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Abstract

In this paper, we present KIT’s multilingual neural ma-
chine translation (NMT) systems for the IWSLT 2017 eval-
uation campaign machine translation (MT) and spoken lan-
guage translation (SLT) tasks.

For our MT task submissions, we used our multi-task
system, modified from a standard attentional neural ma-
chine translation framework, instead of building 20 individ-
ual NMT systems. We investigated different architectures as
well as different data corpora in training such a multilingual
system. We also suggested an effective adaptation scheme
for multilingual systems which brings great improvements
compared to monolingual systems.

For the SLT track, in addition to a monolingual neural
translation system used to generate correct punctuations and
true cases of the data prior to training our multilingual sys-
tem, we introduced a noise model in order to make our sys-
tem more robust. Results show that our novel modifications
improved our systems considerably on all tasks.

1. Introduction

In recent works, attention-based neural networks has been
considered the state-of-the-art approach for machine trans-
lation. More importantly, this framework can be efficiently
adapted or customized to fit in a multilingual setting, so that
one model can be trained to translate from and to multiple
languages. In this evaluation campaign, we empirically ex-
plore different architectures which have been exploited in
various previous works, in order to find the best combination
for the multilingual setting.

Specifically, we break down the neural machine transla-
tion architecture into its main components: embedding lay-
ers, encoders, decoders, attention and output layers. Our
analysis indicates which components can be shared to ben-
efit from multilingual data. We also employed an adapta-
tion strategy which is proved to be beneficial for multi-task
learning. Our best systems are the ensembles of individual
architectures.
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2. Data Processing

The data is preprocessed prior to training and translation.
Sentence longer than 50 words and aligned sentence pairs
having a big difference in length are removed. Special dates,
numbers and symbols are normalized. Smartcasing is ap-
plied as well. Afterwards, we apply byte pair encoding [1]
to model the translation of rare words. We build corpora us-
ing 40K codes and 80K codes. Since we did not see a large
difference in performance, all reported results use a byte pair
encoding size of 40K.

2.1. Sentence alignment

While for the in-domain TED corpus, parallel data was pro-
vided for all directions, the out-of-domain EPPS data was
only available from and to English. For all language direction
that do not include English, no additional data was available.
In order to generate this data, we used English as a pivot lan-
guage, sentence-aligning the English sides of source-English
and English-target data in order to extract source-target sen-
tence pairs. In the two tracks that we participated in, the
Small data consists of 4.2 million sentences while the Large
data has 26 million for 20 language directions.

3. Multilingual NMT

In previous works, the encoder-decoder architecture with
attention mechanism has been used in a multilingual set-
ting [2, 3, 4, 5] with various architectural choices. While
most authors decided to share the encoder and decoder
weights between languages, the attention module remains
controversial, as [2] negates the use of attention in the multi-
task models, [4] uses explicit attention layers for each lan-
guage pair, and in [3], one single model is shared between all
pairs. In this work, we explore the possibilities of architec-
tural sharing between encoder, decoder and attention layers
across languages.
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3.1. Architectures
3.1.1. Neural Machine Translation

Our base model is the encoder-decoder with attention mecha-
nism [6, 7], in which both of the encoder and the decoder are
Long-Short Term Memory networks [8]. The attention mod-
ule is a two-layer feed-forward neural network that we found
to work better than simple dot-product or bilinear models [7].

In the multilingual setting, we investigate the effective-
ness of sharing different parts of the model. The break-down
of the neural machine translation models is illustrated as in
Figure 1

e The embedding layers project the discrete words into
dense vectors. We also consider the output linear layer
as an embedding one. These layers are language spe-
cific and their parameters cannot be shared across lan-
guages.

e The encoders encode the representation of the source
sentences into a set of vectors S. We can share this
component by using one single encoder to encode sen-
tences regardless of the language.

e The attention layer reads the encoded source S and
learns to focus on important information at every time
step which is used for decoding. The attention layer
depends on both the source and target languages.

e The decoder receives the context information from the
attention layer and learns to generate target sentences.

3.1.2. Sharing Embeddings

In this multiway, multilingual scenario, we have in total 5
languages on the both source and target sides. We want to en-
sure that the model has the same view of the embeddings on
the source and target side, i.e a German word on the source
data has the same embedding values as the same German
word on the target sentences. Therefore, we construct one
single projection matrix for each language, and use them ac-
cording to the language of the sentences in the mini-batch.

