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Abstract
Neural Machine Translation has been shown to enable in-
ference and cross-lingual knowledge transfer across multi-
ple language directions using a single multilingual model.
Focusing on this multilingual translation scenario, this work
summarizes FBK’s participation in the IWSLT 2017 shared
task. Our submissions rely on two multilingual systems
trained on five languages (English, Dutch, German, Ital-
ian, and Romanian). The first one is a 20 language direc-
tion model, which handles all possible combinations of the
five languages. The second multilingual system is trained
only on 16 directions, leaving the others as zero-shot trans-
lation directions (i.e representing a more complex inference
task on language pairs not seen at training time). More
specifically, our zero-shot directions are Dutch$German
and Italian$Romanian (resulting in four language combi-
nations). Despite the small amount of parallel data used
for training these systems, the resulting multilingual models
are effective, even in comparison with models trained sepa-
rately for every language pair (i.e. in more favorable condi-
tions). We compare and show the results of the two multi-
lingual models against a baseline single language pair sys-
tems. Particularly, we focus on the four zero-shot directions
and show how a multilingual model trained with small data
can provide reasonable results. Furthermore, we investigate
how pivoting (i.e using a bridge/pivot language for inference
in a source!pivot!target translations) using a multilingual
model can be an alternative to enable zero-shot translation in
a low resource setting.

1. Introduction
Recently, multilingual translation across different languages
using a single model showed to perform in a comparable way
with single language pair systems. In [1, 2], a multilingual
model has been successfully trained using a standard Neu-
ral Machine Translation (NMT) architecture by applying a
simple preprocessing step on the source side of the training
data. It consists in prepending an artificial language token
indicating the target language id at the beginning of each
sentence. This information guides the system towards a spe-
cific target language both at training and inference time. This
mechanism of guiding the multilingual model is referred to
as target-forcing [2].
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Figure 1: The multilingual system source!target associ-
ation. A parallel data exists for all the 20 directions in
the first multilingual model, where as zero-shot model the
Dutch$German and Italian$Romanian pairs (dashed line)
are excluded

In this work, we present our participation in two
IWSLT20171 [3] shared tasks: i) a multilingual translation
task in a small data condition for twenty language directions,
and ii) a multilingual zero-shot task in a similar small data
condition. For convenience, throughout the paper, we refer to
the models trained for the two tasks respectively as Multilin-
gual and Zero-shot models. We trained the two models sep-
arately, by sharing a common configuration. The only differ-
ence, at training time, is that we removed the four language
directions involved in the zero-shot task. Figure 1, shows the
twenty possible associations between the source and target
pairs, avoiding (source = target) condition. We trained the
models following the same preprocessing and training pro-
cedures described in [1]. Note that, due to its small size
(⇡ 200K for each language pair), the training data set be-
comes even more sparse after preprocessing and dropping
sentences above a certain length (which becomes necessary
in order to facilitate and speed-up the training process).

For comparing the performance of the multilingual and
zero-shot models, we trained 20 single language pair mod-
els. For a fair comparison, the preprocessing and training
procedures are similar to the multilingual models. The same
models are also used for the comparison against the pivot-
ing method, in which English is fixed as the bridging lan-
guage. In terms of evaluation results, the overall performance
of the zero-shot model is satisfactory even if, unsurprisingly,
lower than the multilingual model. The largest distance is
observed in Romanian!Italian (�3.02 BLEU points), while
the smallest difference is observed in the Dutch!German

1https://sites.google.com/site/iwsltevaluation2017/
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direction (-1.63 BLEU points).
In the following sections of this paper, we begin by in-

troducing the main concepts related to NMT (§2). Then, we
review the related work in a multilingual (§3.1) and zero-
shot (§3.2) translation domains. In Section 4, we describe the
training details (§4.1), the dataset, the preprocessing proce-
dures (§4.2), as well as the results of the single language pair
(§4.3) and the multilingual (§4.4) models. For comparing the
different approaches, we focus on the zero-shot directions in
section (§4.5). Then, we give further analysis in Section 5
and conclude the work in Section 6.

2. Neural Machine Translation
NMT comprises an encoder, a decoder, and an attention-
mechanism, which are all trained with maximum likelihood
in an end-to-end fashion [4]. The encoder is a recurrent neu-
ral network (RNN) that encodes a source sentence into a se-
quence of hidden state vectors. The decoder is an RNN that
uses the representation of the encoder to predict words in the
target language [5] [6]. The attention mechanism is used to
improve the translation by deciding which part of the source
sentence can contribute mostly in the prediction process at
each time step.

