
Evolution Strategy Based Automatic Tuning of

Neural Machine Translation Systems

Hao Qin1, Takahiro Shinozaki1, Kevin Duh2

1Tokyo Institute of Technology, Japan
2Johns Hopkins University, USA

qin.h.aa@m.titech.ac.jp, shinot@ict.e.titech.ac.jp, kevinduh@cs.jhu.edu

Abstract

Neural machine translation (NMT) systems have demon-
strated promising results in recent years. However, non-
trivial amounts of manual effort are required for tun-
ing network architectures, training configurations, and pre-
processing settings such as byte pair encoding (BPE). In this
study, we propose an evolution strategy based automatic tun-
ing method for NMT. In particular, we apply the covariance
matrix adaptation-evolution strategy (CMA-ES), and investi-
gate a Pareto-based multi-objective CMA-ES to optimize the
translation performance and computational time jointly. Ex-
perimental results show that the proposed method automati-
cally finds NMT systems that outperform the initial manual
setting.

1. Introduction

Neural machine translation (NMT) is a new approach to
translation and has shown promising results in recent years.
Many active ongoing research are focused on developing new
architectures and training methods. When developing a ma-
chine translation system based on neural network structure,
the major design question is how to set the meta-parameter
values of the network structure and training configuration,
so that the system performs well in terms of translation per-
formance and computational cost. For network structure de-
sign, important meta-parameters include what kind of net-
work should be applied, the number of layers, the number of
units per layer, and unit type. With the increase of layers,
the problem becomes more complex. For training config-
urations, important meta-parameters include learning algo-
rithm, learning rate, dropout ratio and so on. All of these
meta-parameters interact with each other and affect the per-
formance of the whole system in a subtle way, thus they need
to be tuned simultaneously.

Usually, these meta-parameters are tuned by human ex-
perts based on their experience. Such work requires much
effort. In some ways such bottleneck may limit the wider
adoption of NMT, or lead us into locally-optimal design de-
cisions. Meanwhile, more powerful computing resource are
available for academic and public use. Our motivation is to
replace tedious manual tuning work with automatic compu-

tation conducted by computers.1 As neural network training
process is conducted off-line and a well-trained model can be
used repeatedly, it is meaningful to allocate more computa-
tional resources to meta-parameter tuning as it can alleviate
manual work.

Grid search is a simple method for meta-parameter op-
timization. However, as the number of meta-parameters in-
creases, it becomes less tractable. This is because the num-
ber of lattice points increases in an exponential way with the
increase of the number of meta-parameters. For example, if
there are ten meta-parameters to be tuned and we only try five
values for each parameter, it requires more than 750 billion
(510) evaluations. In the case of NMT, training and evaluat-
ing one instance requires significant computational resource
and time. Thus grid search is not a feasible method even us-
ing the fastest super computer. A black box meta-parameter
optimization framework that can intelligently search a proper
solution is needed.

Related work has proposed many meta-heuristic opti-
mization methods such as genetic algorithms (GA) [1], evo-
lutionary strategies (ES) [2], and Bayesian optimization (BO)
[3]. They have all demonstrated success in many practical
problems. In this study, we focus on an ES method called co-
variance matrix adaptation-evolution strategy (CMA-ES) [4]
and its multi-objective extension [5, 6]. CMA-ES has been
shown to be a practical and simple-to-implement algorithm
that finds good solutions under few instance evaluations. To
the best of our knowledge, this is the first work on applying
CMA-ES to NMT.

Experiments are implemented with the Nematus machine
translation toolkit [7]. Both single-objective optimization
based on BLEU and multi-objective optimization based on
BLEU and validation time are investigated, where validation
time represent the time cost of generating translations on a
validation data set. We show that CMA-ES can automati-
cally find NMT models that improves upon the initial setting.
Further, we analyze the factors that affect translation perfor-
mance and computational time cost.

In the following, we introduce CMA-ES and its multi-

1We use the term ”tuning” to refer to ”hyperparameter search” in neural
networks; note this differs from the fine-tuning in neural networks and the
development set tuning in statistical MT system building.

Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

120

objective extension in Section 2, then describe the machine
translation system used in this work in Section 3. Experiment
setup will be described in Section 5. Experiment results and
analysis are in Section 6 and Section 7, followed by related
work and conclusion.

2. CMA-ES META-PARAMETER

OPTIMIZATION

2.1. CMA-ES

CMA-ES is a population-based meta-heuristics optimization
method. Like GA, it encodes potential solutions as genes.
The differences between GA and CMA-ES are that CMA-ES
uses a fixed length vector x of real values as a gene, and uses
a full covariance Gaussian distribution as gene distribution
instead of directly representing them by a set of genes. In
CMA-ES, it is assumed that the value of the objective func-
tion f(x) can be evaluated, but the availability of an analyti-
cal form of the objective function f(x) and its differentiabil-
ity are not needed. Figure 1 shows the basic process of using
CMA-ES.

In our experiment, the objective function f(x) represents
the performance of the machine translation system trained
with a gene x encoding a set of meta-parameters. The
meta-parameters include model structure and training con-
figurations. Specifically, mean and covariance parameters
✓ = {µ,⌃} of a Gaussian distribution for x is estimated
by CMA-ES so that the distribution is concentrated in a re-
gion where f(x) has a high value2 by maximizing expecta-
tion E [f(x)|✓] as shown in Eq. (1).

bx ⇠ N (x|b✓) s.t. b✓ = argmax
✓

E [f(x)|✓]

= argmax
✓

Z
f(x)N (x|✓)dx.

(1)

In order to solve the problem efficiently, the natural gradi-
ent based gradient ascent is used. The expectation can be
approximately computed by Monte Carlo sampling with the
function evaluation yk = f(xk) as shown in Eq. (2).

r̃✓E[f(x)|✓] ⇡
1

K

KX

k=1

ykF
�1
✓ r✓ logN (xk|✓), (2)

where xk is a sample drawn from the previously estimated
distribution N (x|✓̂n�1), and F is the Fisher information ma-
trix.

Analytical forms of the updates of bµn and b⌃n are ob-
tained by substituting the concrete Gaussian form into Eq.(2),
leading to:

8
><

>:

bµn = bµn�1 + ✏µ
PK

k=1 w(yk)(xk � bµn�1)
b⌃n = b⌃n�1 + ✏⌃

PK
k=1 w(yk)

·
�
(xk � bµn�1)(xk � bµn�1)| � b⌃n�1

� (3)

2Importantly, it is worth emphasizing that CMA-ES is a black-box
method that makes no assumption on the relationship between gene value
and system performance. The search distribution used to sample next gen-
eration genes is Gaussian, but f(x) is not assumed to be Gaussian.

where | is the matrix transpose. Note that as in [8], yk in
Eq.(2) is approximated in Eq.(3) as a weight function w(yk),
which is defined as :

w(yk) =
max{0, log(K/2 + 1)� log(R(yk))}PK

k0=1 max{0, log(K/2 + 1)� log(R(yk0))}
� 1

K
,

(4)
and R(yk) is a ranking function that returns the descending
order of yk among y1:K . That is, R(yk) = 1 for the highest
yk, and R(yk) = K for the smallest yk. This equation only
considers the order of y, which makes the updates less sensi-
tive to the choice of evaluation measurements. As the corre-
spondence to GA, the set of sampled genes {x1,x2, ...,xK}
represents a population of a generation, and an iteration of
the gradient ascent corresponds to a generation.

2.2. Multi-objective CMA-ES using the Pareto frontier

In addition to the accuracy of translation, objectives such as
time cost are also important in practice. Suppose we want to
maximize J objectives F (x) , [f1(x), f2(x), . . . , fJ(x)]
jointly with respect to x. To handle the situation where the
objectives may conflict with each other, we adopt Pareto op-
timality [9, 10]. We say xk dominates xk0 if fj(xk) �
fj(xk0) 8 j = 1, .., J and fj(xk) > fj(xk0) for at least
one objective j, and write F (xk).F (xk0). When given a set
of candidate solutions, xk is Pareto-optimal iff no other xk0

exists such that F (xk0) . F (xk). There are several Pareto-
optimal solutions given a set of candidates. The subset of
all Pareto-optimal solutions is known as the Pareto frontier.
Compared to combining multiple objectives into a single ob-
jective via an weighted linear combination, the Pareto defini-
tion has an advantage that weights need not be specified and
it is more general.

