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Abstract
Neural machine translation is a recently proposed approach which has shown competitive re-
sults to traditional MT approaches. Similar to other neural network based methods, NMT
also suffers from low performance for the domains with less available training data. Domain
adaptation deals with improving performance of a model trained on large general domain data
over test instances from a new domain. Fine-tuning is a fast and simple domain adaptation
method which has demonstrated substantial improvements for various neural network based
tasks including NMT. However, it suffers from drastic performance degradation on the general
or source domain test sentences, which is undesirable in real-time applications. To address this
problem of drastic degradation, in this paper, we propose two simple modifications to the fine-
tuning approach, namely multi-objective learning and multi-output learning which are based on
the “Knowledge distillation” framework. Experiments on English-German translations demon-
strate that our approaches achieve results comparable to simple fine-tuning on the target domain
task with comparatively little loss on the general domain task.

1 Introduction

Standard neural MT (Bahdanau et al., 2015) is an end-to-end neural network which allows for
easy training of the NMT system without the need to separately train large phrase table and
n-gram language models. However, neural methods including NMT, are known to be data-
hungry and do not generalize well for rare events. As a result, NMT systems trained only on
a specific domain with less available parallel data quickly overfit and do not perform better or
even comparable to standard statistical MT approaches (Zoph et al., 2016).

Research in domain adaptation deals with the problem of improving the performance of
a model trained on a general domain data over test instances from a new domain. A simple
solution to achieve better performance on both domains will be to train the network on the com-
bined in-domain and general domain parallel data. However, as already discussed in (Freitag
and Al-Onaizan, 2016) there are two problems with this approach. First, re-training the model
from scratch on the combined data is time consuming and second due to the relatively small size
of in-domain data, the learned model will be biased towards the general domain and may not
perform comparatively on the in-domain test instances. Moreover, this solution is not efficient
in real life applications because in situations where a general domain model is already deployed
in an application, the original training data may not be available at the production time.
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A fast and efficient method for domain adaptation for neural methods is “Fine-tuning”
which has also been recently applied for Neural Machine translation (Freitag and Al-Onaizan,
2016; Chu et al., 2017). In fine-tuning, a neural network which is already trained on large
general domain data is further trained on the small data available for the new target domain (also
called in-domain data). Fine-tuning provides significant improvements as compared to both
only in-domain training or only out-of-domain (general domain data) training. This is because
pre-initialization with the parameters trained on large data prevents overfitting on the small in-
domain data while at the same time, training on the new data performs a complete transform
of the parameters space corresponding to the events observed in the new data. However, as a
result of this transformation to the new parameter space, performance of the resulting model
decreases drastically for the test instances from the general domain as there is no guidance for
the general domain events while fine-tuning (Li and Hoiem, 2016). In a real-time application
such a degradation of translation performance on either of the tasks is undesirable because even
after adaptation one would like to use the model for translating sentences from both domains.

To address this problem of drastic degradation by fine tuning, in this paper, we propose two
simple modifications to the fine-tuning approach. Both approaches are based on the “Knowl-
edge distillation” framework of (Hinton et al., 2014) where a smaller “student” network learns
to mimic a large “teacher” network by minimizing the loss between the output distributions of
the two networks. We are motivated by the idea that new tasks can be learned without degrad-
ing performance on old tasks, by preserving the parameters shared between the two tasks and
fine-tuning the task specific parameters with respect to the supervision from the corresponding
labels or distributions (Li and Hoiem, 2016).

Our first modification is a simple multi-objective learning which involves fine-tuning a
general domain model on a small in-domain data while at the same time minimizing the loss
between the output distributions of the “student” network (the model learned by fine-tuning)
and the baseline teacher network (model trained on large general domain data). In our second
modification, we propose adding multiple output layers to the “student” network corresponding
to the different tasks (domains) and learning task-specific parameters for both domains using
only the in-domain data while simply fine-tuning the parameters shared between the two tasks.
Our experiments demonstrate that both the proposed approaches multi-objective fine-tuning and
multi-output fine-tuning, achieve translation performance comparable to vanilla fine-tuning on
the target domain task and at the same time suffer little degradation on the original general
domain task.

