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Abstract

In this paper, we explore alternative ways to train a neu-
ral machine translation system in a multi-domain scenario.
We investigate data concatenation (with fine tuning), model
stacking (multi-level fine tuning), data selection and multi-
model ensemble. Our findings show that the best translation
quality can be achieved by building an initial system on a
concatenation of available out-of-domain data and then fine-
tuning it on in-domain data. Model stacking works best when
training begins with the furthest out-of-domain data and the
model is incrementally fine-tuned with the next furthest do-
main and so on. Data selection did not give the best results,
but can be considered as a decent compromise between train-
ing time and translation quality. A weighted ensemble of
different individual models performed better than data selec-
tion. It is beneficial in a scenario when there is no time for
fine-tuning an already trained model.

1. Introduction

Neural machine translation (NMT) systems are sensitive to
the data they are trained on. The available parallel corpora
come from various genres and have different stylistic vari-
ations and semantic ambiguities. While such data is often
beneficial for a general purpose machine translation system,
a problem arises when building systems for specific domains
such as lectures [1, 2], patents [3] or medical text [4], where
either the in-domain bilingual text does not exist or is avail-
able in small quantities.

Domain adaptation aims to preserve the identity of the
in-domain data while exploiting the out-of-domain data in
favor of the in-domain data and avoiding possible drift to-
wards out-of-domain jargon and style. The most commonly
used approach to train a domain-specific neural MT system
is to fine-tune an existing model (trained on generic data)
with the new domain [5, 6, 7, 8] or to add domain-aware
tags in building a concatenated system [9]. [10] proposed
a gradual fine-tuning method that starts training with com-
plete in- and out-of-domain data and gradually reduces the
out-of-domain data for next epochs. Other approaches that
have been recently proposed for domain adaptation of neural
machine translation are instance weighting [11, 12] and data
selection [13].

In this paper we explore NMT in a multi-domain sce-
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nario. Considering a small in-domain corpus and a number
of out-of-domain corpora, we target questions like:

e What are the different ways to combine multiple do-
mains during a training process?

e What is the best strategy to build an optimal in-domain
system?

e Which training strategy results in a robust system?

e Which strategy should be used to build a decent in-
domain system given limited time?

To answer these, we try the following approaches: i) data
concatenation: train a system by concatenating all the avail-
able in-domain and out-of-domain data; ii) model stacking:
build NMT in an online fashion starting from the most distant
domain, fine-tune on the closer domain and finish by fine-
tuning the model on the in-domain data; iii) data selection:
select a certain percentage of the available out-of-domain
corpora that is closest to the in-domain data and use it for
training the system; iv) multi-model ensemble: separately
train models for each available domain and combine them
during decoding using balanced or weighted averaging. We
experiment with Arabic-English and German-English lan-
guage pairs. Our results demonstrate the following findings:

e A concatenated system fine-tuned on the in-domain
data achieves the most optimal in-domain system.

e Model stacking works best when starting from the fur-
thest domain, fine-tuning on closer domains and then
finally fine-tuning on the in-domain data.

e A concatenated system on all available data results in
the most robust system.

e Data selection gives a decent trade-off between trans-
lation quality and training time.

e Weighted ensemble is helpful when several individual
models have been already trained and there is no time
for retraining/fine-tuning.

The paper is organized as follows: Section 2 describes
the adaptation approaches explored in this work. We present
experimental design in Section 3. Section 4 summarizes the
results and Section 5 concludes.
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Figure 1: Multi-domain training approaches

2. Approaches

Consider an in-domain data D; and a set of out-of-domain
data D, = D,,, D,,, ..D,,,. We explore several methods to
benefit from the available data with an aim to optimize trans-
lation quality on the in-domain data. Specifically, we try data
concatenation, model stacking, data selection and ensemble.
Figure 1 presents them graphically. In the following, we de-
scribe each approach briefly.

2.1. Concatenation

A naive yet commonly used method when training both sta-
tistical [14]' and neural machine translation systems [15] is
to simply concatenate all the bilingual parallel data before
training the system. During training an in-domain validation
set is used to guide the training loss. The resulting system
has an advantage of seeing a mix of all available data at ev-
ery time interval, and is thus robust to handle heterogeneous
test data.