CMA-ES can be extended to optimize multiple objectives
by modifying the rank function R(yk) used in Eq.(4). Given
a set of solutions {xk}, we first assign rank = 1 to those on
the Pareto frontier. Then, we exclude these rank 1 solutions
and compute the Pareto frontier again for the remaining solu-
tions, assigning them rank 2. This process is iterated until no
{xk} remain, and we obtain a ranking of all solutions accord-
ing to multiple objectives in the end. Figure 2 shows the intu-
ition behind multi-objective optimization in our work, where
BLEU score and negative validation time are used as the ob-
jectives. We expect superior individuals with higher BLEU
score and lower translation time than the initial one are ob-
tained by the automatic optimization by CMA-ES.

3. Neural Machine translation

3.1. Encode-Decoder Model

The neural machine translation (NMT) system we used in
this experiment is based on an attentional encoder-decoder
architecture as implemented in Nematus [7]. This is very
similar to the structure proposed by [11].

The NMT model is part of the family of models using

Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

121

Update distribution

評価結果評価結果評価結果評価結果Evaluation
result

Initial meta
parameters

Evaluation of
the individuals

Gaussian distribution

Sample a set of genes
of a generation

Optimized meta
parameters

Figure 1: Automatic system tuning process using CMA-ES.

BLEU

Va
lid

at
io

n
tim

e

x2

x1

x4
Optimization

direction

x5
3x

x6

Figure 2: Pareto based optimization for two objectives.

encoder-decoder with recurrent neural networks. The en-
coder is implemented as a bidirectional neural network with
gated recurrent unit [12]. First, it reads the input sentence,
which is a sequence of m words x = x1, ..., xm. The for-
ward RNN reads the input sequence from x1 to xm and the
reverse RNN reads the sequence from xm to x1. The hidden
states of the two RNN at each time-step are concatenated to
form the encoding, or annotation vectors h1, ..., hm.

The decoder is trained to predict the target word sequence
y = (y1, ..., yn), and is also implemented as a recurrent neu-
ral network. The decoder predicts each word yi based on a
recurrent state si, previous word yi�1 and a context vector ci.
The context vector ci is computed as a weighted sum of anno-
tations ci =

P
j=1,...,m ↵ijhj , where the weight ↵ij is based

on a single-layer feedforward neural network. The weights
can be viewed as ”attention” on the input. During training,
we use the previous word yi�1 according to the target refer-
ence; during evaluation or test, we use the word previously
predicted by the RNN decoder as yi�1 and run a beam search
to generate the translation (beam is 5 in our case).

3.2. Subword Preprocessing

We follow the work of [13] in subword preprocessing, which
uses byte pair encoding (BPE) to split words into subword
units. The motivation is to reduce the number of distinct vo-

cabulary items in the Encoder-Decoder model. Large vocab-
ulary may lead to slower models and sparser statistics.

We briefly describe the BPE preprocessing procedure
here: First the symbol vocabulary is initialized with all char-
acters in the training set. The frequency of each symbol pair
is calculated, and we iteratively merge the most frequent pair
to create a new symbol. In other words, each merge operation
produces a new vocabulary item that represents a character
n-gram. Very frequent character n-grams, such as frequent
words, eventually become a single symbol. The final vocab-
ulary size of BPE equals to the size of the initial character
set, plus the number of BPE merge operations.

While BPE is a simple preprocessing method to handle
the large vocabulary problem in NMT, the optimal number
of BPE merge operations in unclear. Intuitively, a larger vo-
cabulary size should lead to better translation accuracy, as-
suming sufficient data to estimate the model parameters. The
effect on translation time is uncertain: on one hand, smaller
vocabulary implies a faster softmax operation in the RNN
decoder, but also a longer sequence to process. Finally, the
impacts of BPE vocabulary size may be different for source
and target.