As shown in Figure 2, which simplifies the NMT archi-
tecture, first the encoder (green colored section) takes the
source words left to right, maps them to vectors and feeds
them into the RNN. When the <eos> (i.e end of sentence)
symbol is seen, the final time step initializes the decoder
RNN (blue colored). At each time step, the attention mecha-
nism is applied over the encoder hidden states and combined
with the current hidden state of the decoder to predict the
next target word. Then, the prediction is fed back to the de-
coder RNN to predict the next word until the <eos> symbol
is generated [7].

In order to build a multilingual model, in this work we
used a standard encoder-decoder NMT architecture with a
general attention mechanism that combines via dot product
the decoder hidden state and a linear transformation of the
encoder state [8]. Furthermore, we used four layers of RNN
both on the encoder and decoder side.

3. Related Work
3.1. Multilingual NMT

Early works in multilingual NMT are characterized by the
use of separate encoder, decoder, and an attention mechanism
for every language direction [9] [10]. Firat et al. [11] intro-
duced a way to share the attention mechanism in a many-to-
many translation setting still keeping separate encoders and
decoders for each source and target language. In a more
closely related approach to the one, we utilized in our sys-
tems, [1] and [2] introduced a way to share not only the
attention mechanism but also a single encoder-decoder. In
both works, an artificial language token is prepended at a
preprocessing stage to the source sentences in order to en-

able multilingual translation. In a rather different way, the
approach in [2] appended a language-specific code to differ-
entiate words from different languages. The word and sub-
word level language-specific coding mechanism is proved to
be expensive, by creating longer sentences that can deterio-
rate the performance of NMT [5]. In addition, they appended
the artificial token as a prefix and postfix on the source side
of the training and validation data. In [1], however, only one
artificial token is prepended at the beginning of the source
sentences. This single token, which specifies the target lan-
guage proved to work in a comparable performance as speci-
fying two (prefix and postfix) tokens. In this work, we follow
the Johnson et al. [1] approach for prepending.

3.2. Zero-Shot Translation

Firat et al. [12], suggested a zero-resource translation by ex-
tending their approach in [11] with a shared attention mech-
anism and a separate encoder-decoder architecture for every
language pair. They leverage a pre-trained multi-way mul-
tilingual model, and then fine tune it with synthetic parallel
data generated by the model itself. Their approach, how-
ever, does not allow a zero-shot translation. Instead, they
proposed a many-to-one translation setting and used the idea
of generating a pseudo-parallel corpus [13] for fine-tuning
purposes Moreover, also in this case, the need of separate
encoders and decoders for every language pair significantly
increases the model complexity. So far, though simple, the
most effective approach proposed for zero-shot translation is
the one based on target-forcing at preprocessing stage [1] [2].
The most attractive benefit of the target-forcing comes from
the possibility to perform zero-shot translation with the same
multilingual setting as in [1, 2].

However, recent experiments have shown that the mech-
anism fails to achieve reasonable zero-shot translation per-
formance for low-resource languages [14], due to the fact
that the target-forcing mechanism requires more examples
at training time to effectively handle zero-shot at inference
stage. This is particularly visible in case of zero-shot target
language which appears only once in comparison with other
source ! target pairs. The promising results in [1] and [2]
hence require further investigation to verify if their method
can work in various language settings, particularly for low
resourced and across distant languages.

As an alternative strategy, pivoting is a rather in-
tuitive way to approach zero-shot translation, especially
when it involves low-resourced languages. The idea is to
translate from/into under-resourced languages (Lsource and
Ltarget) by leveraging data available for a high-resourced
one (Lpivot) used as “bridge” between the two languages
(i.e. Lsource ! Lpivot ! Ltarget) [15]. However, re-
sults in the pivoting framework are strictly bounded to the
performance of the two combined translation engines, and
especially to that of the weaker one. In contrast, multilin-
gual models that leverage knowledge acquired from data for
different language combinations (similar to multi-task learn-
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+

Hello<2it> !

