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Abstract

Dropout has lately been recognized as an effective method to relieve over-fitting when train-
ing deep neural networks. However, there has been little work studying the optimal dropout
scheme for neural machine translation (NMT). NMT models usually contain attention mech-
anisms and multiple recurrent layers, thus applying dropout becomes a non-trivial task. This
paper approached this problem empirically through experiments where dropout were applied
to different parts of connections using different dropout rates. The work in this paper not only
leads to an improvement over an established baseline, but also provides useful heuristics about
using dropout effectively to train NMT models. These heuristics include which part of con-
nections in NMT models have higher priority for dropout than the others, and how to correctly
enhance the effect of dropout for difficult translation tasks.

1 Introduction

Neural machine translation (NMT), as a new technology emerged from the field of deep learn-
ing, has improved the quality of automated machine translation into a significantly higher level
compared to statistical machine translation (SMT) (Wu et al., 2016; Sennrich et al., 2017; Klein
et al., 2017). State-of-the-art NMT models, like many other deep neural networks, typically
contain multiple non-linear hidden layers. This makes them very expressive models, which is
critical to successfully learning very complicated relationships between inputs and outputs (De-
vlin et al., 2014). However, as these large models have millions of parameters, they tend to
over-fit during training phrases.

Dropout has recently been recognized as a very effective method to relieve over-fitting.
Dropout was first proposed for feed-forward neural networks by Hinton et al. (2012). Dropout
was then successfully applied to recurrent neural networks by Pham et al. (2014) and Zaremba
et al. (2014). Dropout outperforms many traditional approaches to over-fitting, including early
stop of training, introducing weight penalties of various kinds such as L1 and L2 regularization,
decaying learning rate and so on.

Reported state-of-the-art NMT systems all adopt dropout during training phrases (Wu
et al., 2016; Klein et al., 2017), but their paper have not provided many details about how
dropout was applied. The optimal way to apply dropout to NMT models is non-trivial. Strictly
speaking, NMT is an application of deep neural networks, so it can directly benefit from the
advance of deep neural networks. However, two facts make NMT models stand out from nor-
mal deep neural networks. First, NMT models contain recurrent hidden layers in order to gain
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the ability of operating on sequences. As contrast, deep neural networks in face recognition
and phoneme recognition are feed-forward as they take separate inputs (Povey et al., 2011;
Krizhevsky et al., 2012). Second, NMT models contain a novel attention mechanism to manage
a memory of an input sequence, as this sequence can become quite long (Bahdanau et al., 2014).
This attention mechanism involves calculations such asweighted mean, which is rarely used in
normal deep neural networks.

As far as we know, there has been no focused study on how to apply dropout effectively to
NMT models. This motivated the work presented in this paper, which aimed at finding out the
optimal dropout scheme for training NMT models. Because the architecture of NMT models
is complicated, we took an empirical approach. We trained many NMT models by verifying
the subsets of connections that dropout were applied to, and using different dropout rates for
different connections. We tried to find out the optimal dropout scheme through answering the
following two questions,

• what part of NMT models should be applied dropout to during training phrases;

• how to correctly set the dropout rates for training NMT models.

The following of this paper is structured as: the section 2 reviews related works on dropout,
then the section 3 describes the method that we adopted to search for optimal dropout scheme,
after that the section 4 presents the results of the experiments, and in the end the section 5
concludes this paper with a description on our future work.

2 Related Works

Hinton et al. (2012) and Srivastava et al. (2014) proposed the method of dropout to relieve over-
fitting when training feed-forward neural networks. They worked with a variety of feed-forward
neural networks each of which is established for a certain task. Different dropout schemes were
applied to these neutral networks in order to obtain optimal results.

• MNIST is a standard toy data set of handwritten digits(LeCun et al., 2010). The best
network had two layers of 8 195 rectified linear units. Dropout was applied to the input
units with a ratep = 0.2, and the hidden units withp = 0.5 .

• CIFAR-10 and CIFAR-100 are tiny natural images (Krizhevsky and Hinton, 2009); Street
View House Numbers is a data set of images of house numbers collected by Google Street
View (Netzer et al., 2011). The best network had three convolutional layers followed by
two fully connected hidden layers. The output of the last fully-connected layer was fed to a
softmax which produced a distribution over the class labels. All hidden units were rectified
linear units. Each convolution layer was followed by a max-pooling layer. Dropout was
applied to all layers including the input layer withp = { 0.10, 0.25, 0.25, 0.50, 0.50, 0.50
}.

