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Abstract
Recent work on multilingual neural machine translation re-
ported competitive performance with respect to bilingual
models and surprisingly good performance even on (zero-
shot) translation directions not observed at training time. We
investigate here a zero-shot translation in a particularly low-
resource multilingual setting. We propose a simple iterative
training procedure that leverages a duality of translations di-
rectly generated by the system for the zero-shot directions.
The translations produced by the system (sub-optimal since
they contain mixed language from the shared vocabulary),
are then used together with the original parallel data to feed
and iteratively re-train the multilingual network. Over time,
this allows the system to learn from its own generated and
increasingly better output. Our approach shows to be effec-
tive in improving the two zero-shot directions of our multi-
lingual model. In particular, we observed gains of about 9
BLEU points over a baseline multilingual model and up to
2.08 BLEU over a pivoting mechanism using two bilingual
models. Further analysis shows that there is also a slight im-
provement in the non-zero-shot language directions.

1. Introduction
Machine translation of low-resource languages represents a
challenge for neural machine translation (NMT) [1]. Recent
efforts in multilingual NMT (Multi-NMT) [2, 3] have shown
to improve translation performance in low-resource settings.
Multi-NMT models can be trained with parallel corpora of
several language pairs to work in many-to-one, one-to-many,
or many-to-many translation directions. A simple approach,
named target-forcing [3], is to prepend to the source sentence
a tag specifying the target language, both at training and test-
ing time. In addition to performance gains for low-resource
languages, the benefit of Multi-NMT is the possibility to per-
form zero-shot translation, i.e. across directions that were not
observed at training time.

Application scenarios in which zero-shot translation can
bootstrap the creation of new parallel data – e.g. via human
post-editing– [2], show how translation performance in the
initial zero-shot direction improves over time with the addi-
tion of new parallel data. In this work, we explore instead the
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Figure 1: Our zero-shot translation setting for Italian-
Romanian. Parallel data is available only for Italian-
English, Romanian-English, German-English, and Dutch-
English. We leverage multi-lingual neural machine transla-
tion trained on all available parallel data to translate across
Italian-Romanian (in both directions), either directly (zero-
shot) or through English (pivoting).

possibility to enable a trained Multi-NMT model to further
learn from its own generated data. Briefly, our method works
as follows: first (1), we let the Multi-NMT engine generate
zero-shot translations on some portion of the training data;
then (2), we re-start the training process on both the gen-
erated translations and the original parallel data. We repeat
this training-inference-training cycle for a few times. Notice
that, at each iteration, the original training data is augmented
only with the last batch of generated translations. We observe
that the generated outputs initially contain a mix of words
from the shared vocabulary, but after few iteration they tend
to only contain words in the zero-shot target language thus
becoming more and more suitable for learning.

We test our approach on a Multi-NMT scenario including
Italian, Romanian, English, German and Dutch, assuming
that the zero-shot translation pair is Italian-Romanian. We
also make the assumption that all languages have just paral-
lel data with English (see Figure 1). We apply our approach
on top of the multilingual NMT training method suggested
by [2]. Experimental results show that our iterative training
procedure not only significantly improves performance on
the zero-shot directions, but it also boost multilingual NMT
in general. Finally, our approach shows to outperform pivot-
based machine translation, too.
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2. Related Work
In this section we discuss relevant works on multilin-
gual NMT, zero-shot NMT, and model training with self-
generated data, which are closely related to our approach.

2.1. Multilingual NMT

Previous works in Multi-NMT are characterized by the use of
separate encoding and/or decoding networks for every trans-
lation direction. Dong et al. (2015) [4] proposed a multi-task
learning approach for a one-to-many translation scenario,
based on a sharing representations between related tasks –
i.e the source language – in order to enhance generalization
on the target language. In particular, they used a single en-
coder in the source side, and separate attention mechanism
and decoders for every target language. In a related work
[5], used separate encoder and decoder networks for model-
ing language pairs in a many-to-many setting. Notably, they
dropped the attention mechanism in favor of a shared vector
space where to represent both text and multi-modal infor-
mation. Aimed at reducing ambiguities at translation time,
[6] employed a multi-source system that considers two lan-
guages on the encoder side and one target language on the
decoder side. In particular, the attention model is applied
to a combination of the two encoder states. In a many-to-
many translation scenario, [7] introduced a way to share the
attention mechanism across multiple languages. As in [4],
but (only on the decoder side) and in [5], they used separate
encoders and decoders for each source and target language.