In Section 2 we discuss the related work on domain adaptation for traditional statistical
MT as well as recent approaches in neural MT. We briefly introduce neural MT architecture of
(Bahdanau et al., 2015) and Knowledge distillation framework of (Hinton et al., 2014) in Section
3. We introduce and explain our approaches in section 4 and finally discuss experiments and
results in section 5 and 6 respectively.

2 Related work

Domain adaptation for Phrase-based MT has been studied excessively in last few years. The
main approaches in domain adaptation involves either data selection (Moore and Lewis, 2010;
Axelrod et al., 2011), instance weighting (Matsoukas et al., 2009; Foster et al., 2010) or multiple
model interpolation (Nakov, 2008; Bisazza et al., 2011; Sennrich, 2011). The model interpola-
tion is the most effective, however a complex approach, as it requires training multiple models
including phrase-tables, re-ordering and language models corresponding to each of the domains
and then learning the corresponding interpolation weights. In case of SMT, Wei wang et al.
(2012) has goals similar to that of our approach i.e. to adapt an SMT system for newer domain
while at the same time preserve the original generic performance. This approach pre-classifies
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the incoming sentence and accordingly select the corresponding model weights.
For domain adaptation in neural machine translation, most of the recent research has fo-

cused mainly on “fine-tuning” over the additional in-domain data. This is due to the fact that
the end-to-end architecture of NMT enables fast and efficient training without complexity of
re-training individual component for each domain. The first attempt for applying fine-tuning
to NMT was Luong and Manning (2015), where they simply adapted an NMT system trained
on large general domain data by further training on a small in-domain data. Recently, (Freitag
and Al-Onaizan, 2016) extended the fine-tuning approach by using an ensemble of the baseline
general domain model and the fine-tuned model. They proposed that the ensemble provides
better translation on new domain as well as retain much of the performance on the general do-
main. Their experiments using TED talks (Cettolo et al., 2012) as in-domain data demonstrated
improvements on the in-domain and less performance drop on the general domain. However,
as we will discuss in section 6, our experiments demonstrate that even with an ensemble, the
performance of the fine-tuned model still degrades significantly on the general domain task,
especially on a target domain such as medical documents for which vocabulary, style and lex-
ical translation probabilities are highly different from source domain of news articles. On the
other hand, our approach of using the “baseline supervision” while fine-tuning, not only retains
general domain performance better than ensemble for two different target domains but also pro-
vides a faster and efficient decoding procedure by avoiding the requirement to compute the two
output distributions separately as required in the ensemble approach.

Another recent approach for NMT domain adaptation is the “mixed fine-tuning” by Chu
et al. (2017). They proposed to fine-tune the baseline model on a parallel corpus which is
mix of the in-domain and general domain corpora instead of only in-domain data. They also
perform multi-domain NMT by augmenting all the corpora with domain tags. However, as they
pointed out “mixed fine-tuning” takes longer training time than vanilla fine-tuning depending
on the size of the “mixed” data. Also, this requires robust data selection heuristics to extract
only relevant sentences from the general domain and avoid selection of noise. On the other
hand, in our approach we completely remove any dependence on the general domain data while
fine-tuning. Similary, Sennrich et al. (2016) adapt to the new domain by back translating the
target in-domain sentences, adding the new data to the training corpus and fine-tuning on the
extended bitext.

A related line of research to our approach is in computer vision where the supervision from
the baseline model based on the “Knowledge distillation” framework has been extensively used
in various domain adaptation paradigms such as “Deep domain transfer” (Tzeng et al., 2015),
“Knowledge adaptation” (Ruder et al., 2017) and “Learning without forgetting” (Li and Hoiem,
2016). The “Learning without forgetting” approach of Li and Hoiem (2016) is very similar
to our approach since they propose to reduce the general domain performance degradation by
adding multiple nodes in the output layer of a convolutional neural network and fine-tune the
parameters on the in-domain data using the supervision from the baseline model. However,
we differ from (Li and Hoiem, 2016) in that we not only apply this method to neural machine
translation, but we also experiment by training with multiple objectives as well as multiple
output layers instead of simply adding new nodes corresponding to the new classes.