• ImageNet is a large collection of natural images (Deng et al., 2009). The best network had
five convolutional layers followed by three fully connected hidden layers. The numbers
of units in each layers were 253 440, 186 624, 64 896, 64 896, 43 264, 4 096, 4 096, and
1 000. The output of the last fully-connected layer was also fed to a softmax layer which
produced a distribution over all class labels (Krizhevsky et al., 2012). Dropout was only
applied to the first two fully connected hidden layers withp = 0.50. The reason might
be that the network was very big . The author claimed that dropout roughly doubled the
number of iterations required to converge. It can be inferred that applying dropout to all
layers might not be feasible because of the time cost on training.
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• TIMIT is a standard speech benchmark for clean speech recognition (Garofolo et al., 1993).
The best network had six layers. Dropout was applied to the input layer withp = 0.2 and
the hidden layers withp = 0.5.

• Alternative Splicing is a data set of RNA features for predicting alternative gene splic-
ing (Xiong et al., 2011). The best network had two layers of 1024 hidden units. Dropout
was applied to the input layer withp = 0.2 and the hidden layers withp = 0.5.

Their experiments were limited on feed-forward networks, which were much simpler than NMT
networks. However, their experimental results suggest two useful heuristics about achieving
good performance from dropout. First, dropout need to be applied to all layers of networks.
Second, the optimal dropout rates for different type of layers such as input layers and hidden
layers are different.

Zaremba et al. (2014) studied how to correctly apply dropout to recurrent neural networks
such as long short-term memory (LSTM) units. They proposed that dropout should only be
applied vertically, that is, be applied to non-recurrent connections. They argued that applying
dropout to recurrent layers will amplify noise, as discussed by Bayer et al. (2013). They
performed experiments on a variety of tasks, one of which was a machine translation task.
Their NMT model contained no attention mechanism, which was like a recurrent language
model trained on concatenations of source sentences and their translations (Sutskever et al.,
2014). It had four layers of 1 000 LSTM units, three embedding layers (source language input
embedding, target language input and output embedding ) and a softmax layer. Dropout was
applied to the connections between input-embedding-to-LSTM, LSTM-to-LSTM, LSTM-to-
output-embedding1 with p = 0.2. Their experiments were performed on a selected subset of
the WMT 2014 English to French data set containing 340M French words and 304M English
words Schwenk et al. (2011). Experimental results showed that dropout improved BLEU scores
from 25.90 to 29.03, while still lost to a BLEU score of 33.30 achieved by a phrase-based SMT
system named LIUM.

Wu et al. (2016) achieved a great improvement of translation quality through NMT when
compared to their previous phrase-based production systems. They adopted a deep LSTM net-
work that had eight encoder layers, eight decoder layers and a attention layer. They claimed that
they adopted a dropout scheme similar to the method in Zaremba et al. (2014), but no further
details were provided, especially on how dropout was applied to the attention layer.

Klein et al. (2017) released an NMT toolkit named OpenNMT. It implemented a network
architecture similar with the one proposed by Luong et al. (2015). OpenNMT outperformed the
SMT system of Moses (Koehn et al., 2007) and a few other NMT systems including GroundHog
and Blocks in our pilot experiments. Therefore we took it as an important baseline in this paper.
OpenNMT did not follow the dropout scheme of Zaremba et al. (2014) to apply dropout to
all non-recurrent layers. Instead, OpenNMT applied dropout only to non-top encoding and
decoding LSTM layers, and output hidden states(see section 3.2 for details). This dropout
scheme seems arbitrary, but it did performed quit well in experiments. Solving this puzzle is
one of the main motivations of this paper.

3 Methods

This section first presents the architecture of the NMT model that we adopted, which is one of
state-of-the-art attention-based encoder-decoder NMT model. After that, this section analyzes
that architecture and provides a list of connections in the architecture that are appropriate for
applying dropout to. In the end, this section describes the method that we adopted to search for
the optimal dropout scheme for training NMT models.