2.2. Fine Tuning and Model Stacking

Neural machine translation follows an online training strat-
egy. It sees only a small portion of the data in every training
step and estimates the value of network parameters based on
that portion. Previous work has exploited this strategy in the
context of domain adaptation. [5] trained an initial model
on an out-of-domain data and later extended the training on
in-domain data. In this way the final model parameters are

I'State-of-the-art baselines are trained on plain concatenation of the data
with MT feature functions (such as Language Model) skewed towards in-
domain data, through interpolation.
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tuned towards the in-domain data. The approach is referred
as fine-tuning later on.

Since in this work we deal with several domains, we pro-
pose a stacking method that uses multi-level fine-tuning to
train a system. Figure 1 (second row) shows the complete
procedure: first, the model is trained on the out-of-domain
data D,, for N epochs; training is resumed from N + 1-th
epoch to the M -th epoch but using the next available out-of-
domain data D,,; repeat the process till all of the available
out-of-domain corpora have been used; in the last step, re-
sume training on the in-domain data D; for a few epochs.
The resulting model has seen all of the available data as in
the case of the data concatenation approach. However, here
the system learns from the data domain by domain. We call
this technique model stacking.

The model stacking and fine-tuning approaches have the
advantage of seeing the in-domain data in the end of training,
thus making the system parameters more optimized for the
in-domain data. They also provide flexibility in extending an
existing model to any new domain without having to retrain
the complete system again on the available corpora.

2.3. Data Selection

Building a model, whether concatenated or stacked, on all
the available data is computationally expensive. An alterna-
tive approach is data selection, where we select a part of the
out-of-domain data which is close to the in-domain data for
training. The intuition here is two fold: i) the out-of-domain
data is huge and takes a lot of time to train on, and ii) not
all parts of the out-of-domain data are beneficial for the in-
domain data. Training only on a selected part of the out-of-
domain data reduces the training time significantly while at
the same time creating a model closer to the in-domain.

In this work, we use the modified Moore-Lewis [16] for
data selection. It trains in- and out-of-domain n-gram models
and then ranks sequences in the out-of-domain data based on
cross-entropy difference. The out-of-domain sentences be-
low a certain threshold are selected for training. Since we are
dealing with several out-of-domain corpora, we apply data
selection separately on each of them and build a concatenated
system using in-domain plus selected out-of-domain data as
shown in Figure 1. Data selection significantly reduces data
size thus improving training time for NMT. However, finding
the optimal threshold to filter data is a cumbersome process.
Data selection using joint neural networks has been explored
in [17]. We explore data selection as an alternative to the
above mentioned techniques.

2.4. Multi-domain Ensemble

Out-of-domain data is generally available in larger quantity.
Training a concatenated system whenever a new in-domain
becomes available is expensive in terms of both time and
computation. An alternative to fine-tuning the system with
new in-domain is to do ensemble of the new model with the
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existing model. The ensemble approach brings the flexibility
to use them during decoding without a need of retraining and
fine-tuning.

Consider N models that we would like to use to generate
translations. For each decoding step, we use the scores over
the vocabulary from each of these N models and combine
them by averaging. We then use these averaged scores to
choose the output word(s) for each hypothesis in our beam.
The intuition is to combine the knowledge of the /N models to
generate a translation. We refer to this approach as balanced
ensemble later on. Since here we deal with several different
domains, averaging scores of all the models equally may not
result in optimum performance. We explore a variation of
balanced ensemble called weighted ensemble that performs a
weighted average of these scores, where the weights can be
pre-defined or learned on a development set.

Balanced ensemble using several models of a single
training run saved at different iterations has shown to im-
prove performance by 1-2 BLEU points [15]. Here our goal
is not to improve the best system but to benefit from indi-
vidual models built using several domains during a single
decoding process. We experiment with both balanced and
weighted ensemble under the multi-domain condition only.?

