7http://mecab.sourceforge.net/
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Table 1: Statistics of datasets
training set validation set test set

Japanese-Chinese 2,877,178 1,000 1,000
Japanese-English 1,167,198 1,000 1,000

Table 2: Automatic evaluation results (BLEU)
System ja→ ch ch→ ja ja→ en en→ ja
Baseline SMT (Koehn et al., 2007) 52.5 57.1 32.3 32.1
Baseline NMT 56.5 62.5 39.9 41.5
NMT with PosUnk model 56.9 62.9 40.1 41.9(Luong et al., 2015b)
NMT with phrase translation by SMT (phrase 57.7 64.2 40.3 42.9pairs selected with branching entropy)

the morpheme lexicon IPAdic,8 and the Chinese sentences were segmented into a sequence of
words using the Chinese morphological analyzer Stanford Word Segment (Tseng et al., 2005)
trained using the Chinese Penn Treebank. In this study, Japanese-Chinese parallel patent sen-
tence pairs were ordered in descending order of sentence-alignment score and we used the
topmost 2.8M pairs, whose Japanese sentences contain fewer than 40 morphemes and Chinese
sentences contain fewer than 40 words.9

Japanese-English patent documents are provided in the NTCIR-7 workshop (Fujii et al.,
2008), which are collected from the 10 years of unexamined Japanese patent applications pub-
lished by the Japanese Patent Office (JPO) and the 10 years patent grant data published by
the U.S. Patent & Trademark Office (USPTO) in 1993-2000. The numbers of documents are
approximately 3,500,000 for Japanese and 1,300,000 for English. From these document sets,
patent families are automatically extracted and the fields of “Background of the Invention”
and “Detailed Description of the Preferred Embodiments” are selected. Then, the method of
Utiyama and Isahara (2007) is applied to the text of those fields, and Japanese and English
sentences are aligned. The Japanese sentences were segmented into a sequence of morphemes
using the Japanese morphological analyzer MeCab with the morpheme lexicon IPAdic. Simi-
lar to the case of Japanese-Chinese patent documents, in this study, out of the provided 1.8M
Japanese-English parallel sentences, 1.1M parallel sentences whose Japanese sentences contain
fewer than 40 morphemes and English sentences contain fewer than 40 words are used.

5.2 Training and Test Sets
We evaluated the effectiveness of the proposed NMT model at translating parallel patent sen-
tences described in Section 5.1. Among the selected parallel sentence pairs, we randomly ex-
tracted 1,000 sentence pairs for the test set and 1,000 sentence pairs for the validation set; the
remaining sentence pairs were used for the training set. Table 1 shows statistics of the datasets.

According to the procedure of Section 3.2, from the Japanese-Chinese sentence pairs of
the training set, we collected 426,551 occurrences of Japanese-Chinese phrase pairs, which

8http://sourceforge.jp/projects/ipadic/
9It is expected that the proposed NMT model can improve the baseline NMT without the proposed technique when

translating longer sentences that contain more than 40 morphemes / words. It is because the approach of replacing
phrases with tokens also shortens the input sentences, expected to contribute to solving the weakness of NMT model
when translating long sentences.
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Table 3: Human evaluation results of pairwise evaluation (the score ranges from−100 to 100)
System ja→ ch ch→ ja ja→ en en→ ja
Baseline NMT - - - -
NMT with PosUnk model 9 10.5 8 6.5(Luong et al., 2015b)
NMT with phrase translation by SMT (phrase 14.5 17 11.5 15.5pairs selected with branching entropy)

are 254,794 types of phrase pairs with 171,757 unique types of Japanese phrases and 129,071
unique types of Chinese phrases. Within the total 1,000 Japanese patent sentences in the
Japanese-Chinese test set, 121 occurrences of Japanese phrases were extracted, which corre-
spond to 120 types. With the total 1,000 Chinese patent sentences in the Japanese-Chinese test
set, 130 occurrences of Chinese phrases were extracted, which correspond to 130 types.