 !Ciao <eos>

<eos> !Ciao

Figure 2: NMT architecture with encoder-decoder and an attention mechanism, showing an example input "Hello !" translated
to Italian "Ciao ! using a <2it> target-forcing mechanism". The first two layers of the encoder (green) are a bidirectional RNN
with two additional forward layers. On the decoder side (blue), however, all the layers are forward. The attention mechanism is
shown for the first time step of the prediction. Input feed is used to pass the context vector as additional input to the decoder.

ing) can potentially compete or even outperform the pivoting
ones. Taking the different approaches to perform zero-shot
in consideration, in Section 4.5, we show the comparison be-
tween the zero-shot strategies (i.e direct source!target zero-
shot translation and using a pivot language) employing the
zero-shot model and the single language pair models.

4. Experiments

4.1. Training Details

For training the multilingual and the single language pair sys-
tems we used a standard encoder-decoder NMT architecture
with attention mechanism [8][16]. The encoder and decoder
sides of the network consist of four layers, where the first two
layers of the encoder are bidirectional. As shown on the right
side of Figure 2, at each time step an input-feeding mecha-
nism is applied to pass the context vector as an additional
input to the decoder by concatenating it with the embedding
of the predicted word [8]. Table 1, shows the parameters
used for training both the multilingual and single language
pair systems.

For optimization, based on preliminary experiments and fol-
lowing best practices from previous work [1], we used Adam
[17] with a learning rate of 0.001. Learning rate decay of 0.5
is applied if the perplexity does not decrease on the validation
set or the number of epoch passes 8. For reducing perplexity
and the network size, we also share the word and softmax
embedding of the decoder as suggested by Press and Wolf
[18]. To prevent overfitting [19], particularly for the training
dataset in this low-resource setting, we applied a dropout of
0.3 on all layers [20]. At time of inference, a beam search
of size 10 is utilized to balance decoding time and accuracy
of the search. Where each decoding step takes a batch of
128 evaluation set. The experiments are carried out using the

Parameter Value
RNN type LSTM
RNN size 1024

embedding 512
encoder bidirectional

encoder depth 4
decoder depth 4

beam size 10
batch size 128
optimizer adam
dropout 0.3

Table 1: Parameters used to train both single language pair
and multilingual models.

open source OpenNMT-py2 toolkit [7].
With the aim to compare the performance of the multilin-

gual models, we trained twenty single language pair models
with the same amount of training data used by each direc-
tion of the multilingual models (see Table 2 for details). For
every direction of the multilingual models and every single
pair model we report case sensitive detokenized (i.e using the
internal tokenization of the scorer) BLEU scores [21] com-
puted using mteval-v13a.pl.

4.2. Dataset and Preprocessing

In the source-target pair of the five languages considered in
this work, there are ⇡ 200k parallel training sentences in
each pair. As shown in Table 2, test2010 is used for eval-
uating the models, whereas test2017 is used for comparison
purposes and as the official submission test set. For training
both the multilingual and single language pair models, the
same number of sentences are used.

2https://github.com/OpenNMT/OpenNMT-py
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Direction Training test2010 test2017
English$ German 197,489 1,497 1,138
English$ Italian 221,688 1,501 1,147
English$ Dutch 231,669 1,726 1,181

English$ Romanian 211,508 1,633 1,129
German$ Italian 197,461 1,502 1,133

German$ Romanian 194,257 1,626 1,121
Dutch$ Italian 228,534 1,623 1,183

Dutch$ Romanian 199,762 1,637 1,123
German$ Dutch 209,169 1,729 1,174

Italian$ Romanian 209,668 1,605 1,127

Table 2: Number of sentences used for training and evalua-
tion in a source$target combination. The German$Dutch
and Italian$Romanian four language directions shown in
the third row is removed from the training data of the zero-
shot multilingual model.

To prepare the data for training, we first prepare a tokenized
version. Then, using a shared byte pair encoding (BPE)
model, we segment the tokens into sub-word units [22]. The
BPE model is trained on a joint source and target dataset cov-
ering all the language directions. For this operation we used
8, 000 BPE merging rules. A frequency threshold of 30 is
used to apply the segmentation. For choosing the BPE seg-
mentation rules, we follow the suggestion of Denkowski and
Neubig [23] in such small data condition. When training the
multilingual models, we add the target-forcing language to-
ken at the source side of each parallel data, both for train-
ing and validation sets [1]. Apart from the data set provided
by the IWSLT17 shared task [24], for the multilingual small
data condition no additional data are utilized, neither for the
preprocessing stage nor for the experiments.