1According to the source code inhttps://github.com/wojzaremba/lstm.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 3



3.1 Neural Machine Translation

The essence of a machine translation system is modeling the conditional probability of a trans-
lation given a source sentence. In encoder-decoder NMT models, it can be formalized using
chain’s rule as,

log p(y|x) =

m∑

j=1

log(p(yj |y
j−1
1 , s) (1)

wherex=(x1, . . . , xn, 〈EOS〉) is a source sentence and〈EOS〉 is a end-of-sentence token;
y=(y1, . . . , ym) is a translation;s is an representation ofx produced by the encoder. Note that
x sometimes reverse its order to help the decoder to translate from the beginning of a source
sentence.

In this paper, we adopted a compact stacking recurrent architecture as the encoder-decoder
(illustrated by figure 1), which was proposed by Luong et al. (2015). This architecture assumes
that equation 1 is factorized into a calculable form as,

log p(y|x) =

m∑

j=1

log(p(yj |H
〈j〉
o )

=

m∑

j=1

log(softmaxyj
(tanh(WoH

〈j〉
o + Bo))) (2)

H〈j〉
o = Fatt(Hs, H

〈j〉
t ), (3)

whereHs is a source-side hidden state produced by the top recurrent layer of the encoder;Ht

is a target-side hidden state produced by the top recurrent layer of the decoder;Ho is a output
hidden state produced by the attention modelFatt; the superscript〈j〉 is a target-side timestamp;
Wo andBo are the matrix and bias of output embedding; andsoftmaxyj

means selecting the
dimension from the output of the softmax which corresponds toyj in one-hot encoding.

We adopted a global attention model (Luong et al., 2015) asFatt (illustrated by figure 2).
This attention model first calculates an alignment weight as,

a
〈ij〉
st = softmax(Fa(H

〈i〉
s , H

〈j〉
t ))

=
eFa(H

〈i〉
s ,H

〈j〉
t )

∑n
i=1 eFa(H

〈i〉
s ,H

〈j〉
t )

, (4)

Fa(H
〈i〉
s , H

〈j〉
t ) = H〈i〉

s
⊤WaH

〈j〉
t , (5)

whereFa is a scoring function for alignment, which is composed of a linear mapping and a dot
product; andWa is a matrix for linearly mapping target-side hidden states into a space which is
comparable to the source-side.

Then the attention model calculates translation contexts as,

C〈j〉
s =

n∑

i=1

a
〈ij〉
st H〈i〉

s (6)

C
〈j〉
st = [Cs; H

〈j〉
t ], (7)

whereC
〈j〉
s is a source-side context, andC

〈j〉
st is a context derived from both source and target

sides through concatenating.
In the end, the attention model calculates an output hidden state as,

H〈j〉
o = WcCst

〈j〉, (8)

whereWc is a matrix for linearly mapping a context into an output hidden state.
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Figure 1: Network Architecture of Neural Machine Translation
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Figure 2: Illustration of Attention Model
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3.2 Appropriate Connections for Dropout

Dropout should be applied vertically according to the previous study by Zaremba et al. (2014).
This means that dropout should only be applied to non-recurrent connections. Therefore, there
are nine connections in the NMT model that are appropriate for applying dropout to. The
figures 1 and 2 annotate the corresponding variables with red colored symbols. For the sake
of convenience, this paper views each connection in the NMT model as a variable. Applying
dropout to a variable means applying dropout to those non-recurrent connections that transport
the variable.

A detailed list of the nine variables appropriate for dropout in the NMT model is as follows,

• Es input embedding of source-side;

• Rs hidden states of source-side non-top recurrent layers;

• Hs hidden states of source-side top recurrent layer;

• Et input embedding of target-side;

• Rt hidden states of target-side non-top recurrent layers;

• Ht hidden states of target-side top recurrent layers;

• Ho hidden states of output;

• Cs translation context of source-side;

• Cst concatenate of source and target-side translation contexts.

The impact of applying dropout to these nine variables are not independent. Especially, the
four variables involved in the attention model, includingHs, Cs, Ht andCst, are closely related
to each other. This is because the operators ofweighted mean (the equation 6) andconcatenate
(the equation 7) reserve the effect of dropout. In other words, the dropout that is applied to their
input will propagate onto their output.

Because of the complicated relations among these variables, the optimal way to apply
dropout becomes a non-trivial task. For example, there are two choices if we want to make
NMT model robust to source representations. One is to apply dropout toHs, which will affect
the calculation of alignment weightast, weighted meanCs, and concatenated contextCst. The
other one is to apply dropout toCs, which will leave the calculation of alignment weightast

untouched. It is quite difficult to predict the end-to-end performances of these two choices.