From the Japanese-English sentence pairs of the training set, we collected 70,943 occur-
rences of Japanese-English phrase pairs, which are 61,017 types of phrase pairs with unique
57,675 types of Japanese phrases and 58,549 unique types of English phrases. Within the total
1,000 Japanese patent sentences in the Japanese-English test set, 59 occurrences of Japanese
phrases were extracted, which correspond to 59 types. With the total 1,000 English patent sen-
tences in the Japanese-English test set, 61 occurrences of English phrases were extracted, which
correspond to 61 types.

5.3 Training Details

For the training of the SMT model, including the word alignment and the phrase translation
table, we used Moses (Koehn et al., 2007), a toolkit for phrase-based SMT models. We trained
the SMT model on the training set and tuned it with the validation set.

For the training of the NMT model, our training procedure and hyperparameter choices
were similar to those of Bahdanau et al. (2015). The encoder consists of forward and backward
deep LSTM neural networks each consisting of three layers, with 512 cells in each layer. The
decoder is a three-layer deep LSTM with 512 cells in each layer. Both the source vocabulary
and the target vocabulary are limited to the 40K most-frequently used morphemes / words in
the training set. The size of the word embedding was set to 512. We ensured that all sentences
in a minibatch were roughly the same length. Further training details are given below: (1)
We set the size of a minibatch to 128. (2) All of the LSTM’s parameter were initialized with
a uniform distribution ranging between -0.06 and 0.06. (3) We used the stochastic gradient
descent, beginning at a fixed learning rate of 1. We trained our model for a total of 10 epochs,
and we began to halve the learning rate every epoch after the first seven epochs. (4) Similar
to Sutskever et al. (2014), we rescaled the normalized gradient to ensure that its norm does not
exceed 5. We trained the NMT model on the training set. The training time was around two
days when using the described parameters on a 1-GPU machine.

We compute the branching entropy using the frequency statistics from the training set.

5.4 Evaluation Results

In this work, we calculated automatic evaluation scores for the translation results using a popular
metrics called BLEU (Papineni et al., 2002). As shown in Table 2, we report the evaluation
scores, using the translations by Moses (Koehn et al., 2007) as the baseline SMT and the scores
using the translations produced by the baseline NMT system without our proposed approach
as the baseline NMT. As shown in Table 2, the BLEU score obtained by the proposed NMT
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Table 4: Human evaluation results of JPO adequacy evaluation (the score ranges from 1 to 5)
System ja→ ch ch→ ja ja→ en en→ ja
Baseline SMT (Koehn et al., 2007) 3.5 3.7 3.1 3.2
Baseline NMT 4.2 4.3 3.9 4.1
NMT with PosUnk model 4.3 4.3 4.0 4.2(Luong et al., 2015b)
NMT with phrase translation by SMT (phrase 4.5 4.6 4.1 4.4pairs selected with branching entropy)

Table 5: Numbers of untranslated morphemes / words of input sentences (for the test set)
System ja→ ch ch→ ja ja→ en en→ ja
Baseline NMT 89 92 415 226
NMT with phrase translation by SMT (phrase 43 45 246 134pairs selected with branching entropy)

model is clearly higher than those of the baselines. Here, as described in Section 3, the lower
bounds of branching entropy for phrase pair selection are tuned as 5 throughout the evaluation of
language pair of Japanese-Chinese, and tuned as 8 throughout the evaluation of language pair
of Japanese-English, respectively. When compared with the baseline SMT, the performance
gains of the proposed system are approximately 5.2 BLEU points when translating Japanese
into Chinese and 7.1 BLEU when translating Chinese into Japanese. When compared with the
baseline SMT, the performance gains of the proposed system are approximately 10.0 BLEU
points when translating Japanese into English and 10.8 BLEU when translating English into
Japanese. When compared with the result of the baseline NMT, the proposed NMT model
achieved performance gains of 1.2 BLEU points on the task of translating Japanese into Chinese
and 1.7 BLEU points on the task of translating Chinese into Japanese. When compared with
the result of the baseline NMT, the proposed NMT model achieved performance gains of 0.4
BLEU points on the task of translating Japanese into English and 1.4 BLEU points on the task
of translating English into Japanese.