4.3. Single Language Pair Models

To compare the two evaluation tasks (multilingual and zero-
shot model), we trained twenty single language pair mod-
els. As discussed in training details (4.1), these models
are trained in a similar setting with the multilingual mod-
els. Table 3, summarizes the performance each of the
twenty models on test2017. Except for the slight gain in the
Romanian!Italian direction over the results of the multilin-
gual model (see Table 4), the performance of the single lan-
guage pair models (see Table 3), are poorer in the rest of the
other 19 directions.

4.4. Multilingual Models

In this experiment, we present the multilingual 20 direction
and zero-shot 16 direction models. Note: in case of the
zero-shot model the training data for the German$Dutch
and Italian$Romanian directions are dropped. As in the sin-
gle language pair models, the rest of the training follows the
steps described in Section 4.1. The results shown in Table 4,
are the primary runs of the official submission for the mul-

tilingual and zero-shot small data condition tasks. The term
of comparison between these two multilingual models is fo-
cused on the four zero-shot directions. As expected, the zero-
shot model performed poorly than the multilingual model in
all of the four directions.

Particularly, we see a larger gap of 3.02 for the Ro-
manian ! Italian, whereas the Italian ! Romanian direc-
tion has a difference of 2.48 BLEU score. In case of Ger-
man! Dutch and Dutch! German the gap closes to 1.99
and 1.63 respectively. For the other 16 non-zero-shot direc-
tions, the multilingual model performed slightly better than
the zero-shot model. However, in case of Dutch! English
and Italian!Dutch there exists a pattern where the zero-shot
model performed better. In Table 5, we separately reported
additional results for the multilingual small-data condition
task evaluated using a model from an on-time submission.
Except for the reporting purpose the results from Table 5, are
not included in any of the comparisons made in this work.

4.5. Zero-shot Vs. Pivoting

In this analysis, we compare zero-shot translation mecha-
nisms using the Zero-shot multilingual model and models
trained on single language pair. Specifically, we compared
three different results of a zero-shot translation on the IWSLT
tst2017. The first is a direct zero-shot from a source! tar-
get language using the Zero-shot multilingual model. The
other two results are acquired through a pivoting translation
mechanism in a two-step translation. Hence, pivoting using
single language pair models requires a source!pivot and a
pivot!target model. However, this is not the case for the
Zero-shot model which assumes to already have the pivot
paired with the source and target languages. In both cases,
we use English as a pivot language. Thus, for the Italian$
Romanian zero-shot directions we follow Italian$ English
$ Romanian, whereas the German $ Dutch translation is
done as German$ English$ Dutch two-step translations.

Approaches De!Nl Nl!De It!Ro Ro!It
Zero-shot 17.17 16.96 16.58 18.32

Zero-shot Pivot 17.67 16.84 17.3 19.57
Single Pair Pivot 15.3 14.9 15.22 17.2

Figure 3: A BLEU score comparison of German $ Dutch
and Italian$ Romanian four language directions using three
different zero-shot translation mechanisms. The first row is a
direct zero-shot translation using the Zero-shot model, while
the last two rows show the results of the pivoting mechanism.

The results in Table 3, shows better performance of the
Zero-shot model using a pivoting mechanism (except the
Nl!De direction). In a surprising way, the pivoting using
two separate single language pair models for each transla-
tion direction perform worse than the direct zero-shot and
the pivoting zero-shot using the multilingual model in row 1
and 2.
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Single Pair En�De En�Nl En�It En�Ro De�Nl De�It De�Ro Nl�It Nl�Ro It�Ro
! 19.84 26.41 29.90 21.41 18.93 15.52 12.52 18.47 14.71 18.67
 24.69 30 34.03 28.03 17.93 15.47 13.81 20.13 16.78 21.71

Table 3: BLEU score on IWSLT tst2017 from twenty single language pair models that are trained separately. The bold highlighted
Romanian!Italian direction is the only gain over the multilingual system.

Multilingual En�De En�Nl En�It En�Ro De�Nl De�It De�Ro Nl�It Nl�Ro It�Ro
! 20.88 26.72 29.6 21.95 19.16 16.84 14.62 19.33 16.54 19.06
 25.62 29.79 34.24 28.93 18.59 16.88 15.87 20.27 18.92 21.34

Zero-shot
! 20.67 26.11 28.86 21.54 17.17 16.28 13.93 19.76 15.88 16.58
 25.22 30.04 34.16 28.52 16.96 16.13 15.47 20.00 17.72 18.32

Table 4: BLEU scores on the IWSLT tst2017 using the multilingual model trained on 20 directions and the zero-shot model
trained using the dataset of the 16 directions. Bold highlighted Nl!En and Nl!It are the only cases where the zero-shot model
performed better than the multilinugal.

