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Abstract

This work describes the Neural Machine Translation (NMT)
system of the RWTH Aachen University developed for the
English<+German tracks of the evaluation campaign of the
International Workshop on Spoken Language Translation
(IWSLT) 2017. We use NMT systems which are augmented
by state-of-the-art extensions. Furthermore, we experiment
with techniques that include data filtering, a larger vocabu-
lary, two extensions to the attention mechanism and domain
adaptation. Using these methods, we can show considerable
improvements over the respective baseline systems and our
IWSLT 2016 submission.

1. Introduction

We describe the Neural Machine Translation (NMT) system
of the RWTH Aachen University developed for the evalu-
ation campaign of International Workshop on Spoken Lan-
guage Translation (IWSLT) 2017. We have participated in
the unofficial bilingual Machine Translation (MT) track for
the German—English and English— German language pairs.
The in-house NMT system incorporates various state-of-the-
art extensions.

For the IWSLT 2016 evaluation campaign, RWTH
Aachen utilized different translation systems [1] including a
state-of-the-art phrase-based system, a neural machine trans-
lation system and the joint translation and reordering (JTR)
model [2]. Furthermore, last year’s system applied feed-
forward and recurrent neural language and translation mod-
els for reranking. The attention-based approach had been
used for reranking the n-best lists for both the phrase-based
and the hierarchical setups. On top of these systems, a system
combination enhances the translation quality by combining
individually trained systems. For the IWSLT 2017 evalua-
tion campaign, we developed the systems only based on the
NMT approach as it has shown the most promising results
among all.

This paper is organized as follows. In Section [2] we
briefly address our preprocessing which differs from our pre-
vious submissions [3, [1]. Section |3| describes the details of
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the NMT systems, the baseline, our optimization techniques
as well as two extensions to the attention mechanism. Our
experiments for each track are summarized in Section 4]

2. Preprocessing
2.1. Preprocessing

Recent studies [4] showed that attention-based neural net-
work systems do not benefit from several established prepro-
cessing features such as compound splitting and POS-based
word reordering. Therefore, we decided to employ a sim-
pler version of preprocessing which uses only tokenization,
frequent casing, and simple categories. In this approach,
numbers are not mapped to a specific category-token but are
treated like regular words instead.

All words and numbers are split into subword units us-
ing byte-per-encoding (BPEE introduced by [5]. We use 90k
BPE merging operations trained jointly on the concatenated
source and target training data. In the preprocessing, we do
not distinguish if a language is seen as a source or target lan-
guage.

2.2. Data Filtering

In order to remove incorrectly aligned sentence pairs, we
drop all training samples for which the length of the source
sentence exceeds the length of the target sentence by more
than about 70%. We applied this method for both translation
directions. In the following we describe the effects for the
English—German task. The length comparison is executed
on the word level and results in the total removal of 1.7M
sentences, i.e. 8% of the total training data. The majority of
removed sentence pairs are part of the Common Crawl (300k
sentences i.e. 14% of Common Crawl) and the OpenSub-
titles corpora (1000k sentences i.e. 8% of OpenSubtitles).
The removal rates for the individual corpora can be found in
Table[ll

Thttps://github.com/rsennrich/subword-nmt
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Table 1: Effect of filtering on the individual training corpora on the example of English—German.

‘ Common Crawl  Europarl UN News Comment  OpenSub QED TED Wiki ‘ Total
# sentences 2,399,123 1,920,209 162,981 216,190 13,430,645 72,747 206,112 2,459,662 | 20,867,669
# removed 336,248 38,032 3,323 3,547 1,056,628 4,343 2,560 218,860 1,663,541
% removed 14.02% 1.98% 2.04% 1.64% 7.87% 597%  1.24% 8.90% 7.97 %

3. Neural Machine Translation System

The best performing system provided by RWTH Aachen is
an attention-based recurrent neural network similar to [6].
Provided with a source flj and a target sequence e’l, NMT
models the conditional probability of the target given the
source. The model itself consists of an encoder which pro-
duces a continuous representation of the input sequence flj ,
an attention mechanism which allows the system to focus on
certain words during the translation and a decoder which re-
turns a probability distribution over all possible target tokens
for every time step.