Despite the reported improvements, the need of using ad-
ditional encoder and/or decoder for every language added to
the system tells the limitation of these approaches, by making
their network complex and expensive to train.

In a very different way, [2] and [3] developed similar
Multi-NMT approaches by introducing a target-forcing to-
ken in the input. The approach in [3] applies a language-
specific code to words from different languages in a mixed-
language vocabulary. In practice, they force the decoder to
translate to a specific target language by prepending and ap-
pending an artificial token to the source text. However, their
word and sub-word level language-specific coding mecha-
nism significantly increase the input length, which shows to
have an impact on the computational cost and performance
of NMT [8]. In [2], only one artificial token is prepended to
the source sentences in order to specify the target language.
Prepending language tokens has permitted to eliminate the
need of having separate encoder/decoder networks and at-
tention mechanism for every new language pair.

2.2. Zero-Shot Translation

By extending the approach in [7], zero-resource NMT has
been suggested in [9]. The authors proposed a many-to-one
translation setting and used the idea of generating a pseudo-
parallel corpus [10], using a pivot language, to fine tune their
model. Moreover, also in this case the need of separate en-

coders and decoders for every language pair significantly in-
creases the complexity of the model.

An attractive feature of the target-forcing mechanism
comes from the possibility to perform zero-shot translation
with the same multilingual setting as in [2, 3]. However,
recent experiments have shown that the mechanism fails
to achieve reasonable zero-shot translation performance for
low-resource languages [11]. The promising results in [2]
and [3] hence require further investigation to verify if their
method can work in various language settings, particularly
across distant languages.

2.3. Training with self-generated data

Training procedures using self-generated data have been
around for a while. For instance, in statistical machine trans-
lation (SMT), [12, 13] showed how the output of a trans-
lation model can be used iteratively to improve results in a
task like post-editing. Mechanisms like back-translating the
target side of a single language pair have been used for do-
main adaptation [14] and more recently by [10] to improve
an NMT baseline model. In [15], a dual-learning mechanism
is proposed where two NMT models working in the oppo-
site directions provide each other feedback signals that per-
mit them to learn from monolingual data. In a related way,
our approach also considers training from monolingual data
along dual zero-shot directions. As a difference, however,
our train-infer-train loop leverages the capability of the net-
work to jointly learn multiple translation directions.

Although our brief survey shows that re-using the out-
put of an MT system for further training and improvement
has been successfully applied in different settings, our ap-
proach differs from past works in mainly two aspects: i) in-
troducing for the first time a train-infer-train mechanism ad-
dresses Multi-NMT, and ii) we cast the approach into a self-
correcting training procedure over two dual zero-shot direc-
tions, so that incrementally improved translations mutually
reinforce each direction.

3. Neural Machine Translation
The standard NMT architecture comprises an encoder, a de-
coder and an attention-mechanism, which are all trained with
maximum likelihood in an end-to-end fashion [16]. The en-
coder is a recurrent neural network (RNN) that encodes a
source sentence into a sequence of hidden state vectors. The
decoder is another RNN that uses the representation of the
encoder to predict words in the target language [8] [17]. As
the name suggests, attention is a mechanism used to im-
prove the translation quality by deciding which part of the
source sentence can contribute mostly in the prediction pro-
cess [18]. As shown in Figure 2, which simplifies the NMT
architecture, first the encoder takes the source words on the
left (purple color), maps them to vectors and feeds them into
the RNN. When the <eos> (i.e end of sentence) symbol is
seen, the final time step initializes the decoder RNN (blue
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color). At each time step, the attention mechanism is ap-
plied over the encoder hidden states and combined with the
current hidden state of the decoder to predict the next target
word. Then, the prediction is fed back to the encoder RNN to
predict the next word, until the <eos> symbol is generated
[19].

+

BA ! <eos> YX !

 YX ! <eos>

Figure 2: NMT architecture with encoder-decoder and an at-
tention mechanism, showing a source sentence “A B” trans-
lated into a target sentence “X Y”.

4. Mixed Language Input for Multi-NMT
Our goal is to improve translation in the zero-shot directions
of a multilingual model with limited directions covered by
the training data (see Figure 1). The training strategy of the
proposed approach is summarized in Algorithm 1, while its
flow chart is illustrated in Figure 3.