4. EXPERIMENTAL SETUP

4.1. Data

We performed two sets of experiments: single-objective ex-
periment and multi-objective experiment. In the single-
objective experiment, we optimize translation accuracy,
which is measured by BLEU on the validation (develop-
ment) set. In the multi-objective one, we optimize transla-
tion accuracy and computational cost jointly. The computa-
tional cost is measured by the translation time (seconds) on
validation set. We use the data from Kyoto Free Transla-
tion Task version 1.4 (KFTT)3 for both experiments. KFTT
contains Wikipedia articles about Kyoto tourism and tradi-
tional Japanese culture, religion, and history. These arti-
cles are originally in Japanese and are manually translated

3http://www.phontron.com/kftt/

Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

122

Table 1: Data statistics

Articles Sentence Japanese English
pairs words words

Train 14126 330k 6.2M 5.9M
Dev 15 1166 27.8k 24.3k
Test 15 1160 29.6k 26.7k

into English by NICT.4 The English side is preprocessed
(i.e. tokenized, lowercased, filtered to exclude sentences
more than 40 words) using standard machine translation tools
from Moses, and the Japanese side is word-segmented using
Kytea5. Both sides are then broken in subword units inde-
pendently using BPE, where the exact BPE meta-parameter
(number of merge operations) is automatically tuned via
CMA-ES.

The bitext is separated into training, validation (dev), and
test sets. The training set is used for training the NMT mod-
els, development set used for measuring BLEU and com-
putation time, the objectives to be optimized. The test set
is only used for reporting final results. We focus on the
Japanese-English direction, and the baseline results using
Giza++/Moses PBMT on the KFTT leaderboard is 15.41
BLEU for dev and 17.68 BLEU for test. There is a stronger
result of 16.93 BLEU for dev and 19.35 BLEU for test on
the leaderboard. It is a Moses PBMT system that utilizes
pre-ordering (permuting Japanese words into English SVO
order prior to training and translation), which have demon-
strated substantial gains in Japanese-English tasks [14, 15].
We compare with the standard 15.41 BLEU baseline using
bitext in their original word order, and leave pre-ordering’s
effect on NMT to future work. Table 1 summarizes the data
used for experiments.

4.2. Meta-parameters

Table 2 shows meta-parameters that are subject to tuning by
CMA-ES. All Nematus meta-parameters that are not shown
in the table are set to their defaults. The meta-parameters
we tune for can be divided into model architecture (e.g. size
of embedding, LSTM unit) and training configuration (learn-
ing rate, drop out). Their initial values were manually tuned
slightly to achieve a reasonable starting BLEU of 16.48 on
the dev set and 15.13 on the test set. The corresponding com-
putation times for decoding the dev and test sets are 248 and
230 seconds, respectively.

Our goal in the experiment is to run evolution and
observe whether these initial values and corresponding
BLEU/time can be automatically improved without manual
effort. If evolution can search through a large range for meta-
parameters, we can expect a highly optimized system. That
is the generalization of this black-box approach to automatic

4http://alaginrc.nict.go.jp/WikiCorpus/index_E.
html

5http://www.phontron.com/kytea/

optimization. The generality can also help us investigate the
association of some meta-parameters with the machine trans-
lation system’s performance. The same initial values are used
for both single-objective and multiple-objective experiments.

In order to apply CMA-ES, we first need to encode the
meta-parameters into a fixed-dimensional gene vector. De-
pending on the domain and possible values of each meta-
parameter, a mapping from a real number to a desired do-
main is needed to translate the gene value to the actual
configuration. For the meta-parameters BPE merge op-
erations (bpe op src, bpe op trg), word embedding dimen-
sion (dim word) and LSTM dimensions (dim lstm), we used
int(exp(x)) since they may be large positive integers and
exp(x) can represent a large number with a small expo-
nent. For the other meta-parameters such as dropout, align-
ment regularization, and learning rate, which are positive but
small, we used abs() to ensure they are positive as the genes
sampled from Gaussian distribution might be negative. There
were 10 meta-parameters to tune so the dimension of gene
vector was 10, for both single and multi-objective experi-
ment.