3.1. Baseline System

We use the attention-based NMT system as our baseline. In
our setup, all words are projected into a 620-dimensional em-
bedding space both on the source and on the target side. The
bidirectional encoder and the unidirectional decoder consist
of LSTM nodes [/] with peephole connections using 1000
cells. The output layer of the networks is a two-layer maxout
[8] followed by a softmax operation that creates a probability
distribution over the target vocabulary. We use the additive
attention with tanh activation function as proposed in [6] fol-
lowed by the softmax to compute the attention weights.

3.2. Stacked Layers

In this architecture, we experiment with two stacked LSTM
layers in both encoder and decoder to build a deeper model.
We connect all internal states of the first LSTM layer to the
second. This approach is applied both in the bidirectional
encoder and the unidirectional decoder.

3.3. Optimization

Since the learning trajectory considerably depends on the op-
timization technique, the optimizer plays an important role in
fast convergence, training stability and reliable performance.
It is desired to have a fast convergence to a zone in which
a good local minimum is located. After that, the algorithm
shrinks the learning rate to get a finer search pattern and con-
verge to a suitable model within the located area.

As proposed in [9]], we start the training using Adam [10]]
with a learning rate of 0.001 up to 600k iterations. After-
wards the learning rate of the Adam optimizer is scaled down
by the factor of 0.75 every 20k iterations. In the following,
we refer to this approach by annealing Adam.
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3.4. Fertility Feedback

One of the problems arising from the attention-based
sequence-to-sequence model, which is used as our baseline,
is that there is no explicit alignment or coverage informa-
tion. The attention weights are included in the context vector
and there is no guarantee that the network can extract this
information in the next attention computation. One of the
proposed solutions [11]] is to feed back the sum of the align-
ments over the past decoder steps. This information is added
to the computation of the attention energies for each source
position. Hence, in each decoder step this sum indicates how
much attention has been given to the source position j up to
step i. The feedback term B, j 1s expressed as:

i-1
Bij= Zak,j (1)
k=1

One might simply use ﬁ, ; as an additional information
in order to compute the attention energies. Instead, we use
a fertility parameter that determines how many target words
should be generated by a single source word. The concept
of fertility has been introduced in IBM Model 3 and can be
integrated into neural networks [11}[12].

Let’s assume a single word should be translated twice,
then f3; ; can be divided by a factor of 2. This normalizes the
sum presented in Equation |1} such that the network can use
the information whether the current word is over- or under-
translated. Therefore, ﬁi, ; is defined as:

1 i—1
Bij=—

G, j
¢j k=1

(2
where ¢; refers to the fertility of f;. This term depends on
the encoder states, because it can vary if the word is used in
a different context. Like [[11] in our model ¢; is defined as:

9;=N-0(vy -h)) 3)
where N specifies the maximum value for the fertility which
is set to 2 in our experiments. This value is included in the
calculation of the attention energies e; ;:

eij= v tanh (Ws,;] +Uh; +Vﬁi,j) )

where 4 and s; denote the output of the encoder and the de-
coder state respectively. W, U, V and v are the weight ma-
trices.
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3.5. Convolutional Feedback

In the standard attention-based model, there is no depen-
dency on the source position while computing the attention
weights. Several authors argue [13| [14] that this indepen-
dence assumption does not hold for monotonous alignments
as can be found in speech recognition. Although the align-
ments in machine translation are not monotonous in gen-
eral, we still encounter many cases of local monotonicity
in many languages. Convolutional attention feedback tries
to encounter such problems by putting an explicit focus on
the source positions around j when generating the j-th target
word. Formally, it computes feature vectors ¥; by applying
a one-dimensional convolutional operation over the attention
weights from the last decoder step:

