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Abstract

This paper describes our German and English Speech-

to-Text (STT) systems for the 2017 IWSLT evaluation cam-
paign. The campaign focuses on the transcription of un-
segmented lecture talks. Our setup includes systems using
both the Janus and Kaldi frameworks. We combined the out-
puts using both ROVER [1] and confusion network combina-
tion (CNC) [2] to achieve a good overall performance. The
individual subsystems are built by using different speaker-
adaptive feature combination (e.g., lMEL with i-vector or
bottleneck speaker vector), acoustic models (GMM or DNN)
and speaker adaptation (MLLR or fMLLR). Decoding is per-
formed in two stages, where the GMM and DNN systems are
adapted on the combination of the first stage outputs using
MLLR, and fMLLR.

The combination setup produces a final hypothesis that
has a significantly lower WER than any of the individual sub-
systems. For the English lecture task, our best combination
system has a WER of 8.3% on the tst2015 development set
while our other combinations gained 25.7% WER for Ger-
man lecture tasks.

1. Introduction

For many years now, the International Workshop on Spo-

ken Language Translation (IWSLT) offers a comprehensive
evaluation campaign on spoken language translation. The
evaluation is organized in different evaluation tracks cover-
ing automatic speech recognition (ASR), machine translation
(MT), and the full-fledged combination of the two of them
into speech translation systems (SLT). Different from previ-
ous years, this year’s installment mostly consists of real-life
lectures e.g., real university lectures or talks at real symposia.

The goal of the ASR track is the automatic transcription
of fully unsegmented lectures. The quality of the resulting
transcriptions is measured in word error rate (WER).

This system paper describes our English and German
ASR setups with which we participated in the lecture ASR
tracks of the 2017 IWSLT evaluation campaign. Similar to
previous years’ evaluation [3], we used the Janus Recogni-
tion Toolkit (JRTk) [4] which features the IBIS single-pass
decoder [5] to build several complementary subsystems and
combined them with an additional system developed with the

Kaldi toolkit [6]. Our Janus-based systems employ different
speaker-adaptive features, acoustic models or speaker adap-
tation techniques. While the Kaldi-based system applies the
same adaptation techniques but employs sequence training
and big n-gram language models for rescoring.

The rest of this paper is structured as follows. Section 2
describes the data that our system was trained and tested on.
This is followed by Section 3 which provides a description
of the acoustic front-ends used in our system and Section 7
which describes our segmentation setup. An overview of the
techniques used to build our acoustic models is given in Sec-
tion 5. We describe the language model used for this evalua-
tion in Section 6. Our decoding strategy and results are then
presented in Sections 8 and 9. We conclude the paper with
Section 10.

2. Data Resources

2.1. Training Data

Table 1 and Table 2 show the data sources we used for the
acoustic model training of our systems. This year we in-
cluded 80 hours of broadcast news which results in a total of
483 hours for the English systems. For the German systems,
we used the same training data as last year.

Source # Amount

Quaero from 2010 to 2012 200 hours
Broadcast news [7] 80 hours
TED-LIUM v2 [8]
excluding disallowed talks 203 hours

Total 483 hours

Table 1: English acoustic modeling data.

2.2. Test Data

For this year’s evaluation campaign, the evaluation test set
“tst2017” as well as the development test sets “tst2015”,
“tst2013” and “dev2017” were provided for the English and
German lecture tasks. All development test sets featured a
pre-segmentation provided by the IWSLT organizers. For the
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Source # Amount

Quaero from 2009 to 2012 180 hours
Broadcast news 24 hours
Baden-Württemberg parliament 160 hours

Total 364 hours

Table 2: German acoustic modeling data.

evaluation test set, automatic segmentation was required.

3. Feature Extraction

Our systems are built using several different front-ends as
previously described in [3] including 40-dimensional log
scale mel filterbank (lMEL), 20-dimensional mel frequency
ceptral coefficient (MFCC), 20-dimensional minimum vari-
ance distortionless response (MVDR) and 14-dimensional
tonal (T) features. These features can be augmented with
i-vectors (Section 3.2) or bottleneck speaker vectors (Sec-
tion 3.3) to be directly used for acoustic modeling or fed into
deep bottleneck networks (Section 3.1) for extracting bot-
tleneck features. The extracted bottleneck features are then
transformed using feature-space maximum likelihood linear
regression (fMLLR) and augmented with i-vectors to build
speaker-adaptive features (Section 3.4). Our detailed feature
extraction pipeline is explained in [9].

3.1. Bottleneck Features

We employed the deep bottleneck architecture described by
[10], which consists of a stacked denoising auto-encoder of
4-5 layers each containing 1600-2000 units, followed by a
42 unit bottleneck, a hidden layer and the classification layer.
The stacked auto-encoder is first pre-trained layer-wise [11],
then the whole network is fine-tuned to discriminate target
phoneme states. For the extraction of bottleneck features
(BN), the layers after the bottleneck were removed and the
output activations of the bottleneck layer were used as BN.