3. Experimental Design
3.1. Data

We experiment with Arabic-English and German-English
language pairs using the WIT? TED corpus [20] made avail-
able for IWSLT 2016 as our in-domain data. For Arabic-
English, we take the UN corpus [21] and the OPUS cor-
pus [22] as out-of-domain corpora. For German-English, we
use the Europarl (EP), and the Common Crawl (CC) corpora
made available for the 15¢ Conference on Statistical Machine
Translation® as out-of-domain corpus. We tokenize Arabic,
German and English using the default Moses tokenizer. We
did not do morphological segmentation of Arabic. Instead
we apply sub-word based segmentation [23] that implicitly
segment as part of the compression process.* Table 1 shows
the data statistics after running the Moses tokenizer.

We use a concatenation of dev2010 and tst2010 sets for
validation during training. Test sets tst2011 and tst2012
served as development sets to find the best model for fine-
tuning and tst2013 and tst2014 are used for evaluation. We
use BLEU [26] to measure performance.

3.2. System Settings

We use the Nematus tool [27] to train a 2-layered LSTM
encoder-decoder with attention [28]. We use the default set-

2Weighted fusion of Neural Networks trained on different domains has
been explored in [18] for phrase-based SMT. Weighted training for Neural
Network Models has been proposed in [19].

3http://www.statmt.org/wmt16/translation-task html

4[24] showed that using BPE performs comparable to morphological to-
kenization [25] in Arabic-English machine translation.
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Arabic-English

Corpus Sentences Tok,, Toke,
TED 229k 37M  47M
UN 18.3M 433M  494M
OPUS 224M  139M  195M
German-English
Corpus Sentences Tokge Token,
TED 209K IM  42M
EP 1.9M 51IM 53M
CC 2.3M 55M 59M

Table 1: Statistics of the Arabic-English and German-
English training corpora in terms of Sentences and Tokens.
EP = Europarl, CC = Common Crawl, UN = United Nations.

tings: embedding layer size: 512, hidden layer size: 1000.
We limit the vocabulary to 50k words using BPE [23] with
50,000 operations.

4. Results

In this section, we empirically compare several approaches to
combine in- and out-of-domain data to train an NMT system.
Figure 2 and Figure 3 show the learning curve on develop-
ment sets using various approaches mentioned in this work.
We will go through them individually later in this section.

4.1. Individual Systems

We trained systems on each domain individually (for 10
epochs)® and chose the best model using the development
set. We tested every model on the in-domain testsets. Table
2 shows the results. On Arabic-English, the system trained
on the out-of-domain data OPUS performed the best. This is
due to the large size of the corpus and its spoken nature which
makes it close to TED in style and genre. However, despite
the large size of UN, the system trained using UN performed
poorly. The reason is the difference in genre of UN from
the TED corpus where the former consists of United Nations
proceedings and the latter is based on talks.

For German-English, the systems built using out-of-
domain corpora performed better than the in-domain corpus.
The CC corpus appeared to be very close to the TED do-
main. The system trained on it performed even better than
the in-domain system by an average of 2 BLEU points.

4.2. Concatenation and Fine-tuning

Next we evaluated how the models performed when trained
on concatenated data. We mainly tried two variations: 1)
concatenating all the available data (ALL) ii) combine only
the available out-of-domain data (OD) and later fine-tune the

SFor German-English, we ran the models until they converged because
the training data is much smaller compared to Arabic-English direction
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Figure 2: Arabic-English system development life line evaluated on development set tst-11 and tst-12. Here, ALL refers to

UN+OPUS+TED, and OD refers to UN+OPUS

Arabic-English
TED UN OPUS
tstl3  23.6 224 32.2

tstl4 205 17.8 27.3
avg. 221 20.1 29.7

German-English
TED CC EP

tst13 295 29.8 29.1
tstl4 233 25.7 25.1
avg. 264 277 27.1

Table 2: Individual domain models evaluated on TED testsets

model on the in-domain data. Table 3 shows the results. The
fine-tuned system outperformed a full concatenated system
by 1.8 and 2.1 average BLEU points in Arabic-English and
German-English systems respectively.

Looking at the development life line of these systems
(Figures 2, 3), since ALL has seen all of the data, it is bet-
ter than OD till the point OD is fine-tuned on the in-domain
corpus. Interestingly, at that point ALL and OD—TED have
seen the same amount of data but the parameters of the latter
model are fine-tuned towards the in-domain data. This gives
it average improvements of up to 2 BLEU points over ALL.