Furthermore, we quantitatively compared our study with the work of Luong et al. (2015b).
Table 2 compares the NMT model with the PosUnk model, which is the best model proposed
by Luong et al. (2015b). The proposed NMT model achieves performance gains of 0.8 BLEU
points when translating Japanese into Chinese, and performance gains of 1.3 BLEU points when
translating Chinese into Japanese. The proposed NMT model achieves performance gains of
0.2 BLEU points when translating Japanese into English, and performance gains of 1.0 BLEU
points when translating English into Japanese.

We also compared our study with the work of Long et al. (2016). As reported in Long et al.
(2017), when translating Japanese into Chinese, the BLEU of the NMT system of Long et al.
(2016) in which all the selected compound nouns are replaced with tokens is 58.6, the BLEU
of the NMT system in which only compound nouns that contain out-of-vocabulary words are
selected and replaced with tokens is 57.4, while the BLEU of the proposed NMT system of this
paper is 57.7. Out of all the selected compound nouns of Long et al. (2016), around 22% contain
out-of-vocabulary words, of which around 36% share substrings with the phrases selected by
branching entropy. The remaining 78% compound nouns do not contain out-of-vocabulary
words and are considered to contribute to the improvement of BLEU points compared with the
proposed method. Based on this analysis, as one of our important future work, we revise the
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Figure 4: An example of correct translations produced by the proposed NMT model when
addressing the problem of out-of-vocabulary words (Japanese-to-Chinese)

Figure 5: An example of correct translations produced by the proposed NMT model when
addressing the problem of under-translation (Chinese-to-Japanese)

procedure in Section 3.2 of selecting phrases by branching entropy and then incorporate those
in-vocabulary compound nouns into the set of the phrases selected by the branching entropy.

In this study, we also conducted two types of human evaluations according to the work of
Nakazawa et al. (2015): pairwise evaluation and JPO adequacy evaluation. In the pairwise eval-
uation, we compared each translation produced by the baseline NMT with that produced by the
proposed NMT model as well as the NMT model with PosUnk model, and judged which trans-
lation is better or whether they have comparable quality. The score of the pairwise evaluation is
defined as below:

score = 100× W − L

W + L+ T

where W, L, and T are the numbers of translations that are better than, worse than, and com-
parable to the baseline NMT, respectively. The score of pairwise evaluation ranges from−100
to 100. In the JPO adequacy evaluation, Chinese translations are evaluated according to the
quality evaluation criterion for translated patent documents proposed by the Japanese Patent

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 236



Figure 6: An example of correct translations produced by the proposed NMT model when
addressing the problem of out-of-vocabulary words (Japanese-to-English)

Figure 7: An example of correct translations produced by the proposed NMT model when
addressing the problem of under-translation (English-to-Japanese)

Office (JPO).10 The JPO adequacy criterion judges whether or not the technical factors and
their relationships included in Japanese patent sentences are correctly translated into Chinese.
The Chinese translations are then scored according to the percentage of correctly translated in-
formation, where a score of 5 means all of those information are translated correctly, while a
score of 1 means that most of those information are not translated correctly. The score of the
JPO adequacy evaluation is defined as the average over all the test sentences. In contrast to
the study conducted by Nakazawa et al. (2015), we randomly selected 200 sentence pairs from
the test set for human evaluation, and both human evaluations were conducted using only one
judgement. Table 3 and Table 4 shows the results of the human evaluation for the baseline SMT,
baseline NMT, NMT model with PosUnk model, and the proposed NMT model. We observe
that the proposed model achieves the best performance for both the pairwise and JPO adequacy
evaluations when we replace the tokens with SMT phrase translations after decoding the source
sentence with the tokens.