For the output layer which computes the probabilities of
the words, there are two different scenarios: if we use dis-
tinct vocabularies for each language, we then end up con-
structing five different output layers. Because of this archi-
tectural choice, each minibatch only contains sentences from
one single language pair. In the second scenario, the proba-
bility distribution is computed of all words of all languages,
then the output layer is not separated as in the first one. The
two output layer scenarios are almost equivalent, but the for-
mer is much computationally faster than the latter, because
the softmax layer required for each mini-batch is consider-
ably smaller.

3.1.3. Sharing Encoder and Decoder

The encoder and decoder are fundamentally built by recur-
rent neural networks which learn the structural dependency

Figure 1: Neural Machine Translation architecture with
shared components
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of the words in sentences. For each language at the source
and at the target, we assign a separate RNN encoder and a
separate decoder. Similar to [4, 2], the specific language en-
coder weights are only updated when they are used during
learning a particular mini-batch. In the sharing scenario, we
just need to tie the weights and their gradients to the encoders
and decoders.

3.1.4. Sharing Attention Mechanism

The attention layer consists of one feed-forward neural net-
work which connects the hidden layers of the encoders with
the hidden layer of the decoders. When being shared, the
same network is used across twenty language pairs, while if
attention is not shared, each language pair is assigned to one
attention layer. Notably, sharing attention has been used in
most multilingual setups [4, 3, 5] since the number of atten-
tion layers increases quadratically with respect to the number
of language pairs, and it is believed that the shared attention
layer can benefit better from multilingual sources [4].

4. Speech Translation
4.1. Punctuation Generation

Automatic speech recognition (ASR) systems typically do
not generate punctuation marks or reliable casing. Using
the raw output of these systems as input to MT causes a
performance drop due to mismatched train and test condi-
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tions. We used a monolingual NMT system to recase, insert
proper punctuation, and add sentence boundaries to ASR out-
put where necessary before translating [9].

To train, we created parallel data where the source
sentence is the target sentence lowercased with all punc-
tuation removed. Rare words were replaced with POS
tags. The training data was randomly segmented so
that segment boundaries and punctuation types were well-
distributed throughout the corpus. For the English—German
and German—English lecture data, segment boundaries are
given, but for TED, they are not. At test time, we used a slid-
ing window of length 10 to observe each word in multiple
contexts as described in [9].

We used single-layer biLSTMs for the encoder
and decoder, with 256 hidden wunits for the en-
coder/decoder/attention layers. Models were trained
with Adam. We restarted the algorithm twice and applied
early stopping.

4.2. Noised Training

Our speech translation model is applied to noisy and erro-
neous speech recognition outputs, despite never having been
exposed to noisy data during the training process. The result
is a harmful mismatch between training and test data that
further aggravates the difficulty of having to transform mal-
formed inputs in the first place. Sequence-to-sequence mod-
els have been observed to be especially sensitive to corrupted
inputs due to erroneous ASR [10]. To improve robustness at
test-time, we experiment with inducing a suitable form of
noise during the training process. Specifically, we corrupt
the source side of the parallel training data by randomly in-
troducing substitution, insertion, and deletion errors. In this
way, training data is made more similar to the testing condi-
tion, and the model potentially learns to handle noisy inputs
at test-time in a more robust fashion.

The noise model is described in detail in [11]. Here, we
used the simplified noise model sampling deletions only, at a
noise rate of 7 = 0.01.

5. Results and Analysis

In this section, we present a summary of our experiments we
have carried out for the IWSLT 2017 evaluation[12]. All the
reported scores are case-sensitive BLEU scores.

5.1. Machine Translation tracks
5.1.1. Training details

System overview We built a neural machine translation
framework which is customized with multiple encoders-
decoders-attention for this multilingual task using PyTorch !.
For the small data task, we use a small network configuration
with word embedding and hidden layer size of 512 for all ex-
perimented architectures, except for the Share-All one which

Thttp://pytorch.org/
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we found that layer size of 1024 is required to avoid under-
fitting. For the big data task, all of the models are trained
with a larger config, with layer size of 1024. We applied
Dropout between the vertical connection of the recurrent net-
works [13] with probability 0.5. We sampled minibatches
containing sentences from only one language-pair so that the
model can observe all sentences once every epoch. The pa-
rameters are updated using Adam optimizer [14] with the
gradients clipped at 5. It is noteworthy that certain models
with separated components can suffer from sparse updates
since the unused components gradients are treated normally
by Adam for the stat computation steps. We observed the
training progress with the average perplexity on the valida-
tion sets, and used the models with the lowest perplexity to
translate the test sets.