3.3 Search for Optimal Dropout Scheme

We decomposed the task of searching for optimal dropout scheme into two steps. The first step
was to search for an optimal combination of variables for applying dropout to. The second step
was to search for optimal dropout rates for each variable in the optimal combination.

Note that training NMT models was very time consuming, so exploring the full search
space was impossible. Therefore we sometimes terminated searches early if one result was
particularly good. We were aware that pruning search space might cause results not to be
globally optimal. However, it made searching for optimal dropout scheme a feasible task.

3.3.1 Search for Optimal Combination of Variables
As described above, there are nine variables in the NMT model which are appropriate for
dropout. The established toolkit of OpenNMT chooses to apply dropout to three of the nine
variables, includingRs, Rt andHo (Klein et al., 2017). This decision seems quite arbitrary.
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Therefore, it was meaningful to find out which combination of thesenine variables lead to good
performance.

We took a heuristic greedy search to find the optimal combination of variables. We grad-
ually increased the size of combinations. We started by applying dropout to only one variable.
Then we tried applying dropout to two variables. After that we continued by applying dropout
to three variables, and continued like this. In each stage we aimed to find the best combina-
tion of a given size. We generally tried adding variables to the promising combinations in the
previous stage.

3.3.2 Search for Optimal Dropout Rates

Hinton et al. (2012) and Srivastava et al. (2014) showed that optimal dropout rates for differ-
ent layers of feed-forward networks are different. Because the nine variables appropriate for
dropout in the NMT model play different roles, they may have different optimal dropout rates.
Therefore, we explored applying different dropout rates to the variables in the optimal combi-
nation, which was found in the first step.

We took a grid search to find optimal dropout rates . In each step, we tried increasing or
decreasing the dropout rate of one variable by a fixed amount such as 0.05. We then chose the
update on a variable which maximized the performance.

4 Experiments

This section first describes our experimental settings, then presents the results of searching
for optimal combination of variables for applying dropout to, after that presents the results of
searching for optimal dropout rates, and in the end compares our optimal dropout schemes with
baselines.

4.1 Experimental Settings

Two corpora were used in our experiments (see the table 1). The first corpus was from the
shared task of NIST Open Machine Translation 2006 Evaluation (OpenMT Chinese-to-English
) 2. We first removed the UN and the traditional Chinese data sets from the NIST-2006 con-
straint training resources. Then we performed word segmentation on the Chinese text using the
Stanford word segmenter (Tseng et al., 2005), and performed tokenization on the English text
using the scripts provided in (Koehn, 2005). The data sets of NIST Eval 2004 and 2005 were
used as a development set. The data set of NIST Eval 2016 was used as a test set.

The second corpus was the Basic Travel Expression Corpus (BTEC) (Takezawa et al.,
2002). We used the in-house English-to-Japanese corpus which contains about 463k sentences.
We randomly selected 2 000 sentences as a development set, and selected another 2 000 sen-
tences as a test set. The sentences left over were used as a training set. The English text was
also tokenized using the scripts provided in (Koehn, 2005), and the Japanese text was segmented
into words using the toolkit of Mecab (Kudo, 2005).

The wordpiece model was adopted to deal with rare words for NMT (Wu et al., 2016).
This approach breaks all words, especially the rare ones, into subword units that are like to
occur more often in a training corpus. Therefore, these rare words become translatable by NMT
models. Byte Pair Encoding was adopted to train segmentation models (Gage, 1994). This
method allows for the representation of an open vocabulary through a fixed-size vocabulary of
variable-length character sequences, making it very suitable for close-vocabulary systems like
NMT (Sennrich et al., 2015). In this paper, we adopted a vocabulary size of 16k according to
our pilot experiments.

2http://www.itl.nist.gov/iad/mig//tests/mt/2006/
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Data Set # Sentences # Words Vocabulary
Source Target Source Target

Corpus: OpenMT Chinese-to-English
Training 442,967 12,265,072 13,444,927 178,832 130,249
Development 2,679 72,869 87,369† (346,231‡) NA NA
Test 1,664 37,827 46,207† (193,214‡) NA NA

Corpus: BTEC English-to-Japanese
Training 458,894 3,664,481 4,193,101 27.757 36,308
Development 2,000 16,148 18,451 NA NA
Test 1,664 15,866 18,048 NA NA

Table 1: Experimental Corpora.† the first reference;‡ totally four references.