To address this problem, our training procedure is per-
formed in three steps which are iterated for several rounds. In
the first step (line 2), the multilingual NMT system is trained
on the original data available. In the second step (line 5), the
trained model is run to translate between the zero-shot direc-
tions. Then, in the third step (line 8), the output translations
are combined with the corresponding source sentences and
added to the original training data. The resulting expanded
corpus is now ready to perform a new round of the training
process.

According to our train-infer-train scheme, new synthetic
data for the two zero-shot directions are generated at each
round. This process creates a duality between the two zero-
shot translation directions, which we can exploit for mutual
improvement. Indeed, for each direction, sub-optimal trans-
lations t⇤ paired with the corresponding original (and well-
formed) source s are used to obtain new “parallel” (t⇤,s) sen-
tence pairs that extend the training material for the other di-
rection. The translated mixed-input for the two languages
is represented as T ⇤, while the target side T represents the
original sentences extracted for inference.

In the Multi-NMT scenario, the sub-optimal translations
representing the source element of the new training pairs will
likely contain a mixed-language that includes words from a
vocabulary shared with other languages. The expectation is
that, round after round, the model will generate better out-
puts by learning at the same time to translate and “correct” its

Algorithm 1: Iterative Learning Procedure
1: TRAIN: D(src, tgt)
2: Multi-NMT initial training using dataset D
3: repeat INFER-TRAIN
4: for s = 1,T do
5: t⇤  inference in duality using Multi-NMT
6: end for
7: prepare D⇤([src + T ⇤], [tgt + T ])
8: Multi-NMT reload Multi-NMT, train using D⇤

9: return Multi-NMT
10: until Multi-NMT converges!Multi-NMT⇤

Table 1: Iterative Learning algorithm of the proposed ap-
proach using the duality of zero-shot translation directions.

own translations by removing spurious elements from other
languages. If this intuition holds true, the iterative improve-
ment will yield increasingly better results in translating be-
tween the source$target zero-shot directions. Ideally, this
incremental training and inference cycle can continue until
the model converges (line 10).

5. Experiments
All the experiments are carried out using the open source
OpenNMT-py1 toolkit [19]. For training the models, we
used the parameters specified in Table 2. Considering the
high data sparsity of our low-resource setting, we applied a
dropout of 0.3 [20] to prevent overfitting [21]. To train the
baseline Multi-NMT, we used Adam [22] as the optimization
algorithm with an initial learning rate of 0.001. In the sub-
sequent train-infer-train rounds, we used SGD [23], with a
learning rate of 1. If the perplexity does not decrease on the
validation set or the number of epoch is above 7, a learning
rate decay of 0.7 is applied. This combination of optimizers
was found to be effective in accelerating the training in the
first few iterations. In all the reported experiments the base-
line models are trained until convergence, while each train
round after the inference stage is assumed to iterate over 10
epochs. For decoding, a beam search of size 10 is applied.

Model parameters Value
RNN type LSTM
RNN size 1024

Embedding dim 512
Encoder bidirectional

Encoder depth 2
Decoder depth 2

Beam size 10
Batch size 128

Table 2: Hyper-parameters used to train all the models, un-
less specified in a different setting.

1https://github.com/OpenNMT/OpenNMT-py
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Figure 3: Illustration of the proposed multilingual train-infer-train strategy. Using a standard NMT architecture, a portion of two
zero-shot directions monolingual dataset is extracted for inference to construct a dual source$target mixed-input and continue
the training. The top solid line shows the training process, where as the dashed lines show the inference stage

5.1. Dataset

To evaluate our approach, we consider five languages (i.e
English (EN), Dutch (NL), German (DE), Italian (IT), and
Romanian (RO)). To simulate a low-resource scenario, each
language pair has ⇡ 200k parallel sentences (see Table 3
for details). All the parallel datasets are from the IWSLT172

multilingual shared task [24].

Direction Training test2010 test2017
EN$ DE 197,489 1,497 1,138
EN$ IT 221,688 1,501 1,147
EN$ NL 231,669 1,726 1,181
EN$ RO 211,508 1,633 1,129
IT$ RO 209,668 1,605 1,127

Table 3: Number of sentences used to train the multilingual
model on eight directions. The IT $ RO pairs are used to
train only the bilingual models.

To train all models, we used the same pipeline, first to get a
tokenized dataset. Then, we apply byte pair encoding (BPE)
[25], using a jointly trained (on source and target dataset)
shared BPE model to segment the tokens into sub-word units.
For this operation we used 8, 000 BPE merging rules, with a
minimum of 30 frequency threshold to apply the segmen-
tation. When training the multilingual models, the pipeline
includes adding the artificial language token at the source
side of each parallel dataset both for the training and valida-
tion sets [2]. We evaluate our models using test2010, and for
comparison we use test2017 of the IWSLT2017 evaluation
dataset.