3 Background

3.1 Neural Machine Translation

We employ an NMT system based on Luong et al. (2015) which is a simple encoder-decoder
network. The encoder is a multi-layer recurrent network (we use LSTMs) which converts an
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input sentence x = [(x1, x2, ...., xn)] into a sequence of hidden states [(h1, h2, ...., hn)].

hi = fenc(xi, hi−1) (1)

Here, fenc is an LSTM unit. The decoder is another multi-layer recurrent network which pre-
dicts a target sequence y = (y1, y2, ....ym). Each word in the sequence is predicted based on
the last target word yi−1, the current hidden state of the decoder sj and the context vector cj .
The context vector cj in turn is calculated using an attention mechanism Luong et al. (2015) as
weighted sum of annotations of the encoder states hi’s.

cj =
n∑
i=1

αjihi (2)

where αji are attention weights corresponding to each encoder hidden state output hi calculated
as follows :

αji =
exp(a(sj−1, hi))∑n
k=1 exp(a(sj−1, hk))

(3)

sj is the decoder hidden state generated by LSTM units similar to the encoder.

sj = fdec(sj−1, yj−1, cj) (4)

Given, the target hidden state and the context vector, a simple concatenation combines the
information from both vectors into an attentional hidden state s̃t.

s̃t = tanh(Wc[ct;ht]) (5)

This attentional vector s̃t is then projected to the output vocabulary size using a linear transfor-
mation and then passed through a softmax layer to produce the output probability of each word
in the target vocabulary.

p(yj |y1, ...yj−1, x) = softmax(Ws s̃t) (6)

The probability of the sentence is modelled as product of the probability of each target
word.

p(y) =
m∏
j

p(yj |y1, ...yj−1, x) (7)

The end-to-end network is trained by maximizing log-likelihood over the training data. The
log-likelihood loss is defined as

LNLL(θ) = −
n∑
j=1

|V |∑
k=1

(yj = k) ∗ log(p(yj = k|x : θ)) (8)

Where yj is the output distribution generated by the network at each timestep and ‘k’ is the
true class label, i.e., the reference target word at each timestep which is selected from a fixed
vocabulary ‘V’. The outer summation represent that the total loss is computed as the sum over
complete target sequence.
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3.2 Knowledge Distillation

Knowledge Distillation is a framework proposed by Hinton et al. (2014) for training compressed
“student” networks by using supervision from a large teacher network. Assuming, we have a
teacher network with large dimension sizes, trained on a large amount of data, a smaller student
network with much smaller dimension sizes can be trained to perform comparable or even better
than the teacher by learning to mimic the output distributions of the teacher network on the same
data. This is usually done by minimizing the cross-entropy or KL-divergence loss between the
two distributions. Formally, if we have a teacher network trained on the same data and with a
learned distribution q(y|x; θT ), the student network (model parameters represented by θ) can
be trained by minimizing the following loss:

LKD(θ, θT ) = −
|V |∑
k=1

KLdiv
(
q(y|x; θT ) p(y|x; θ)

)
(9)

where θT is the parameter distribution of the teacher network. Commonly, this loss is inter-
polated with the log-likelihood loss which is calculated with regard to the target labels for the
in-domain data

L(θ, θT ) = (1− λ)LNLL(θ) + λLKD(θ, θT ) (10)

In order to allow the student network to encode the similarities among the output classes,
(Hinton et al., 2014) suggests to generate a smoother distribution called “soft-targets” by in-
creasing the temperature of the softmax of both teacher and student network.

Note that “Knowledge distillation” for model compression has been applied for neural
machine translation by (Kim and Rush, 2016). However, we use the supervision from teacher
network for domain adaptation while fine-tuning.

4 Domain adaptation with baseline supervision

As described in Section 1, in fine-tuning a model pre-trained on general domain data is further
trained on the in-domain data which largely shifts the parameter space of the model to the
target domain resulting in a performance degradation on the general domain test instances.
We propose that fine-tuning on the target domain using an objective similar to one defined
in equation (10) using the supervision from both general and the target domain can avoid the
performance degradation on the general domain while achieving performance comparable to
vanilla fine-tuning on the target domain. We explore this idea by proposing two modifications
to the fine-tuning approach.