Yi=G*01 )
where G € RV*Z+1  This leads to N vectors, one for each
filter that has been applied. Every filter moves over a window
of size 2k + 1 that is centered at position j, i.e.:

Jtk

%i= Y, Gujt 0
I=j—k

forallm=1,---,N. (6)

The result of this is used as a feedback term to compute the
attention weights in the current decoder step:

e j= ‘L)T tanh (Wsi—l —+ Uhj + VY!/) . (7)

We use 5 filters with a window of size 5 in our experiments
that include convolutional feedback. Again we use & respec-
tively s; to denote the output of the encoder and the internal
state of the decoder.

4. Experimental Evaluation

For the evaluation, we carry out experiments on two trans-
lation tasks: German—English and English—German. The
translation systems are built using our in-house implemen-
tation of the attention-based NMT approach which relies on
the Blocks? framework [13] and Theand® [16].

All systems are trained on the filtered bilingual data as
described in Section [2.2]and no monolingual data. In order
to adapt our system to the domain of TED Talks, we add
the TED corpus eleven times and the QED corpus six times
to our training data. This results in a training set of 21.6M
parallel sentence pairs.

Before training, we shuffle the training samples once and
use mini-batches of 50 sentence pairs while sentences longer
than 65 subwords are dropped. The processing of one mini-
batch is called an iteration. The networks are trained for up
to 600k iterations and equipped with the various features pre-
sented in Section[3] We evaluate the models every 10k itera-
tions.

Zhttps://github.com/mila-udem/blocks-examples
3http://deeplearning.net/software/theano/
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Throughout our experiments, we observe that employ-
ing the Adam annealing scheme consistently gives us strong
improvements of at least 1.5% BLEU over the pure Adam
optimizer. Similar gains can be achieved by averaging the
weights among the four best models of a single training run
as described in the beginning of [17]]. Both methods are ap-
plied to improve upon a weak Adam endpoint. Hence, we
always pick the option that leads to a better average BLEU
score. The results of the other method are omitted in this
paper for the sake of brevity.

We try to fine-tune the models on the indomain data
which consists of the TED corpus to which TED.tst2011,
TED.tst2012 and TED.tst2013 sets were added.

Decoding is performed using beam search with a beam
size of 12 and the scores are normalized w.r.t the length of
the hypotheses.

We use TED.dev2010 consisting of 888 sentences
as our validation set and evaluate our models on
TED.tst2010, TED.tst2014 and TED.tst2015 as
unseen test sets. The systems are evaluated using case-
sensitive BLEU [18] computed by mteval-v13a E, TER
[19] computed by tercom E and CharacterTER [20] which
we abbreviate to CTERP,

To avoid the out of vocabulary problem, we use the joint
BPE [5] to convert sentences into the sequences of subwords
on both the source and the target side. In both tasks, the
number of joint-BPE merging operations is 90k.

4.1. German— English

Based on the work done in [4], we equip the
German—English baseline with two layers of stacked
LSTMs in both the encoder and the decoder which is
referred to as multilayer enc-dec baseline. The
total number of parameters for this setup is about 220M.
All networks are trained with 30% of dropout for better
regularization. The results are depicted in Table |2, Row
1. After training the network and reaching convergence,
we apply annealing Adam as mentioned in Section for
additional 300k iterations (Row 2 in Table . As shown, this
strategy results in improvements up to 2.4% BLEU score,
1.4% TER and 1.4% CTER averaged over the four test sets.
Using additional information from previous attention
states by employing fertility feedback, we gain 0.5% BLEU
and 0.1% TER on average. The results in Row 3 of Table [2]
have been obtained by applying annealing Adam. On top of
this model, we fine-tune the system. Here, we pick the best
model and retrain it using the indomain TED data discussed
before for around 20 epochs. Surprisingly, fine tuning does
not help and even hurts slightly in terms of TER. One of the
reasons is that we have already weighted our indomain data
in the training data such that any further fine tuning does not
affect the learning trajectory. In the other words, the model

“ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl
Shitp://www.cs.umd.edu/ snover/tercom/
Shttps://github.com/rwth-i6/CharacTER
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Table 2: Results measured in BLEU [%], TER [%] and CTER [%] for the individual systems for the German— English MT task.

is smoothly adapted to the TED domain from the first iter-
ations. We also apply convolutional feedback as explained
in Section [3.5] and average the best four models of a single
training run (see Row 5). As it can be seen, convolutional
feedback is slightly better in terms of TER and hurts in terms
of BLEU compared to Row 2.

Finally, we build an ensemble [21] of different archi-
tectures including two multilayer enc-dec baseline, fertility
feedback and convolutional feedback models. Ensemble im-
proves the translation performance compared to the best sys-
tem (Row 3) by 1.4% in terms of BLEU, 0.6% TER and 0.4%
CTER on average.

4.2. English—German

For the English—German task we start with a simple base-
line described in Section [3.1|which employs a single LSTM-
layer for both the bidirectional encoder and the decoder. The
model is trained using the Adam algorithm for 600k itera-
tions and by default, no dropout is applied.

On top of this baseline, we add various feature combi-
nations. Results are shown in Table [3] Adding dropout to
the baseline system yields an average improvement of 0.7%
BLEU. Based on this, we continue the training with the an-
nealing Adam for 300k iterations which gives us an improve-
ment of 2.5% BLEU.

Furthermore, we train a series of models that utilize the
fertility feedback presented in Section Adding this fea-
ture on top of the baseline system yields an improvement of
0.3% BLEU (Table[3] Row 4). Adding a second LSTM-layer
to both the encoder and the decoder leads to an average gain
of 0.2% BLEU and 1.1% TER.

Again, we observe that it is important to keep on training
for 300k iterations with a small learning rate as this boosts
our performance by 2.3% BLEU (Table 3] Row 7). Usually,
the models extracted from a training run are among the last
models saved during the 600k iterations. Therefore, the ef-
fect of the annealing Adam scheme can be attributed to an
insufficiently small learning rate or a model that is not fully
converged. However, it hurts the performance of the model
if we further continue training on the regular training data.

We fine-tune the models either on the indomain data or an
expanded version which contains the QED corpus as well.
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TED.dev2010 TED.tst2010 TED.tst2014 TED.tst2015
# System BLEU TER CTER | BLEU TER CTER | BLEU TER CTER | BLEU TER CTER
1 multilayer enc-dec baseline 343 449  46.1 33.0 460 48.1 313 490 516 31.1 482 50.6
2 + annealing Adam 36.4 432 452 350 443 463 33.8 462 493 340 46.0 483
3 + fertility feedback 37.0 424 448 356 437 453 339 462 490 346 454 484
4 + fine tuned 36.2 432 449 356 440 452 339 46.6 483 345 457 48.6
5 + convolutional feedback (averaged4) | 36.2 43.0 454 349 4411 465 33.1 464 492 33.1 458 49.0
6 ensemble 2, 3,5 383 412 434 373 423 443 355 449 478 355 445 476

Both approaches led to almost no change w.r.t BLEU and
TER. As in the case of the German—English system, we con-
clude that due to the weighting of the TED data, additional
domain adaptation is of little use. However the models that
are fine-tuned on the TED corpus perform a little bit stronger
in the final ensemble which is why we decide to keep them.

In total, we combine fertility feedback, multi-layered en-
coder and decoder as well as dropout with an annealing ver-
sion of Adam to get an improvement of 3.3% BLEU (Table
Bl Row 9). Surprisingly, by averaging the four best fertil-
ity feedback models (Table [3] Row 5), we obtain a smaller
model that has been trained for a much shorter period of time
but performs only 0.3% BLEU worse than to the fine-tuned
one on average.