3.2. I-vectors

To extract i-vectors, a full universal background model
(UBM) with 2048 mixtures was trained on the training
dataset using 20 Mel-frequency cepstral coefficients with
delta and delta-delta features appended. The total variabil-
ity matrices were estimated for extracting 100 dimensional
i-vectors. We tuned the size of the i-vectors in a series of pre-
liminary experiments for optimal recognition performance.
The UBM model training and i-vector extraction was per-
formed by using the sre08 module from the Kaldi toolkit [6].
I-vectors as well as tonal features were always used in com-
bination with other features.

3.3. Bottleneck Speaker Vectors

In addition to i-vectors, we also used Bottleneck Speaker
Vectors (BSVs) [12]. While they serve the same purpose,
they are entirely neural network based. We used the same
setup as for our hybrid systems, but trained the network to
recognize different speakers instead of phonemes using a
one-hot encoding of the speaker identities. To extract the
BSVs, we used a bottleneck layer as second last layer of the
speaker classification network and discarded all layers after
this layer after training. For obtaining the final speaker vec-
tor, we averaged the output activation of this hidden layer on
a per speaker basis.

3.4. Speaker Adaptive Features

To build speaker-adaptive features (SAF) for GMM sys-
tems, we first train deep bottleneck network from 11 stacked
frames of regular features and i-vectors. The extracted BN
features are then spliced for 11 consecutive frames and trans-
formed using Linear Discriminate Analysis (LDA) which are
known to make inputs more accurately modeled by GMMs.

The speaker-adaptive features for DNN systems are ob-
tained after transforming BN features using fMLLR trans-
formation and then augmented with i-vectors. The process
of fMLLR estimation was performed as traditional approach.
During the training, we used the adaptation data of the same
speaker and the reference transcriptions to do the alignment,
while the same GMMs were used as first-pass systems to
generate transcriptions in the testing.

4. Phoneme and Dictionary

For English, we used the CMU dictionary1. This is the same
phoneme set as the one used in last year’s systems. It consists
of 45 phonemes and allophones. We used 7 noise tags and
one silence tag. Missing pronunciations were created using
the FESTIVAL [13] Text-to-Speech Engine.

Our German system uses an initial dictionary based on
the Verbmobil Phoneset [14]. Missing pronunciations are
generated using both MaryTTS [15] and FESTIVAL [13].

5. Acoustic Modeling

5.1. HMM CD-Phone

All GMM and hybrid models classify context-dependent
quinphones with three states per phoneme and a left-to-right
HMM topology without skip states. The English acoustic
models use 8,156 distributions and codebooks derived from
decision-tree based clustering of the states of all possible
quinphones. The German acoustic models use either 10k or
18k context-dependent states.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

61



5.2. GMM Models

The GMM models are trained by using incremental splitting
of Gaussians training (MAS) [16], followed by optimal fea-
ture space training (OFS) which is a variant of semi-tied co-

variance (STC) [17] training using a single global transfor-
mation matrix. The model is then refined by one iteration of
Viterbi training.

For the evaluation, we trained one GMM system using
SAF features with MFCC front-ends for the English lecture
task.

5.3. Hybrid Models

All the DNN models also share the same architecture which
has 5-6 hidden layers with 2000 units per layer. The input
of the DNNs are 11 stacked frames of 42-dimensional trans-
formed bottleneck features or 40-dimensional lMEL, with or
without combining i-vectors and tonal features. We used the
sigmoid activation function for the hidden layers and soft-
max for the output layer. DNN systems were trained using
the cross-entropy loss function to predict context-dependent
states. The same training method is applied for all DNNs
which includes pre-training with denoising auto-encoders
and followed by fine-tuning with back-propagation. We used
an exponential schedule to update the learning rate during the
neural network training.

This year, we built two DNNs using SA features with
different front-ends for the English TED task.

The German setup for the lectures task consists of 4 DNN
systems based on different combinations of input features as
shown in Table 6. SAF features were used as well.

6. Language Models

6.1. Vocabulary and Kneser-Ney Models

For language model training and vocabulary selection, we
used the subtitles of TED talks, or translations thereof, and
text data from various sources (see Tables 3 and 4). Text
cleaning included tokenization, lowercasing, number nor-
malization, and removal of punctuation. Language model
training was performed by building separate language mod-
els for all (sub-)corpora using the SRILM toolkit [18] with
modified Kneser-Ney smoothing. These were then linearly
interpolated, with interpolation weights tuned using held-out
data from the TED corpus. For German, we split compounds
similarly as in [19].