4.3. Details of the CMA-ES Setup

Experiments were performed using the TSUBAME 2.5 su-
percomputer that equips with NVIDIA K20X GPGPU’s6.
We have conducted 10 CMA-ES generations for single-
objective experiment and 5 generations for multi-objective
experiment. Each generation consisted of 30 individuals for
both single and multi-objective optimization. In the single-
objective experiment, the training time was limited to a max-
imum of 48 hours for each generation; in multi-objective ex-
periment, the training time was a maximum of 36 hours. We
limited the maximum training time for computational rea-
sons: we found that sometimes the training process of an
model may take a week until convergence, but in practice
the BLEU scores are not very different from the model at
36+ hours. (See Figure 3 for an example). We think that in
CMA-ES, high precision estimates of the final BLEU or time
values at convergence are not necessary. It is more efficient
to run more generations of CMA-ES, as opposed to spending
a long time to obtain the most precise estimate of a gene’s
BLEU/time rank. The 36 or 48 hours limit on training time
is a practical tradeoff.

The experimental process is shown in Figure 4. After
sampling genes from the Gaussian search distribution, genes
will be converted into meta-parameter configurations. Then
the model will be trained using the training set for up to 36
or 48 hours. We call each set of configurations an individual
or gene, interchangeably. All individuals of one generation
are executed in parallel. After training, the models are used
to translate the dev set, and BLEU scores and computation
time scores are collected. We rank all individuals based on

6http://www.gsic.titech.ac.jp/en

Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

123

Table 2: Meta-parameters tuned in this study. The initial values are the baseline settings obtained by manual tuning, and is the first
individual seeded in CMA-ES. Example results of single and multiple objective evolution are shown: (a) is the individual with
maximum dev BLEU of single-objective evolution, achieved at generation 8; see Figure 5. (b) is the individual with minimum
computation time in multi-objective evolution’s final generation, (c) is the individual with the maximum dev BLEU in multi-
objective evolution, achieved at generation 3, and (d) is another individual on the Pareto frontier, achieved at generation 2. Note
that (b), (c), and (d) are three of the five points on the Pareto frontier in Figure 6. All of them are considered ”optimal” in the
multi-objective sense and the single model to deploy in practice should be the human designer’s decision.

Meta-parameter Initial (a) Single (b) Multiple (c) Multiple (d) Multiple
value objective objective objective objective

BPE merge operations on Source (bpe op src) 5000 5250 5345 5011 5102
BPE merge operations on Target (bpe op trg) 5000 6617 4622 5706 5877
dimension of word embedding (dim word) 100 121 333 99 104
of LSTM units (dim lstm) 400 496 123 459 430
alignment regularization (alpha c) 0 0.188 0.158 0.249 0.043
learning rate 0.0001 0.100 0.213 0.295 0.083
dropout prob. of embedding (dropout embedding) 0.2 0.148 0.017 0.147 0.070
dropout prob. of LSTM hidden unit (dropout hidden) 0.2 0.152 0.036 0.099 0.103
dropout prob. of source words (dropout source) 0.1 0.026 0.044 0.117 0.013
dropout prob. of target words (dropout target) 0.1 0.204 0.094 0.019 0.102
dev BLEU 16.48 18.83 17.42 18.04 18.02
dev computation time 248 264 222 269 241

Figure 3: BLEU (y-axis) by number of epoch (x-axis) for an
example model/gene.

their scores and update the distribution, via CMA-ES update
equations. We then sample new genes and the whole process
is repeated for a number of generations until our budget con-
straint (e.g. 10 generations for single-objective experiment).

5. RESULTS

5.1. Single-objective evolution

For the single-objective evolution experiment, we evaluated
a total of 10⇥ 30 = 300 models. For visualization purposes,
we choose those individuals with the highest dev BLEU in
each generation and plot them on Figure 5. The figure shows
how development set BLEU and validation time varies with
the number of generation in single-objective evolution that
optimizes for development set BLEU.