4.1 Multi-objective fine-tuning (MCL)

In the first modification, we train the network on a joint objective which includes the supervision
provided by the hard target labels in the in-domain data as well as the output distribution of the
general domain model on the in-domain data. We believe that with such a joint objective, the
network can learn a parameter space common to both domains.

Assuming that we have trained an NMT model on large general domain data, we first
record the output distribution of this model on all the in-domain data, then fine-tune this baseline
model on the in-domain data by minimizing the log likelihood loss between the target references
and the output distribution of the network. However, at the same time, for each sentence, we
also minimize the KL-divergence (or cross-entropy) loss between recorded teacher distribution
and the distribution produced by the student network as shown in Figure 1. Let the general
domain data on which the baseline model is trained be represented by xout and the in-domain
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Figure 1: Multi-objective fine-tuning. Both the teacher and student network have same ar-
chitecture. Student network is initialized with parameters trained for teacher network. While
fine-tuning parameters of teacher network are frozen.

data be represented by xin, then the final learning objective becomes :

L(θ, θT ) =

(1− λ)
|V |∑
k=1

(yj = k)× log(p(yj = k|xin : θ))

+ λ(−
|V |∑
k=1

KLdiv
(
q(y|x; θT ) p(y|xin; θ)

)
)

(11)

Where θT is learned over the general domain data using the standard learning objective in equa-
tion 8. Note that as discussed in section 3.2 both distributions here are obtained by increasing
the temperature of the softmax as defined in equation 6. This is done by dividing the input by a
constant hyper-parameter ε

pε(y|x; θ) = softmax(
Ws s̃t
ε

) (12)

Note that Equation 11 clearly indicates that the proposed approach does not require the original
data while fine-tuning but only the parameters of the trained baseline model.

4.2 Multiple-output layer fine tuning (MLL)
Though learning on a joint objective as discussed in section 4.1 can reduce the degradation on
the general domain task to some extent, a much better solution in order to retain the performance
on the old-task could be to preserve task specific parameters corresponding the old-task and at
the same time slightly transform parameters shared across the two tasks. Therefore, as a second
modification, we propose modifying the baseline model by adding parameter specific to the new
task and learning the task-specific parameters with respective learning objectives.
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Figure 2: Multi-output-layer learning. Student network has two output layers. The additional
layer is trained wrt distribution from teacher network

In this work, we consider only the parameters of the final output-layer (Ws as defined
in equation 6) of the NMT network as task-specific, while all the parameters corresponding to
encoder, decoder, attention mechanism and the concatenation layer in equation 5 are considered
to be shared. Let θs to be the set of all the shared parameters, θo and θn to be the task-specific
output-layer parameters corresponding to the old (general domain) and new (in-domain) task.

Training the general domain baseline model results in initial-learning of the shared pa-
rameters θs and the output layer for the out-of-domain task θo. For training the in-domain
student model, we first modify the network by adding another output layer to the standard NMT
network as shown in Figure 2. Similar to multi-objective fine-tuning, we first note the output
distribution of the general domain teacher model on the “in-domain” data. Then the shared
parameters for the student network corresponding to encoder-decoder and attention mechanism
are initialized with θs which are learned from the baseline model. Similarly, the parameters
of the output layer corresponding the old-domain task are also initialized with parameters θo
learned on the general domain task. Parameters specific to the in-domain task θn are initialized
randomly. Then we first train the new parameters θn using the ground-truth with the standard
log-likelihood objective as defined in equation 8. This is a simple warm-up procedure which
enhances the fine-tuning performance (Li and Hoiem, 2016). During this warm-up, we freeze
θs and θn. Finally all the parameters are fine-tuned by minimizing the joint objective. Consider
xn, yn to be a sentence pair from the in-domain data. Then yo be the recorded output of the
“teacher” model for the new data, i.e.,

yo = q(xn, θs, θo) (13)

For the “student” network, let y′o and y′n be the output distributions from the old and new output-
layer respectively corresponding to θ′o and θ′n

y′o = p(xn, θ
′
s, θ
′
o) (14)
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y′n = p(xn, θ
′
s, θ
′
n) (15)

Then similar to equation 11, we define two objectives. First is the standard log-likelihood
loss for the shared parameters θs and the parameters for new task θn with respect to the target
references in the in-domain data

Ln = −yn × log(p(xn|θ′s, θ′n)) (16)

The second objective is the KL-divergence between the output distribution of the old-layer of
the student network with respect to the recorded distribution of the teacher network on the same
in-domain data.