The phrase-based SMT toolkit of Moses was adopted as a baseline (Koehn et al., 2007).
The Moses’ models were trained in a conventional settings. The toolkit of SRILM was
adopted to train 5-gram language models on target languages (Stolcke, 2002). The toolkit of
Giza++ (Och, 2003) was adopted to perform word alignment. Then the training scripts provided
by Moses were employed to build translation models. Then the systems were tuned with MERT
on development sets (Och, 2003).

The NMT toolkit of OpenNMT was adopted as another baseline. OpenNMT outperformed
Moses and a few other NMT systems including GroundHog and and Blocks in our pilot exper-
iments. Therefore we took it as a baseline.

Different dropout schemes were tested using our C++ implementation of NMT, named
CytonMT. The implementation utilizes NVIDIA’s native libraries including CUDA, CUBLAS
and CUDNN to gain efficiency on NVIDIA’s GPUs. CytonMT adopts the network architecture
proposed by Luong et al. (2015), which is similar with the one implemented by OpenNMT.

NMT models were trained with a similar setting as Luong et al. (2015). The stacking
LSTM models had four layers of 1 024 cells, and 1 024-dimensional embedding. The parame-
ters of neural networks were initialized in [-0.1, 0.1]. The parameters were trained with stochas-
tic gradient descending algorithm. The gradient normalized gradient was re-scaled when it
exceeded 5.

A simple adaptive learning rate schedule was employed to ensure that models with heavy
dropout were fully trained. The training started with a learning rate of 1. If the perplexity on
the development set did not decrease after an epoch, the learning rate started to decay by 0.5
per epoch. After that if the perplexity did not decrease in two continuous epochs, the training
phrase was terminated. The maximum number of epochs was unlimited, while training usually
finished around 20 epochs.

Translation performances of difference methods were measured by BLEU. BLEU was
calculated on the lower-cased English words in the task of OpenMT Chinese-to-English, and
was calculated on the Japanese characters in the task of BTEC English-to-Japanese.

4.2 Results of Searching for Optimal Combination of Variables

A group of experiments were performed following the method described in the section 3.3.1.
The table 2 presents the results of the experiments. Main experiments were performed on the
OpenMT corpus, and the BTEC corpus were used for confirming the findings.

The experiments were categorized into seven stages (separated by horizontal lines in the
table), as the number of variables in the combination were gradually increased. In each stage,
we aimed to find the best combination of given size (annotated by bold fonts in the table). We
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generally tried adding variables to the promising combination inthe previous stage. Because
training NMT models s time consuming, we terminated the stage early if the best one was clear.

Two observations can be made from these experimental results. First, two special vari-
ablesCt andCst are not suitable for dropout. They are called special because they are the
output ofweighted mean andconcatenate, so they inherit the effect of dropout from the input.
Experiments 21, 22, 29 and 30 show that the applying dropout toCt or Cst leads to poorer
performance than applying dropout to upstream variablesHs or Ht.

Second, among the seven remaining variables, the priority of applying dropout to each
variable can be formulated as a chain,

Rt ≻ Rs ≻ Ho ≻ Es ≻ Hs � Ht � Et (9)

where≻ means context-ed superior, and� means context-ed superior or equal, with respects
to dropout.x1 ≻ . . . ≻ xk ≻ xk+1, means that given the context that(x1, . . . , xk−1) have
already been applied dropout to, applying dropout toxk is superior to applying dropout to
xk+1. In other words, applying dropout to(x1, . . . , xk−1, xk) outperforms applying dropout to
(x1 . . . xk−1, xk+1).

The priority chain of the equation 9 confirms that the OpenNMT’s dropout scheme is
an effective one, becauseRt, Rs andHo are the three top variables. Besides, the chain also
suggests two other effective dropout schemes. The optimal-1 is to apply dropout toRt, Rs,
Ho andEs. The experiment 17 shows that the cross entropy on the development set decreases
by addingEs into the OpenNMT’s dropout scheme. The optimal-2 is to apply dropout to all
the seven remaining variables. The experiments 23 – 27 show that adding any one or two from
Ht, Hs andEt into the optimal-1 brings little improvement, but adding all three variable into
optimal-1 reduces the cross entropy.