Adaptation We employed two different strategies of adap-
tation: in-domain (only applicable for large data task) and
language-specific adaptation. Concretely, for in-domain
adaptation after our models converge on the training set, we
fine-tuned them further on the TED data as proposed in [15].
For language-specific adaptation, after we obtain the best
performing model on the validation data, we continue train-
ing on each language pair. In the later section, the experi-
mental results indicate that the language-specific adaptation
is beneficial.

5.1.2. Main Results

For both tasks, we report the system performance on the test
set with the tokenized BLEU (tBLEU) as well as the case-
sensitive BLEU (cBLEU) scores. We explore three different
architectures, based on our model design described in Sec-
tion 3.1:

e Share-All : We tie all parameters of the encoders, de-
coders and attention layers across language pairs

e Share-RNN : The encoders and decoders parameters
are shared, but explicit attention layers are separated
for each language pair

e Separate-All : Encoders and decoders are language-
specific, and the attention layers are separated.

Besides, we also employed the multilingual architecture
from [5], here after referred to as ‘Language-coded Multi-
lingual’. The most similar architecture to Language-coded
Multilingual is Share-All, where all components of the NMT
system are shared. Language-coded Multilingual relies on
preprocessing steps to share information while keeping the
NMT architecture unchanged. In Language-coded Multi-
lingual, however, the output is a big softmax layer, consid-
ering all distinct target words in all languages at the same
time. Thus, Language-coded Multilingual is quite expensive
to train and decode compared to our aforementioned archi-
tecture. We reported the result of Language-coded Multi-
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Table 1: Average BLEU scores on the test set for Small task

System tokenized BLEU  case-sensitive BLEU
Separate-All 24.7 22.6

+ Lang-adapted 25.8 24
Share-RNN 26.0 242

+ Lang-adapted 26.3 24.5
Share-All 25.2 23.5

+ Lang-adapted 26.2 242
Language-coded Multilingual 25.6 23.8
Share-All + Lang-adapted + Average 25.7 23.8
Ensemble 27.4 25.6

lingual only on the Small task and without any adaptation
scheme.

We also applied some strategies on top of Language-
coded Multilingual systems to effectively improve the
zero-shot translation. First we built two Language-coded
Multilingual-based Zero systems, one used 18 language pairs
excepts German<+Dutch, the other used 18 language pairs
excepts Italian<+Romanian following the architecture sug-
gested by [5]. Then we built other systems employing two
strategies: Target Dictionary Filtering and Language as a
Word Feature For greater details of those strategies, please
refer to [16].

Small task The translation scores on the test data reflected
that sharing the RNN encoders and decoders is clearly ef-
fective in multilingual setups. Both the architectures with
shared RNNs outperformed their Separate-All counterpart,
by 0.9 and 1.6 cBLEU. For the attention mechanism, we
found out that sharing the attention reduces translation per-
formance by 0.7 BLEU. Even with the shared recurrent net-
works, the context vectors from different languages are dis-
tinguishable, which is advantageous for the separate attention
layers.

Also, as illustrated from table 2, language-specific adap-
tation helped us to improve the score, which is most clearly
seen on the Separate-All model. The gain is also observed on
the other two architectures, but not significant. This finding
is in-line with [17], which shows that task-specific adaptation
is necessary in for multi-task learning with neural encoder-
decoders. Our final system to be submitted is the ensem-
ble of three models after adaptation. Notably, the ensemble
of Share-All and Share-RNN yields the same performance
as the ensemble of all six models, showing that the adapted
model dominates the others.

Meanwhile, the Language-coded Multilingual model
performed best. Unsurprisingly, the scores from that system
are similar to Share-All’s. Due to its expensive training and
different preprocessing pipeline, however, we did not attempt
to employ adaptation and ensemble on that architecture.

The language-specific adaptation method is disadvanta-
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geous in that we have to store one model for each direction.
Therefore, we tried to take all of the 20 models and average
their parameters; interestingly, the averaged model performs
better than the pre-adapted one.

Large task Moving over the large data set, we observe the
same phenomenon as the small one, in which the Separate
architecture fell behind the other two. Interestingly, Shared-
All and Shared-RNN produce the same translation perfor-
mance. One reason why may be that the shared-attention
mechanism requires more data to become robust to language-
specific mappings.