The ALL system does not give any explicit weight to any
domain © during training. In order to revive the in-domain
data, we fine-tuned it on the in-domain data. We achieved
comparable results to that of the OD—TED model which
means that one can adapt an already trained model on all

Sother than the data size itself

Arabic-English
TED ALL OD—TED \ ALL—TED

tst13  23.6 36.1 37.9 38.0
tstl4 205 30.2 32.1 322
avg. 221 332 35.0 35.1

German-English
TED ALL OD—TED | ALL—-TED

tst13 295 35.7 38.1 38.1
tstl4 233 30.8 32.8 329
avg. 28.0 333 35.4 355

Table 3: Comparing results of systems built on a concatena-
tion of the data. OD represents a concatenation of the out-of-
domain corpora and ALL represents a concatenation of OD
and the in-domain data. — sign means fine-tuning

the available data to a specific domain by fine tuning it on
the domain of interest. This can be helpful in cases where
in-domain data is not known beforehand.

4.3. Model Stacking

Previously we concatenated all out-of-domain data and fine-
tuned it with the in-domain TED corpus. In this approach, we
picked one out-of-domain corpus at a time, trained a model
and fine-tuned it with the other available domain. We re-
peated this process till all out-of-domain data had been used.
In the last step, we fine-tuned the model on the in-domain
data. Since we have a number of out-of-domain corpora
available, we experimented with using them in different per-
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Figure 3: German-English system development life line evaluated on development set tst-11 and tst-12. Here, ALL refers to

EP+CC+TED, and OD refers to EP+CC

mutations for training and analyzed their effect on the devel-
opment sets. Figure 2 and Figure 3 show the results. It is
interesting to see that the order of stacking has a significant
effect on achieving a high quality system. The best com-
bination for the Arabic-English language pair started with
the UN data, fine-tuned on OPUS and then fine-tuned on
TED. When we started with OPUS and fine-tuned the model
on UN, the results dropped drastically as shown in Figure
2 (see OPUS—UN). The model started forgetting the pre-
viously used data and focused on the newly provided data
which is very distant from the in-domain data. We saw simi-
lar trends in the case of German-English language pair where
CC—EP dropped the performance drastically. We did not
fine-tune CC—EP and OPUS—UN on TED since there was
no better model to fine-tune than to completely ignore the
second corpus i.e. UN and EP for Arabic and German re-
spectively and fine-tune OPUS and CC on TED. The results
of OPUS—TED and CC—TED are shown in Figures.

Comparing the OPUS—TED system with the
UN—OPUS—TED system, the result of OPUS—TED are
lowered by 0.62 BLEU points from the UN—OPUS—TED
system. Similarly, we saw a drop of 0.4 BLEU points for
German-English language pair when we did not use EP and
directly fine-tuned CC on TED. There are two ways to look
at these results, considering quality vs. time: i) by using UN
and EP in model stacking, the model learned to remember
only those parts of the data that are beneficial for achieving
better translation quality on the in-domain development sets.
Thus using them as part of the training pipeline is helpful
for building a better system. ii) training on UN and EP is
expensive. Dropping them from the pipeline significantly
reduced the training time and resulted in a loss of 0.62 and
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0.4 BLEU points only.

To summarize, model stacking performs best when it
starts from the domain furthest from the in-domain data. In
the following, we compare it with the data concatenation ap-
proach.

4.4. Stacking versus Concatenation

We compared model stacking with different forms of con-
catenation. In terms of data usage, all models are exposed
to identical data. Table 4 shows the results. The best sys-
tems are achieved using a concatenation of all of the out-of-
domain data for initial model training and then fine-tuning
the trained model on the in-domain data. The concatenated
system ALL performed the lowest among all.

ALL learned a generic model from all the available
data without giving explicit weight to any particular domain
whereas model stacking resulted in a specialized system for
the in-domain data. In order to confirm the generalization
ability of ALL vs. model stacking, we tested them on a new
domain, News. ALL performed 4 BLEU points better than
model stacking in translating the news NIST MT04 testset.
This concludes that a concatenation system is not an opti-
mum solution for one particular domain but is robust enough
to perform well in new testing conditions.