4.3 Results of Searching for Optimal Dropout Rates

In this subsection, we aimed to refine the optimal dropout schemes found in the last subsection
by using different dropout rates for each variable. We applied the grid search method described
in the section 3.3.2. The table 3 and 4 presents the results of refining the optimal-2 on the
OpenMT corpus and refining the optimal-1 on the BTEC corpus, respectively.

Unexpectedly, the experimental results on both corpora show that no changes on the
dropout rates can improve the performances. Therefore,p = 0.3 is an optimal dropout rate
for training the NMT model that we adopt.

4.4 Comparison with Baselines

In this section, we compared the optimal dropout schemes found in our study with baselines.
Three baselines were employed. The first was Moses – one of the state-of-the-art phrase-based
SMT systems. The second was the NMT toolkit of OpenNMT. The third was our implementa-
tion of CytonMT using the OpenNMT’s dropout scheme. Among these three baseline, the third
was the most accurate. The table 5 presents the results of the experiments.

Three observations can be made from the experimental results. First, on the OpenMT
corpus, both the optimal-1 and the optimal-2 outperform the baselines (the experiments 1–5). In
addition, the optimal-2 outperforms the optimal-1. This validates the effectiveness of optimal-1
and the optimal-2.

Second, on the BTEC corpus, the performances of the three dropout schemes are close.
The different behaviors on the two corpora may be caused by the fact that the OpenMT corpus
is more difficult than the BTEC corpus with respects to translation, as its sentences are longer
and its vocabulary is larger. From the baseline to the optimal-1 and optimal-2, the strength
of dropout gradually increases since more and more variables are being applied dropout to.
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No. Method Cross Entropy
Apply Dropout to Training Development

Corpus: OpenMT Chinese-to-English
1 Es 1.52 2.65
2 Et 2.16 3.46
3 Rs 2.20 3.61
4 Rt 1.59 2.58
5 Hs 1.66 2.85
6 Ht 1.63 2.62
7 Ho 2.33 3.51
8 Cs 2.24 3.56
9 Cst 1.74 2.70

10 RtEs 1.57 2.53
11 RtRs 1.53 2.46
12 RtHt 1.72 2.53
13 RtHo 1.53 2.55
14 RtRsEs 1.49 2.50
15 EtRsHt 1.74 2.53
16 RtRsHo

♮ 1.50 2.41
17 RtRsHoEs

† 1.59 2.36
18 RtRsHoEt 1.70 2.40
19 RtRsHoHs 1.70 2.37
20 RtRsHoHt 1.68 2.40
21 RtRsHoCs 1.74 2.45
22 RtRsHoCst 1.70 2.43
23 RtRsHoEsEt 1.59 2.37
24 RtRsHoEsHs 1.65 2.36
25 RtRsHoEsHt 1.70 2.36
26 RtRsHoEsHtEt 1.72 2.37
27 RtRsHoEsHtHs 1.79 2.36
28 RtRsHoEsHsHsEt

‡ 1.79 2.33
29 RtRsHoEsEtHtCs 1.845 2.39
30 RtRsHoEsEtCst 1.834 2.41

Corpus: BTEC English-to-Japanese
31 RtRsHoEs

† 0.81 1.12
32 RtRsHoEsHtHsEt

‡ 0.83 1.11

Table 2: Results of Applying Dropout to Different Combinations ofVariables. The Dropout
rate isp = 0.3. ♮ dropout scheme of the toolkit OpenMT;† the optimal-1;‡ the optimal-2.
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No. Dropout Rate Cross Entropy
Rt Rs Ho Es Ht HS Et Training Development

Corpus: OpenMT Chinese-to-English
Ref. 0.30 0.30 0.30 0.30 0.30 0.30 0.30 1.79 2.33

1 0.35 0.30 0.30 0.30 0.30 0.30 0.30 1.79 2.38
2 0.25 0.30 0.30 0.30 0.30 0.30 0.30 1.96 2.43
3 0.30 0.35 0.30 0.30 0.30 0.30 0.30 1.85 2.36
4 0.30 0.25 0.30 0.30 0.30 0.30 0.30 1.77 2.38
5 0.30 0.30 0.35 0.30 0.30 0.30 0.30 1.73 2.35
6 0.30 0.30 0.25 0.30 0.30 0.30 0.30 1.77 2.35
7 0.30 0.30 0.30 0.35 0.30 0.30 0.30 1.80 2.37
8 0.30 0.30 0.30 0.25 0.30 0.30 0.30 1.74 2.36
9 0.30 0.30 0.30 0.30 0.35 0.30 0.30 1.81 2.34

10 0.30 0.30 0.30 0.30 0.25 0.30 0.30 1.79 2.34
11 0.30 0.30 0.30 0.30 0.30 0.35 0.30 1.81 2.37
12 0.30 0.30 0.30 0.30 0.30 0.25 0.30 1.78 2.34
13 0.30 0.30 0.30 0.30 0.30 0.300.35 1.89 2.41
14 0.30 0.30 0.30 0.30 0.30 0.300.25 1.81 2.37

Table 3: Results of Using Different Dropout Rates on the optimal-2.