Lo = −
|V |∑
k=1

KLdiv
(
yo, p(y

′
o|xn; θ′s, θ′o)

)
(17)

The student network is finally trained on the joint objective defined as:

Lcombined = (1− λ)Ln + λLo (18)

While decoding, the output layer corresponding to the domain label of the test sentences is used
to compute the output distribution.

5 Experimental settings

5.1 NMT parameters
In all our experiments, we use an NMT system based on Luong et al. (2015) and implemented
using the Torch7 deep learning framework. It is a two layer unidirectional LSTM encoder-
decoder with a global attention (dot product) mechanism. Both the encoder and decoder have
input embedding and hidden layer of size 1000. As it is common practice, we limit the vocab-
ulary sizes to 60k for the source and 40k for the target side. Parameters are optimized using
stochastic gradient descent. We set the initial learning rate as 1 with a decay rate of 0.5 for each
epoch after 5th epoch. Model weights are initialized uniformly within [-0.02, 0.02]. A dropout
value of 0.2 is applied for each layer. The mini-batch size for out-of-domain is fixed to 64, while
for each of the in-domain fine-tunings, we use a batch size of 32. We train for a maximum of
20 epochs and decode with standard beam search with beam size of 10. All models are trained
on NVIDIA Titan-X (Pascal) devices.

For the in-domain trainings, we use the same vocabulary extracted from the baseline gen-
eral domain bitext. Note that our multiple-output layer approach allows for use of a different
vocabulary (that can be extracted from the new data) for the in-domain fine-tuning. We exper-
imented with different values of interpolation weights λ (as used in equation 11 and 18) and
also with temperature ε (defined in equation 12) and obtained the optimal values to be 0.9 and
2 respectively for these hyper-parameters for all the experiments.

5.2 Data
We conducted experiments on English-German translation. For all the settings we use WMT-
2015 Bojar et al. (2015) training set as the general domain training data. This training set
contains approximately 4.2 million parallel sentences from multiple sources Europarl, news
commentary and common crawled articles. We constrain the maximum sequence length to be
80 and remove the sentences greater than this length along with the duplicates. Thus we are
left with a bitext of size approximately 4 million, out of which we reserve 5000 sentence for
perplexity validation and use the rest for training the general domain baseline model. We use
newstest15 (official test set for WMT-2015) as general domain test set.
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Epo. iwslt newstest’15
Standard NMT baselines

TEDonly 17.95
WMTonly 19.46* 18.54*
Combined training (WMT+ TED) 22.86N (+3.4) 17.57H (-0.97)

Fine-tuning methods

FT 1 19.69M(+0.23) 13.94H(-4.6)
3 21.90N(+2.44) 12.68H(-5.86)

FTEns 22.90N(+3.44) 16.70H(-1.84)
Proposed approaches

MCL 1 21.77N(+2.21) 16.95H(-1.59)
7 22.19N(+2.73) 16.55H(-1.99)

MLL 1 20.26M(+0.8) 18.24O(-0.3)
9 21.70N(+2.24) 16.90H(-1.64)

Table 1: BLEU scores for different approaches over TED data domain adaptation. iwslt =
IWSLT (2011+2012+2013). * represents the baseline setting for these experiments N/H and
M/O indicates a statistically significant gain/drop at p < 0.01 and p < 0.05 respectively over the
baseline. TEDonly = only in-domain training, WMTonly = only general domain training, FT =
Vanilla fine-tuning, FTEns = Ensemble fine tuning, MCL = Multi-objective fine-tuning, MLL
= Multi-output-layer fine-tuning

For in-domain training we consider two different domains namely the TED-talks bitext
(IWSLT 2013) Cettolo et al. (2012) (approx 170k sentences) and EMEA corpus (Tiedemann,
2009) (approx 200k sentence) which is a parallel text of medical guidelines. From each of
these, we reserve 5000 sentence for respective perplexity validation. For the TED talk domain,
we use a combination of official test sets for IWSLT 2011, 2012 and 2013 as evaluation set and
for EMEA, we reserve a set of 2000 sentences (excluded from training corpus) from the EMEA
corpus as evaluation set. Results are reported in terms of case-insensitive BLEU-4 (Papineni
et al., 2002). Approximate randomization (Noreen., 1989; Riezler and Maxwell, 2005) is used
to detect statistically significant differences.