We observe a general trend of increasing BLEU as evo-
lution progresses. For example, the 8-th generation achieves
18.83 BLEU, the highest among all results, and significantly
improves from the baseline of 16.48. There is no guaran-

tee that the improvements are monotonic, however; for ex-
ample, note that an individual in generation 7 achieves lower
BLEU compared to that of generation 6. There is also a slight
increase in computation time during the evolution process,
which is expected since our single-objective CMA-ES does
not account for that objective.

To summarize, the best individual of CMA-ES, achieved
at generation 8, has a dev BLEU of 18.83. This outperforms
the dev BLEU of our NMT baseline initial setting (16.48) and
the KFTT Moses baseline (15.41). In terms of BLEU on the
test set, this model achieves 16.45, which is an improvement
over the NMT baseline initial setting (15.13). So we con-
clude that CMA-ES has demonstrated its ability to improve
upon manually-tuned results. This is done at the expense of
considerable computational resources, but the process is en-
tirely automatic and required no human intervention.7 Meta-
parameters of this model is shown in Table 2, column (a).

5.2. Multi-objective evolution

Figure 6 shows a visualization of our multi-objective evolu-
tion results, where we evaluated a total of 5 ⇥ 30 = 150
models. The Pareto optimal models of each generation are
plotted. Note that there is a general trend toward individuals
moving towards the lower-right hand side of the plot. If we
compute the Pareto frontier on all points aggregated in Fig-
ure 6, we will obtain 5 points: (18.04 BLEU, 269 seconds),
(18.02, 241), (17.42, 222), (16.82, 209), (16.66, 206). The
first three of these are shown as examples (b), (c), (d) in Table

7However, note that our best NMT test BLEU is still lower than the
KFTT Moses baseline test BLEU (17.68). Further work is needed to ex-
amine the differences between NMT and PBMT on this dataset.

Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

124

Figure 4: Experimental process of applying CMA-ES to automatically tune NMT models.

230

240

250

260

270

280

16 17 18 19

Va
lid

at
io

n
tim

e

BLEU

gen0
gen1
gen2
gen3
gen4
gen5
gen6
gen7
gen8
gen9
gen10

Figure 5: Single-objective evolution results, from generation
(gen) 1 to 10. The baseline model with initial value settings
is labeled as gen0 and indicated by a cross (x). Note the
general improvement of BLEU from the early generations
(gen1-3, labeled as triangles) to the later ones (rhombus and
circle).

2. The meta-parameter settings of these Pareto-optimal mod-
els are quite distinct. For instance, example (b) has small
LSTM units while examples (c) and (d) have larger LSTM
units but smaller word embedding dimensions. The target
vocabulary (bpe op trg) of example (b) is smaller than the
initial setting, while those of (c) and (d) are larger; all have
larger source target vocabulary.

All the Pareto points in the multi-objective evolution re-
sults outperform the baseline initial setting in terms of dev
BLEU; some of them outperform the baseline in both BLEU
and computation time. Therefore we conclude that the Pareto
extension to CMA-ES is achieving its expected effect. There
are no improvements in terms of BLEU over the single-

Figure 6: Multi-objective evolution results. The initial model
(gen0) is labeled (+), followed by generation 1 models (cir-
cles), generation 2 models (triangles), etc.

objective CMA-ES setting, however. One reason might be
that the computation resources used for the multi-objective
experiment is less than that of the single-objective experi-
ment. In any case, ideally multi-objective optimization will
subsume the single-objective case, and we plan to investigate
this further in future work.