5.2. Models

Our baseline models are trained in a multilingual and
bilingual settings. For each direction of the multilingual
model and every bilingual model we report the BLEU
[26] score computed using multi-bleu.perl3 from the Moses
SMT implementation. BLEU scores of the Multi-NMT
systems trained on the parallel data in Table 3 are re-
ported in Table 6 and 7 (second column). To com-

2https://sites.google.com/site/iwsltevaluation2017/
3http://www.statmt.org/moses

pare our zero-shot translations against those of the bilin-
gual models we trained two Italian$Romanian models.
Both bilingual are trained with the same amount of train-
ing data used by each direction of the Multi-NMT model
(see Table 3). Moreover, as additional terms of compar-
ison, we trained two pivoting-based systems (using En-
glish as a pivot language): Italian!English!Romanian and
Romanian!English!Italian.

5.2.1. Bilingual models

The baseline models for comparison consist of: i) an eight di-
rection multilingual model (Multi-NMT), and two bilingual
NMT models.

System tst2010 tst2017
Italian!Romanian 19.66 19.14
Romanian!Italian 22.44 20.69

Table 4: BLEU scores of two bilingual NMT models
(Italian!Romanian and Romanian!Italian) on IWSLT data
tst2010 and tst2017

The results of the two bilingual models are shown in Table
4. From the Multi-NMT model (see row 9 and 10 of Table
6 and Table 7), we particularly focus on the performance of
the zero-shot directions that can be compared with the results
from these two models.

5.2.2. Pivoting

If data are available, the pivoting strategy is the most intu-
itive way to accomplish zero-shot translation, or to translate
from/into under-resourced languages through high resource
ones [27]. However, results in the pivoting framework are
strictly bounded to the performance of the two combined
translation engines, and especially to that of the weaker one.
In contrast, Multi-NMT models that leverage knowledge ac-
quired from data for different language combinations (sim-
ilar to multi-task learning) can potentially compete or even
outperform the pivoting ones. Checking this possibility is the
motivation for our comparison between the two approaches.

In our experiment we take English as the bridge language
between Italian and Romanian in both translation directions.
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System tst2010 tst2017
Italian!Romanian 16.4 15.00
Romanian!Italian 18.9 17.36

Table 5: Performance of the Italian$Romanian pivot trans-
lation directions using English as a pivot on tst2010 and
tst2017

Unsurprisingly, compared with those of the bilingual mod-
els trained on Italian$Romanian data, the results shown in
Table 5 are lower.

On both translation directions, the bilingual models are
indeed about 3.0 BLEU points better. Such comparison,
however, is not the main point of our experiment, instead, we
aim to fairly analyze performance differences between piv-
oting and zero-shot methods trained in the same condition
which lacks Italian$Romanian training data.

5.3. Zero-shot results

In this experiment, we show how our approach helps to
improve the baseline Multi-NMT model. The train-infer-
train procedure described in Section 4 was applied for
five rounds, where each round consists of 10 iterations.
Table 6, shows the improvement on the Italian$Romanian
zero-shot directions using the Multi-NMT⇤ model. Specif-
ically, the Italian!Romanian direction reached 17.38
BLEU score improving over the baseline (8.59) by 8.79
points. Romanian!Italian translation improved with an
even larger margin (+10.71) from 8.65 to 19.36 BLEU score.

Multi-NMT Multi-NMT⇤

English!Italian 27.07 28.47
Italian!English 32.12 33.16
English!Romanian 24.65 25.37
Romanian!English 32.7 34.00
English!German 26.39 26.42
German!English 31.3 31.79
English!Dutch 30.27 30.85
Dutch!English 35.13 35.77
Italian!Romanian 8.59 17.38
Romanian!Italian 8.65 19.36

Table 6: Comparison on test2010 set between a base-
line Multi-NMT model against a Multi-NMT⇤ model
with our proposed train-infer-train approach for the
Italian$Romanian zero-shot direction. The best result for
each direction is shown in bold.