6 Results

We define multiple baselines to compare the proposed approaches. Firstly, we obtain the BLEU
scores for a model trained only on general domain data and note its performance on the general
domain (source domain) test set as well as on the in-domain test sets. Similarly, for baseline
comparisons we train models only on the small in-domain data for each of the target domains.
We compare our approaches to the vanilla fine-tuning and ensemble methods (Freitag and Al-
Onaizan, 2016) in terms of the BLEU improvements on the in-domain test sets and degradation
on the general domain test-set. Finally, we also train baseline models on the combined general
and in-domain bitext and test it on both test sets. Note that this baseline act as ceiling for our
approaches as this setting can only be trained when data from both general as well as target
domain are available beforehand.

For the domain adaptation over TED data, Table 1 summarizes the BLEU scores over
different settings and also the highest and lowest BLEU scores for fine-tuning as well as the
proposed approaches. The performance of general-domain-only (WMTonly) model (19.46) is
higher than that of in-domain-only (TEDonly) model (17.95) for the iwslt test set. Hence, we
consider BLEU scores of the general-domain-only model on the two test sets as our baselines.
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Figure 3: Epoch-wise BLEU (i) improvement over in-domain test set (TED) (ii) degradation
over general domain (WMT)

To compare the gradual degradation of the vanilla fine-tuning with the proposed approaches, we
report the BLEU scores corresponding to first epoch as well as highest BLEU score achieved
for the in-domain test set. The last column shows the corresponding BLEU scores over the
general domain test set.

Vanilla fine-tuning improves over the baseline by up to 2.4 BLEU in the third epoch for
the target domain task. However, it drops substantially even in the first epoch by 4.6 BLEU on
the general domain task and by 5.8 corresponding to third epoch (best model for target domain
test-set). On the other hand, for the target domain, multi-objective learning improves over the
baseline by up-to 2.7 BLEU (in third epoch) which is slightly better than vanilla fine-tuning
while at the same time, performance degradation on the source domain is only -1.99 which is
substantially less than that of fine-tuning. Similarly, for multi-output-layer learning, we observe
improvements of up to 2.2 BLEU over the baseline on the target domain which is almost equal
to fine-tuning and the drop in BLEU over the source domain for the 9th epoch is only 1.64. The
ensemble method of (Freitag and Al-Onaizan, 2016) achieves an improvement of 1 BLEU over
simple fine-tuning for in-domain test set (iwslt) which is higher than both proposed methods
and also suffers similar degradation for general domain (newstest’15). This is due to the fact
that though TED talk is considered to be a different domain, the vocabulary and style of the
TED data is very similar to that of the general domain data. Also, the model trained on the
combined data performs comparable to the best setting i.e, the ensemble method for both test
sets. Figure 3 shows the epochwise comparison of BLEU score over source and target domain
test sets for TED data domain adaptation. For the source domain fine-tuning performance drops
rapidly starting from the first epoch. However, performance degradation of the two proposed
approaches on general domain is relatively slow

In conclusion, We observe that for the TED data, our approaches show comparable im-
provement to fine-tuning while suffering less degradation over source domain. However, the
ensemble method of (Freitag and Al-Onaizan, 2016) also demonstrates similar results. There-
fore, we repeat our experiments for domain adaptation over the EMEA corpus for which the
vocabulary is substantially different from the source domain of news article as compared to the
TED data.