5. Discussion
The experiments in this work showed that a single multilin-
gual system can perform better than independently trained
single language pair systems. Hence, training a single sys-
tem on the concatenation of all the language directions helps
to maximize the parameter sharing in the common repre-
sentation space. The consistent gain of the multilingual
model in 19 directions except for the slight loss for the
Romanian!Italian shows the potential behind multilingual
approaches. Unlike the scenario in previous work [1], we
showed the improvements in a low resource setting, without
any additional data to tune the system. In case of the zero-
shot model, we considered the non-zero-shot 16 directions
for comparison with the bilingual models. In an equivalent
way with the multilingual model, the zero-shot model has
shown gains over the single language pair models.

Even though the zero-shot model showed a compara-
ble performance with the multilingual model in the 16 non-
zero-shot directions, there is a slight performance degrada-
tion in all but the Dutch!English direction. For instance,
a 29.6 BLEU score for English!Italian of the multilingual
model decreases to 28.86 BLEU with the zero-shot model.
However, for the translation directions Source!English the
maximum loss for the zero-shot model is 0.41 BLEU in
the Romanian!English direction. As we expected initially,
these results reflect a condition where the number of lan-
guage pairs with English (on the encoder and decoder side)
stayed the same in both multilingual models. Whereas
the absence of the four zero-shot (source$target) combina-
tions influenced the translation performance of the Zero-shot
model even for the language pairs seen at training time.

The pivoting experiments discussed in Section 3, is an-
other way of showing the reasonable performance of the
zero-shot model. The two-step inference (i.e source! pivot,
and then pivot!target) for zero-shot translation provided a

better performance in three directions out of four (see Ta-
ble 3), in comparison with a direct zero-shot translation.
We observed that using English (the only language that has
a pair and better performance with all the zero-shot direc-
tions) as the bridge language played the major role for the
gain. However, as discussed in Section 3, pivoting using
two separate bilingual systems is found to be weaker (see
the third row of Table 3) in leveraging the pivot language.
This can be observed from the weaker bilingual systems in
comparison with the zero-shot model. Particularly, both in
the source!English, and as well in the English!target the
bilingual model performance is poor in comparison with the
zero-shot model, see Table 3 and 4.

Overall the reasonable performance of the zero-shot
model shows the potential of a multilingual approach. In the
subsequent comparisons using a pivoting method, it becomes
clearer that in a multilingual setting it is possible to train a
more robust model that can handle the noise from the output
of the first step translation.

6. Conclusion
In this work, we showed how a multilingual system can de-
liver better performance over bilingual systems in twenty dif-
ferent directions. In addition, we explored the performance
of a multilingual model for a zero-shot translation task in a
direct source-to-target translation and using a pivot language
in a two-step translation. The Zero-shot model proved to
be an effective way of achieving a zero-shot translation for
German$ Dutch and Italian$ Romanian directions, while
showing a comparable performance in the non-zero-shot di-
rections with the Multilingual model trained on the full train-
ing dataset. In addition to avoiding training several indepen-
dent systems, multilingual model showed to be beneficial in
such low-resource setting.

In future works, we plan to thoroughly investigate the
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Multilingual En�De En�Nl En�It En�Ro De�Nl De�It De�Ro Nl�It Nl�Ro It�Ro
! 20.28 25.68 29.32 21.12 18.67 15.85 13.43 19.25 15.48 17.89
 24.27 30.16 33.86 28 17.65 15.98 14.99 18.77 17.5 21.28

Table 5: BLEU scores for the twenty language directions evaluated using a multilingual model on tst2017 (results are using a
model from an on-time submission of the multilingual small data condition task).

behavior of the multilingual systems, seeing that the target-
forcing mechanism plays the main role in redirecting the
translation to the right target language, and susceptible to
ambiguities in a low-resource setting. In addition, we plan
to explore a better way to balance the training dataset for
the different language directions. Particularly, for achieving
a zero-shot translation we expect that finding the right lan-
guage combinations, amount of dataset, and the number of
languages require further investigation. Furthermore, a hu-
man evaluation on the outputs of the bilingual and the multi-
lingual models would be interesting to assess the translation
quality, in addition to confirming the evaluation scores, re-
ported in this work.
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