In addition, and to our great surprise, the results from our
self-correcting mechanism showed to perform even better
than the pivoting strategy. To check the validity of our re-
sults, we also compared the baseline multilingual system

Multi-NMT Multi-NMT⇤

English!Italian 29.02 30.43
Italian!English 32.87 33.61
English!Romanian 20.96 21.94
Romanian!English 27.48 28.21
English!German 19.75 19.85
German!English 24.12 24.25
English!Dutch 25.37 26.12
Dutch!English 29.25 29.15
Italian!Romanian 8.18 17.08
Romanian!Italian 8.58 19.25

Table 7: Comparison on test2017 set between a base-
line Multi-NMT model against a Multi-NMT⇤ model
with our proposed train-infer-train approach for the
Italian$Romanian zero-shot direction.

and our approach on the IWSLT 2017 test set (test2017).
As shown in Table 7, the results confirm those computed
on test2010, with almost identical gains (+8.9 and +10.67).
The other important advantage of our approach is evidenced
by the performance gains obtained on the language direc-
tions supported by parallel training corpora. To put this into
perspective, all translation directions have shown improve-
ments, except for the slight drop (-0.10 BLEU) observed for
the Dutch!English direction in test2017 case.

Figure 4: Results from test2017 for the Italian$Romanian
zero-shot directions, comparing our iterative learning ap-
proach (solid lines) with the pivoting mechanism (dashed
lines)

Comparing the results from every rounds (see Figure 4), we
observe that the training after the first inference step is re-
sponsible for the largest portion of the overall gain. This
is mainly due to the initial introduction of (noisy) parallel
data for the zero-shot directions. The contribution of the self-
correcting process can be seen in the following rounds, i.e the
improvement after each inference suggests that the generated
data are getting cleaner and cleaner.

_____________________________________________________________
Proceedings of the 14th International Workshop on Spoken Language Translation

Tokyo, Japan, December 14th-15th, 2017

117



Italian!Romanian
Source ... che rafforza la corruzione, l’evasione fiscale, la povertà, l’instabilità.
Pivot ... poarta de bază, evazia fiscală, sărăcia, instabilitatea.
Multi-NMT ... restrânge corrupt,ia, fiscale de evasion, poverty, instabilitate.
Multi-NMT⇤ ... care rafinează corupt,ia, evasarea fiscală, sărăcia, instabilitatea.
Reference ... care protejează corupţia, evaziunea fiscală, sărăcia şi instabilitatea.

Romanian!Italian
Source E o poveste incredibilă.
Pivot È una storia incredibile
Multi-NMT È una storia incredible.
Multi-NMT⇤ È una storia incredibile
Reference È una storia incredibile .

English!Italian
Source We can’t use them to make simple images of things out in the Universe.
Multi-NMT Non possiamo usarli per creare immagini semplici di cose nell’universo.
Multi-NMT⇤ Non possiamo usarle per fare semplici immagini di cose nell’universo.
Reference Non possiamo usarle per fare semplici immagini di cose nell’univero

Table 8: Top two examples: zero-shot translations generated by pivoting via English, multilingual translation(Multi-NMT) and
multilingual translation enhanced with out approach (Multi-NMT⇤). Last example: multilingual and enhanced multi-lingual
translation in a resourced translation direction.

Looking at the sample translation outputs using the dif-
ferent approaches in Table 8, we observe that the base-
line Multi-NMT system produces mixed language out-
put (e.g. “poverty” in Italian!Romanian and “incredi-
ble” in Romanian!Italian).Thanks to our approach, the
Multi-NMT⇤ system instead tends to produce more con-
sistent target language (“poverty” becomes “sărăcia” in
Italian!Romanian and “incredible” becomes “incredibile”
in Romanian!Italian). Furthermore, even in the non-zero-
shot directions there are case where the enhanced Multi-
NMT⇤ system produces better translations (see the last re-
ported example).

6. Conclusions

We introduced a method to improve zero-shot translation
in multilingal NMT under particularly resource-scarce train-
ing conditions. The proposed self-correcting procedure, by
leveraging syntentic dual translations, achieved significant
improvements over a multilingual NMT baseline and outper-
formed a pivoting NMT approach for the Italian-Romanian
directions.

In future work, we plan to improve the train-infer-train
stages to reach better performance in less time and with lower
training complexity. In our current setup we did not consider
any form of selection for the dataset to be translated at the
inference stage of the train-infer-train procedure. We expect
that applying frequency and similarity based approaches to
select promising training candidates can bring further im-
provements. Moreover, we plan also to test our approach
with additional monolingual data from the two zero-shot di-
rections. Finally we plan to extend our approach to the trans-
lation of mixed language sentences (i.e code-mixing).
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