6. Analysis

While the results are promising, we want to analyze the
statistics of our experiments in order to improve the effi-
ciency of CMA-ES for future work. Figure 7 plots the distri-
bution of various meta-parameters computed across the 300
and 150 models in single- and multi-objective experiments.
We note the distribution of word and LSTM dimensions has
much wider variance in the multi-objective case compared to
the single-objective case (Figure 7 (d) vs (c)), which is ex-
pected. Interesting, the range of BPE merge operations (and

Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

125

thus, the final vocabulary size) is relatively small for both
cases (Figure 7 (b) vs (a)). We hypothesize there needs to
be some more aggressive (or diverse) sampling in order to
fully explore the meta-parameter space. We also think our
mapping function that converts real numbers from the CMA-
ES Gaussian sample to training configurations may require
some re-design: for example, the range of int(exp()) may
be too narrow, and the use of abs() may induce symmetric
properties and confound positive and negative values.

7. Conclusion & Related Work

We demonstrate that an evolution strategy like CMA-ES can
be use to automate the tuning of neural network based ma-
chine translation system. We start with an initial manually-
tuned NMT baseline on KFTT, and show that our our single-
objective and multi-objective CMA-ES method can create
models that perform better in BLEU and/or computation
time.

There is a large literature on blackbox optimization,
with many successes in practical problems that are diffi-
cult to characterize. The main approaches include evolu-
tionary methods (GA or ES) [1, 2] and Bayesian optimiza-
tion [3, 16]. Recently, in the context of automatic tuning of
neural network systems, reinforcement learning [17] and a
bandit learning [18] approaches have been proposed. Each
approach has its strengths: Evolutionary strategies are effi-
ciently parallelizable. Bayesian optimization models uncer-
tainty in a principled fashion. Reinforcement learning cap-
tures sequential dependencies among hyperparameters. Ban-
dit learning provides a framework for trading-off computa-
tional resources. In future work, it will be interesting to com-
pare these different approaches on a wider array of datasets.

Pareto optimality has been applied to statistical MT in
the context of optimizing multiple evaluation metrics such
as BLEU and TER [19, 20]. We are not aware of previous
work that performs multi-objective optimization on BLEU
and computation time.

For automatic tuning of neural networks, evolutionary
strategies have demonstrated strong results in image clas-
sification [21], acoustic modeling [6], and language mod-
eling [22], among others. In NMT, a grid search of meta-
parameters is performed in [23]. They used a total of more
than 250,000 GPU hours to explore common variations in
NMT architectures. Their conclusions include: (a) deep en-
coders are more difficult to optimize than decoders, (b) dense
residual connections are good, (c) LSTMs outperform GRUs.
Our work investigates different meta-parameters; it will be
interesting to validate their findings with CMA-ES.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers JP26280055 and JP17K20001.

(a) Single objective, BPE

(b) Multi objective, BPE

(c) Single objective, dimensions

(d) Multi objective, dimensions

Figure 7: Boxplot showing the distributions of meta-
parameters searched by single-objective and multi-objective
CMA-ES.

Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

126

8. References

[1] L. Davis, Ed., Handbook of genetic algorithms. Van
Nostrand Reinhold New York, 1991, vol. 115.

[2] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Pe-
ters, and J. Schmidhuber, “Natural evolution strate-
gies,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 949–980,
2014.

[3] J. Snoek, H. Larochelle, and R. P. Adams, “Practical
Bayesian optimization of machine learning algorithm
s,” in Advances in Neural Information Processing Sys-
tems 25, 2012.

[4] N. Hansen, “The CMA evolution strategy: a comparing
review,” in Towards a new evolutionary computation.
Springer, 2006, pp. 75–102.

[5] S. Rostami and A. Shenfield, “CMA-PAES: Pareto
archived evolution strategy using covariance matrix
adaptation for multi-objective optimisation,” in 2012
12th UK Workshop on Computational Intelligence
(UKCI), Sept 2012, pp. 1–8.

[6] T. Moriya, T. Tanaka, T. Shinozaki, S. Watanabe, and
K. Duh, “Automation of system building for state-of-
the-art large vocabulary speech recognition using evo-
lution strategy,” in Proceedings of the IEEE 2015 Au-
tomatic Speech Recognition and Understanding Work-
shop (ASRU), 2015.