4.5. Data Selection

Since training on large out-of-domain data is time inefficient,
we selected a small portion of out-of-domain data that is
closer to the in-domain data. For Arabic-English, we selected
3% and 5% from the UN and OPUS data respectively which
constitutes roughly 2M sentences. For German-English, we
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Arabic-English
ALL OD—TED UN—OPUS—TED

tst13  36.1 37.9 36.8
tstl4  30.2 32.1 31.2
avg. 332 35.0 34.0
German-English
ALL OD—TED EP—CC—TED
tst13  35.7 38.1 36.8
tst14  30.8 32.8 31.7
avg. 333 354 343

Table 4: Stacking versus concatenation

Arabic-English  German-English

ALL Selected | ALL  Selected
tst13  36.1 32.7 35.7 34.1
tstl4  30.2 27.8 30.8 29.9
avg. 332 30.3 33.3 32.0

Table 5: Results of systems trained on a concatenation of
selected data and on a concatenation of all available data

selected 20% from a concatenation of EP and CC, which
roughly constitutes 1M training sentences.’

We concatenated the selected data and the in-domain data
to train an NMT system. Table 5 presents the results. The
selected system is worse than the ALL system. This is in
contrary to the results mentioned in the literature on phrase-
based machine translation where data selection on UN im-
proves translation quality [29]. This shows that NMT is not
as sensitive as phrase-based to the presence of the out-of-
domain data.

Data selection comes with a cost of reduced translation
quality. However, the selected system is better than all in-
dividual systems shown in Table 2. Each of these out-of-
domain systems take more time to train than a selected sys-
tem. For example, compared to individual UN system, the
selected system took approximately 1/10th of the time to
train. One can look at data selected system as a decent trade-
off between training time and translation quality.

4.6. Multi-domain Ensemble

We took the best model for every domain according to the
average BLEU on the development sets and ensembled them
during decoding. For weighted ensemble, we did a grid
search and selected the weights using the development set.
Table 6 presents the results of an ensemble on the Arabic-
English language pair and compares them with the individual
best model, OPUS, and a model built on ALL. As expected,

TThese data-selection percentages have been previously found to be op-
timal when training phrase-based systems using the same data. For example
see [29].
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Arabic-English

OPUS ALL | ENS, ENS,
tst13 322 361 | 319 343
tstl4 273 302 | 258 286
avg. 297 332 | 289 315

Table 6: Comparing results of balanced ensemble (ENS;)
and weighted ensemble (ENS,) with the best individual
model and the concatenated model

balanced ensemble (ENS;) dropped results compared to the
best individual model. Since the domains are very distant,
giving equal weights to them hurts the overall performance.
The weighted ensemble (ENS,,) improved from the best in-
dividual model by 1.8 BLEU points but is still lower than the
concatenated system by 1.7 BLEU points. The weighted en-
semble approach is beneficial when individual domain spe-
cific models are already available for testing. Decoding with
multiple models is more efficient compared to training a sys-
tem from scratch on a concatenation of the entire data.

4.7. Discussion

The concatenation system showed robust behavior in trans-
lating new domains. [9] proposed a domain aware concate-
nated system by introducing domain tags for every domain.
We trained a system using their approach and compared the
results with simple concatenated system. The domain aware
system performed slightly better than the concatenated sys-
tem (up to 0.3 BLEU points) when tested on the in-domain
TED development sets. However, domain tags bring a limi-
tation to the model since it can only be tested on the domains
it is trained on. Testing on an unknown domain would first
require to find its closest domain from the set of domains
the model is trained on. The system can then use that tag to
translate unknown domain sentences.

5. Conclusion

We explored several approaches to train a neural machine
translation system under multi-domain conditions and evalu-
ated them based on three metrics: translation quality, training
time and robustness. Our results showed that an optimum in-
domain system can be built using a concatenation of the out-
of-domain data and then fine-tuning it on the in-domain data.
A system built on the concatenated data resulted in a generic
system that is robust to new domains. Model stacking is sen-
sitive to the order of domains it is trained on. Data selection
and weighted ensemble resulted in a less optimal solution.
The former is efficient to train in a short time and the latter
is useful when different individual models are available for
testing. It provides a mix of all domains without retraining
or fine-tuning the system.
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