Even after adaptation (TED in-domain and language spe-
cific), the addition of the Europarl corpus only manages to
improve the BLEU score by 0.4 for the best system. How-
ever, we reckon that further improvement can be achieved by
increasing the model size and better parameter search, as was
observed in the Small task.

Table 2: Average BLEU scores on the test set for Large task
All systems are language-specifically adapted

System tokenized BLEU  case-sensitive BLEU
Share-All 26.9 25.1
Share-RNN 26.9 25.1
Separate-All 25.1 23.4
Ensemble 27.8 26.0

Zero-shot task. We conducted the zero-shot trans-
lation for 4 directions asked by IWSLT’17 organizers:
German<>Dutch and Italian<*Romanian. The results are
shown in Table 3. We can see that Language as a Word Fea-
ture greatly improves our zero-shot translation systems.

5.2. Spoken Language Translation tracks

Our main translator for this task is the multilingual Share-All
model trained with large data (which is also adapted on TED
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System DE—NL NL—DE IT-RO RO—IT
dev2010 | tst2010 | dev2010 | tst2010 | dev2010 | tst2010 | dev2010 | tst2010
Zero [5] 15.87 19.46 14.03 19.59 11.61 15.44 16.18 17.11
Zero Filtered Dict 15.79 19.48 13.96 19.59 11.52 15.45 16.21 17.20
Zero Lang Feature 16.65 19.68 14.50 20.67 12.70 16.22 17.26 17.79

Table 3: Effectiveness of proposed strategies on performance of zero-shot translation systems

data as well as language-specific data). However, there is a
mismatch between the cleaned text data which is used for MT
training and the noisy speech recognition output which can
be disfluent, repetitive or lack of punctuations. Therefore,
our effort to alleviate this problem is to apply a noisy model
on the TED training data and then to adapt the translation
models, as described in section 4.2.

The model is tuned with noisy data for ten more epochs
(due to sampling, the data is actually slightly modified after
each epoch) with learning rate of 0.0001. We conduct exper-
iments on tst2013 sets on two directions: German—English
and English—German. The experimental results are shown
in Table 4 with case-sensitive BLEU scores. Using the noise
models, we can improve the translation scores on both test
sets by 0.5 and 0.3 respectively.

5.3. Other findings

In this section, we report the experimental findings that were
not considered in the submission systems, including the con-
figurations that we did not afford to finish.

Model capacity Initially we used layer size of 512 for all
models for the Small task. With such capacity, the Separate
was indeed the best model. However, when we scale the layer
size to 1024, both of the two shared models improved dras-
tically while the Separate model suffered from over-fitting
despite of the high Dropout value. We express that, in order
to fit the amount of training data that is quadratically larger
than a single direction, the model capacity also needs to be
scaled accordingly.

Such observation can also potentially explain the lacklus-
ter of the models trained on Large data. Such amount of data
probably requires a larger/deeper model to utilise, which has
been empirically experimented by [3]. However, as the larger
model is much slower to train, we decided to keep the same
configuration to have a reasonable training time.

Dropout Dropout is also one of the important factor to the
model quality. We found out that on the small data, albeit
the training data is 20 times larger than a single direction,
a larger dropout value of 0.5 helps the model to regularise
better than lower values such as 0.2, which is applicable for
all architectures.

BPE size In the earlier experiments on the TED data, we
tried out different BPE sizes of 40000 and 80000 merging
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operations, which were done over the concatenated data of
all languages. We did not see any improvement of translation
and proceeded to use 40000 in the later experiments.

Table 4: BLEU scores on tst2013 for Spoken Language
Translation task

System  tst2013 EN-DE  tst2013 DE-EN
baseline 17.9 15.7
noise 18.4 16.0

6. Conclusions

In this paper, we described several innovative techniques
that we applied to our multilingual neural machine transla-
tion systems, submitted to the IWSLT 2017 Evaluation Cam-
paign. In order to use a single multilingual system instead
of many individual systems, we tailored a standard neural
translation framework to perform multi-task learning, where
each language takes the role of one task. By doing so, we in-
vestigated different architectures with different shared com-
ponents. Our experiments show that ensembling those sys-
tems improves the translation performance of the multilin-
gual task further. In addition, a new training technique, the
noise model, proved to be beneficial in the SLT task by mak-
ing the translation system more robust on spoken data.
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