No. Dropout Rate Cross Entropy
Rt Rs Ho Es Training Development

Corpus: BTEC English-to-Japanese
Ref. 0.30 0.30 0.30 0.30 0.81 1.12

9 0.35 0.30 0.30 0.30 0.73 1.13
10 0.25 0.30 0.30 0.30 0.73 1.13
11 0.30 0.35 0.30 0.30 0.82 1.12
12 0.30 0.25 0.30 0.30 0.77 1.12
13 0.30 0.30 0.35 0.30 0.73 1.13
14 0.30 0.30 0.25 0.30 0.76 1.12
15 0.30 0.30 0.30 0.35 0.80 1.13
16 0.30 0.30 0.30 0.25 0.79 1.12

Table 4: Results of Using Different Dropout Rates on the optimal-1.
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No. System Dropout Scheme Cross Entropy BLEU
Train. Dev. Dev. Test

Corpora: OpenMT Chinese-to-English
1 Moses NA NA NA 32.12 31.11
2 OpenNMT baseline♮ 1.62 2.42 39.96 39.11
3 CytonMT baseline♮ 1.50 2.41 40.07 39.21
4 CytonMT optimal-1† 1.59 2.36 40.39 39.38
5 CytonMT optimal-2‡ 1.79 2.33 40.35 39.89

Corpora: BTEC English-to-Japanese
6 Moses NA NA NA 52.09 50.77
7 OpenNMT baseline♮ 0.63 1.15 52.35 52.38
8 CytonMT baseline♮ 0.81 1.12 52.49 52.46
9 CytonMT optimal-1† 0.81 1.12 52.58 52.44
10 CytonMT optimal-2‡ 0.83 1.11 52.63 52.33

Table 5: Comparison with Baseline Methods.♮ baseline: OpenNMT’s method, applying
dropout toRt, Rs andHo. † optimal-1: applying dropout toRt, Rs, Ho andEs. ‡ optimal-2:
applying dropout to all variables ofRt, Rs, Ho, Es, Ht, Et andHs but excludeCs andCst.
The drop rate is fixed asp = 0.3 .

Therefore, for easy translation tasks, the baseline or the optimal-1 is sufficient; while for difficult
tasks, the optimal-2 is recommended.

Third, all the NMT systems trained with dropout clearly outperformed the SMT system.
This indicates that the baseline dropout scheme is effective. This also confirms the description
in the section 1 of this paper.

5 Conclusion

In this paper, we performed an empirical study on dropout scheme for training NMT models.
We started the study by analyzing the architecture of NMT models, and found out the appro-
priate variables for applying dropout to. We then run two groups of experiments to find out the
optimal combination of these variables and the optimal dropout rate.

Two main questions raised in the introduction can be answered through our study. The first
question is what part of NMT models should be applied dropout. The priority of the variables
in NMT models is

Rt ≻ Rs ≻ Ho ≻ Es ≻ Hs � Ht � Et.

This chain suggests some effective dropout schemes, including the OpenNMT’s scheme, the
optimal-1, and the optimal-2 (section 4.2). Note that heavy dropout scheme will increase the
required number of epochs in training phase. If a translation task is difficult, and training time is
sufficient, the optimal-2 is recommended (section 4.4). We empirically find that training NMT
models using OpenNMT’s dropout scheme usually converges within the 13 epochs3 which is
quite efficient, while using the optimal-2 usually requires around 20 epochs.

The second question is how to correctly set dropout rate for training NMT models. It is
found that the dropout ratep = 0.3 is optimal for the NMT model that we adopt (section 4.3).

In the future, we plan to explore two topics related to dropout for NMT, including max-
norm regularization (Srivastava et al., 2014) and drop connections (Wan et al., 2013).

3the default setting of the toolkit OpenNMT
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