[7] R. Sennrich, O. Firat, K. Cho, A. Birch, B. Had-
dow, J. Hitschler, M. Junczys-Dowmunt, S. Läubli,
A. V. Miceli Barone, J. Mokry, and M. Nadejde,
“Nematus: a toolkit for neural machine transla-
tion,” in Proceedings of the Software Demonstrations
of the 15th Conference of the European Chapter
of the Association for Computational Linguistics.
Valencia, Spain: Association for Computational Lin-
guistics, April 2017, pp. 65–68. [Online]. Available:
http://aclweb.org/anthology/E17-3017

[8] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Re-
ducing the time complexity of the derandomized evolu-
tion strategy with covariance matrix adaptation (CMA-
ES),” Evolutionary Computation, vol. 11, no. 1, pp. 1–
18, 2003.

[9] K. Miettinen, Nonlinear Multiobjective Optimization.
Springer, 1998.

[10] R. T. Marler and J. S. Arora, “Survey of multi-objective
optimization methods for engineering,” Structural and
Multidisciplinary Optimization, vol. 26, 2004.

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” in
Proceedings of the International Conference on Learn-
ing Representations (ICLR), 2015.

[12] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical
machine translations,” in Conference on Empirical
Methods in Natural Language Processing (EMNLP)
2014, ser. cs.CL, no. 1406.1078, 2014. [Online].
Available: http://arxiv.org/abs/1406.1078

[13] R. Sennrich, B. Haddow, and A. Birch, “Neural
Machine Translation of Rare Words with Subword
Units,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers). Berlin, Germany: Association
for Computational Linguistics, August 2016, pp.
1715–1725. [Online]. Available: http://www.aclweb.
org/anthology/P16-1162.pdf

[14] H. Isozaki, K. Sudoh, H. Tsukada, and K. Duh,
“Head finalization: A simple reordering rule for
sov languages,” in Proceedings of the Joint Fifth
Workshop on Statistical Machine Translation and
MetricsMATR. Uppsala, Sweden: Association for
Computational Linguistics, July 2010, pp. 244–251.
[Online]. Available: http://www.aclweb.org/anthology/
W10-1736

[15] G. Neubig, T. Watanabe, and S. Mori, “Inducing a dis-
criminative parser to optimize machine translation re-
ordering,” in Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning. Jeju
Island, Korea: Association for Computational Lin-
guistics, July 2012, pp. 843–853. [Online]. Available:
http://www.aclweb.org/anthology/D12-1077

[16] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and
N. de Freitas, “Taking the human out of the loop: A
review of bayesian optimization,” Proceedings of the
IEEE, vol. 104, no. 1, p. 28, 12/2015 2016.

[17] B. Zoph and Q. Le, “Neural architecture search with
reinforcement learning,” in Proceedings of the Interna-
tional Conference on Representation Learning (ICLR),
2017.

[18] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and
A. Talwalkar, “Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization,” in Proceed-
ings of the International Conference on Learning Rep-
resentations (ICLR), 2017.

[19] K. Duh, K. Sudoh, X. Wu, H. Tsukada, and M. Na-
gata, “Learning to translate with multiple objectives,”
in Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, 2012.

Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

127

[20] B. Sankaran, A. Sarkar, and K. Duh, “Multi-metric
optimization using ensemble tuning,” in Proceedings
of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies. Atlanta, Georgia:
Association for Computational Linguistics, June 2013,
pp. 947–957. [Online]. Available: http://www.aclweb.
org/anthology/N13-1115

[21] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu,
Q. V. Le, and A. Kurakin, “Large-scale evolution of
image classifiers,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2017.
[Online]. Available: http://arxiv.org/abs/1703.01041

[22] T. Tanaka, T. Moriya, T. Shinozaki, S. Watanabe,
T. Hori, and K. Duh, “Automated structure discov-
ery and parameter tuning of neural network language
model based on evolution strategy,” in Proceedings of
the 2016 IEEE Workshop on Spoken Language Tech-
nology, 2016.

[23] D. Britz, A. Goldie, M.-T. Luong, and Q. V. Le, “Mas-
sive exploration of neural machine translation architec-
tures,” CoRR, vol. abs/1703.03906, 2017.

Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

128