10https://www.jpo.go.jp/shiryou/toushin/chousa/pdf/tokkyohonyaku_hyouka/01.pdf

(in Japanese)
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For the test set, we also counted the numbers of the untranslated words of input sentences.
As shown in Table 5, the number of untranslated words by the baseline NMT reduced to around
50% in the cases of ja→ ch and ch→ ja by the proposed NMT model, and reduced to around
60% in the cases of ja→ en and en→ ja.11 12 This is mainly because part of untranslated source
words are out-of-vocabulary, and thus are untranslated by the baseline NMT. The proposed
system extracts those out-of-vocabulary words as a part of phrases and replaces those phrases
with tokens before the decoding of NMT. Those phrases are then translated by SMT and inserted
in the output translation, which ensures that those out-of-vocabulary words are translated.

Figure 4 compares an example of correct translation produced by the proposed system
with one produced by the baseline NMT. In this example, the translation is a translation error
because the Japanese word “ (Bridgman)” is an out-of-vocabulary word and is erro-
neously translated into the “〈unk〉” token. The proposed NMT model correctly translated the
Japanese sentence into Chinese, where the out-of-vocabulary word “ ” is correctly se-
lected by the approach of branching entropy as a part of the Japanese phrase “
(vertical Bridgman method)”. The selected Japanese phrase is then translated by the phrase
translation table of SMT. Figure 5 shows another example of correct translation produced by
the proposed system with one produced by the baseline NMT. As shown in Figure 5, the trans-
lation produced by baseline NMT is a translation error because the out-of-vocabulary Chinese
word “ (band pattern)” is an untranslated word and its translation is not contained in the
output translation of the baseline NMT. The proposed NMT model correctly translated the Chi-
nese word into Japanese because the Chinese word “ (band pattern)”is selected as a part of
Chinese phrase “ (typical band pattern)” with branching entropy and then is translated
by SMT. Moreover, Figure 6 and Figure 7 compare examples of correct translations produced
by the proposed system with those produced by the baseline NMT when translating patent sen-
tences in both directions of Japanese-to-English and English-to-Japanese.

6 Conclusion

This paper proposed selecting phrases that contain out-of-vocabularywords using the branching
entropy. These selected phrases are then replaced with tokens and post-translated using an SMT
phrase translation. Compared with the method of Long et al. (2016), the contribution of the pro-
posed NMT model is that it can be used on any language pair without language-specific knowl-
edge for technical terms selection. We observed that the proposed NMTmodel performedmuch
better than the baseline NMT system in all of the language pairs: Japanese-to-Chinese/Chinese-
to-Japanese and Japanese-to-English/English-to-Japanese. One of our important future tasks is
to compare the translation performance of the proposed NMT model with that based on sub-
word units (e.g. Sennrich et al. (2016)). Another future task is to improve the performance of
the present study by incorporating the in-vocabulary non-compositional phrases, whose transla-
tions cannot be obtained by translating their constituent words. It is expected to achieve a better
translation performance by translating those kinds of phrases using a phrase-based SMT instead
of using NMT.

11Although we omit the detail of the evaluation results of untranslated words of the NMT model with PosUnk
model (Luong et al., 2015b) in Table 5, the number of the untranslated words of the NMT model with PosUnk model
is almost the same as that of the baseline NMT, which is much more than that of the proposed NMT model.
12Following the result of an additional evaluation where having approximately similar size of the training parallel

sentences between the language pairs of Japanese-to-Chinese/Chinese-to-Japanese and Japanese-to-English/English-to-
Japanese, we concluded that the primary reason why the numbers of untranslated morphemes / words tend to be much
larger in the case of the language pair of Japanese-to-English/English-to-Japanese than in the case of the language pair
of Japanese-to-Chinese/Chinese-to-Japanese is simply the matter of a language specific issue.
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