Table 3 summarizes our experiments for domain adaptation for EMEA data. First impor-
tant observation the BLEU score for the EMEAonly model is substantially higher (6.5 BLEU
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Epo. EMEA-test newstest’15
Standard NMT baselines

EMEAonly 20.08 *
WMTonly 13.54 18.54*
Combined training (WMT+ EMEA) 20.84M(+0.76) 17.60H(-0.94)

Fine-tuning methods

FT 1 12.34 7.10H(-11.44)
6 22.57N(+2.49) 4.50H(-14.04)

FTEns 19.43H(-0.65) 13.63H(-4.91)
Proposed approaches

MCL 1 18.14H(-1.94) 15.50H(-3.04)
11 22.50N(+2.42) 13.29H(-5.25)

MLL 1 20.6(-0.02) 17.17H(-1.37)
6 22.33N(+2.25) 14.67H(-3.87)

Table 2: BLEU score for different approaches for EMEA data domain adaptation. * represents
the baseline setting for these experiments. EMEA-test = test set for medical domain, EMEAonly
= training only on in-domain medical data, WMTonly = training only on general domain data.
Other abbreviations are same as Table 1

points) than the WMTonly(this is contrast to the experiments on TED data where the WMTonly
model performed better than TEDonly model). Hence, for this set of experiments we consider
the general domain performance (20.08) as our baseline. Also, for medical domain adaptation,
the model trained on the combined data performs only slightly better than the in-domain base-
line over the EMEA test set while comparable to the general domain model on the WMT test
set. This implies that this joint model is more biased towards the general domain and hence
does not perform better than fine-tuning on the in-domain test set.

Vanilla fine-tuning shows an improvement of up to 2.5 BLEU (in the 6th epoch) over the
in-domain-only model on EMEA test-set. However, the drop in performance over the gen-
eral domain test set is drastic i.e. 11.3 in the first epoch and 14 BLEU in the 6th epoch. Also,
though ensemble method suffers less degradation in performance over newstest’15 (4.9 BLEU),
it performs slightly lower than the baseline for the EMEA test (-0.6) as compared to vanilla
fine-tuning. This implies that a simple ensemble is more biased towards general domain. On
the other hand, multi-objective learning performs comparable to fine-tuning on the EMEA test
set (+2.4 improvement over baseline) while the drop in general domain performance (-5.25)
is not as drastic as vanilla fine-tuning. Similarly, for multi-output-layer approach, while the
improvement on EMEA test-set is comparable to both approaches, it shows least drop in perfor-
mance for newstest’15. Figure 4 shows the comparison of BLEU scores over EMEA test sets
and newstest’15 for medical data domain adaptation. Similar to TED data experiments, while
fine-tuning performance drops rapidly on newstest’15, for the proposed methods, it is relatively
slow.

In conclusion, for the medical domain, proposed methods of multi-objective and multi-
output-layer learning show improvements comparable to fine-tuning on the target domain with
relatively little loss on the source domain as compared to fine-tuning. On the other hand, en-
semble method is biased towards the general domain and fails to add any improvement for the
target domain.

Finally, we compare the average decoding time per sentence for ensemble decoding and
multi-objective learning in Table 3. The decoding time for ensemble method is twice that of
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Average time(ms)
Fine tuning 0.131
Ensemble decoding 0.277
Multi-objective learning 0.147

Table 3: Average decoding time (in millisecond) on GPU devices per sentence for ensemble
decoding and multi-objective learning. Average sentence length for the used test set is 20.9
tokens
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Figure 4: Epoch-wise BLEU (i) improvement over in-domain test set (EMEA) (ii) degradation
over general domain test-set (WMT)

fine-tuning due to computation on two different models while for multi-objective learning it is
same as that of fine-tuning.

7 Conclusion and future work

In this paper, we proposed two modifications to the well-known fine-tuning method for do-
main adaptation for neural machine translation in order to retain the performance on the source
domain. We observe that both proposed approaches achieve performance comparable to the
vanilla fine-tuning while still retaining performance on the source (general) domain. Moreover,
the decoding speeds of the proposed methods are same as fine-tuning as compared, while the
ensemble method requires almost twice decoding time than the fine-tuning.

In this work, we mainly focused on adapting a general domain model to a new domain. As
future work, we plan to experiment by extending the two approaches for iteratively adapting a
single model for multiple domains.
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