For the vocabulary selection, we followed an approach
proposed by Venkataraman et al. [20]. We built unigram
language models using Witten-Bell smoothing from all text
sources, and determined unigram probabilities that maxi-
mized the likelihood of a held-out TED data set. As our
vocabulary, we then used the top 150k words for English,
and 300k words for German.

Text corpus # Words

TED 3.6m
Fisher 10.4m
Switchboard 1.4m
TEDLIUM dataselection 155m
News + News-commentary + -crawl 4,478m
Commoncrawl 185m
GIGA 2323m

Table 3: English language modeling data.

Text corpus # Words

TED 2,685k
News+Newscrawl 1,500M
Euro Language Newspaper 95,783k
Common Crawl 51,156k
Europarl 49,008k
ECI 14,582k
MultiUN 6,964k
German Political Speeches 5,695k
Callhome 159k
HUB5 20k

Table 4: German language modeling data after cleaning and

compound splitting.

6.2. Feed-forward Neural Language Model

During decoding the probabilities of a feedforward neural
network language model were linearly interpolated with the
baseline language model. Due to performance considera-
tions, the most recent 40k queries for this language model
were cached and we constrained the output vocabulary to the
20k most frequent words which appeared in the text corpora.
We used 200 dimensional word embeddings trained with the
Skip-gram model [21]. Three words were considered as the
context, while the rest of the network consisted of three hid-
den layers followed by a softmax output layer. The training
text consisted of 30M words and was selected based on the
text sources listed in Table 4.

7. Automatic Segmentation

In this evaluation, the test set for the ASR track was pro-
vided without manual sentence segmentation, thus automatic
segmentation of the target data was mandatory. We utilized
an approach to automatic segmentation of audio data that
is SVM based. This kind of segmentation is using speech
and non-speech models, using the framework introduced in
[22]. The pre-processing makes use of an LDA transforma-
tion on DBNF feature vectors after frame stacking to effec-
tively incorporate temporal information. The SVM classifier
is trained with the help of LIBSVM [23]. A 2-phased post-
processing is applied for final segment generation.
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We generated the segmentations for both English and
German using this SVM based segmentation. The parame-
ters for the SVM segmenter were chosen on a per language
basis after preliminary experiments.

8. Systems and Combination

Table 5 shows our systems built for the English submission.
In the first-pass, we used a GMM and two DNN systems
with the acoustic models and 4-gram language model de-
scribed in Section 5 and Section 6. Their decoded lattices
are sent to a consensus decoding system (CNC) to produce
combined hypotheses and confidence scores for the adapta-
tion in the second-pass. The GMM system is fully adapted
as transitional approach using both feature space adaptation
(fMLLR) and model adaptation (MLLR). The DNN systems
are adapted by training the DNN acoustic models one more
epoch on the adaptation data of each speaker. The adapta-
tion data is obtained by performing alignment of the CNC
decoded results with the speaker audio and filtering out the
frames with the confidence scores higher than 0.7. All these
systems were built using Janus Recognition Toolkit (JRTK)
[14].

Beside that we also used the Kaldi toolkit [6] to build a
new system with similar feature adaptation techniques. The
same train database is used for acoustic modeling and we use
the trained 4-gram language model for rescoring.

Our final submission for the English lecture task consists
of a ROVER of the Kaldi based system and the adapted sys-
tems. The results of the single and adapted systems as well
the combined system are presented in Table 5.

9. Results

For the English task, we gained significant improvements
over building speaker adaptive features, DNN model adap-
tation and CNC combination. On the test set “tst2015”, we
archived 8.3% WERs.

System tst2015

GMM(SAF-MFCC) 11.6
DNN(SAF-lMEL) 10.2
DNN(SAF-MFCC) 11.2

CNC 9.4

GMM(SAF-MFCC) adapted 9.3
DNN(SAF-lMEL) adapted 8.8
DNN(SAF-MFCC) adapted 9.3

Kaldi 4-gram LM rescored 9.3

ROVER 8.3

Table 5: Results for English talk task on ‘tst2015’ develop-

ment set.

In addition to our experiments on these two English

tracks, we also participated in the German lecture task. The
results on the “dev2017” test set are shown in Table 6.

System dev2017

18k DNN(BSV BN-lMEL+T) NNLM 26.7
18k DNN(Mod-M2+lMEL+T) 27.1
10k DNN(SAF-BN-M2+T) NNLM 25.2
10k DNN(SAF-BN-lMEL+T) NNLM 25.7

CNC 25.7

Table 6: Results for German lecture task on ‘dev2017’ devel-

opment set.

10. Conclusion

In this paper we presented our English and German LVCSR
systems, with which we participated in the 2017 IWSLT eval-
uation. All systems make use of neural network based front-
ends, HMM/GMM and HMM/DNN based acoustics models.
The decoding set-up of all languages makes extensive use of
system combination of single systems obtained by combin-
ing different feature extraction front-ends and acoustic mod-
els.
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