Combining several of the systems in one ensemble led to
an average improvement of 1.5% BLEU and 1.4% TER over
our single best system.

4.3. Final Results

Compared to last year’s submission, we have completely
moved towards pure neural MT systems. Although last
year’s system contains a phrase-based system in combina-
tion with the JTR model [2]], neural language and translation
models as well as NMT systems, the results are improved
by 2.3% BLEU and 1.8% TER for the TED.tst2010 set
and by 1.3% BLEU and 1.6% TER on the TED.tst2014
set as shown in Table d] Furthermore, the pure NMT system
for 2017 submission shows a huge improvement compared to
the 2015 submission in which the NMT model had only been
used in the reranking of the n-best lists for both phrase-based
and hierarchical setups.

The performance on the TED.tst2016 and
TED.tst2017 test sets is shown in Table [5I We evaluate
our hypothesis via the IWSLT 2017 evaluation server.

5. Conclusion

The RWTH Aachen has participated in two bilingual MT
tracks for the German—English and English—German
IWSLT 2017 evaluation campaign. The 2017 submission in-
cludes neural models only opposed to last year’s system in-
cluded the NMT system and the phrase-based system. The
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Table 3: Results measured in BLEU [%], TER [%] and CTER [%] for the individual systems for the English—German MT task.

TED.dev2010 TED.tst2010 TED.tst2014 TED.tst2015
# System BLEU TeErR CTER | BLEU TeER CTER | BLEU TER CTER | BLEU TER CTER
1 baseline 26.0 553 50.6 264 543 511 246 571 537 272 552 511
2 + dropout 26.7 53.7 505 274 53.0 5038 253 564 539 274 551 513
3 + annealing Adam 286 521 471 302 51.0 485 279 539 50.7 302 53.0 484
4 + fertility feedback 264 543 506 26.7 540 515 253 567 538 270 555 509
5 + average4 289 509 470 299 509 477 272 543 505 299 524 479
6 + multilayer enc-dec | 26.5 53.5 50.0 27.1 535 513 252 562 535 273 545 507
7 + annealing Adam 28.8 51.1 468 29.6 512 480 276 540 500 299 52,6 483
8 + fine tuned 284 514 470 29.8 512 476 275 543 498 299 527 474
9 + dropout 289 514 473 30.1 50.8 474 276 541 503 305 523 468
10 ensemble 3,5,8,9 303 499 452 31.8 495 459 29.2 528 4838 315 511 459

Table 4: Comparison to last years’ German—English MT
task submissions. Results measured in BLEU [%], TER [%]
and NIST.

TED.tst2010 TED.tst2014

System BLEU TER CTER | BLEU TER CTER
2015-Submission [3] | 31.9 47.6 455 - -
2016-Submission [1] | 35.0 44.1 427 342 465 469
2017-Submission 373 423 443 355 449 478

Table 5: Results measured in BLEU [%], TER [%] and NIST
on TED.tst2016 and TED.tst2017.

TED.tst2016 TED.tst2017

MT Task | BLEU TER NiIsT | BLEU TER NIST
De—En 3538 4448 7.8947 | 3022 49.44 17.1608
En—De 28.09 5523 6.5995 | 25.12 59.09 6.1239

baseline systems for the MT track utilize our state-of-the-art
attention-based neural machine translation. We are able to
further improve translation by applying a multilayer encoder
and decoder and increasing the number of subword units. Us-
ing refinements of the attention mechanism to feedback more
alignment information leads to better results. A significant
gain is achieved by the annealing scheme based on Adam
and the ensemble of different NMT systems.

In total, we achieve a performance of 35.5% BLEU
and 44.5% TER on the TED.tst2015 data set of the
German—English task. Compared to our 2016 submis-
sion, this is an improvement by 1.3% BLEU and 1.6%
TER. For the English—German task our state-of-the-art sys-
tem produces a score of 31.5% BLEU and 51.1% TER on
TED.tst2015.
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