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1 Introduction

Quantification (see e.g. Peters and Westerstahl, 2006) is probably one
of the most extensively studied phenomena in formal semantics. But
because of the specific representation of meaning assumed by model-
theoretic semantics (one where a true model of the world is a priori
available), research in the area has primarily focused on one question:
given a model, what does it mean for a speaker to utter a statement
of the form Qz[P(x)], where @ is a natural language quantifier such as
no, few, some, many, most, all, at least 3... (or even a null quantifier
()? What is the relation of a quantifier to the truth value of a sentence?
In contrast, relatively little has been said about the way the underlying
model comes about, and its relation to individual speakers’ conceptual
knowledge.

Consider for instance the simple model in Fig.1. Given this state-of-
affairs, where the set of cats and the set of black things overlap, the
sentences some cats are black and at least one cat is black can be said to
be logically true, while all cats are black is logically false. Expanding on
this purely logical interpretation, researchers (e.g. Huang and Snedeker
(2009), Grodner et al. (2010) and Degen and Tanenhaus (2015)) have
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FIGURE 1 The set of cats and the set of black things overlap.

further shown how quantifier preferences depend on a variety of factors
ranging from the cardinality of the set involved to the ‘Question Under
Discussion’ in the discourse. That is, depending on the number of cats
involved in the state-of-affairs under consideration, humans may prefer
the description two cats are black to some cats are black, despite both
sentences being true.

What semantics and pragmatics have so far failed to provide is an
account of models themselves: how is it that in the first place, a speaker
might model the world in a way that the set of cats and the set of
black things overlap? In grounded situations, perceptual input arguably
constrains the beliefs of the speaker about the observed state-of-affairs.
If we stand in a room with five cats, two of which are black, it seems
intuitive to infer that our model of the state-of-affairs includes a set
of five cats, and the overlap between the set cats and the set of black
things has cardinality 2. It is much less clear how the model comes
about in non-grounded situations (which constitute the majority of an
adult’s utterances). Having encountered only a small proportion of all
cats in the world, and perhaps no unicorn, why is it that we confidently
utter sentences such as most cats have four legs or all unicorns look like
horses, pointing at an underlying model where indeed, most cats have
four legs and all unicorns look like horses?

In this paper, we make a first step in investigating how native speak-
ers of English model relations between non-grounded sets, by observ-
ing how they quantify simple statements. For instance, we ask how
an individual might quantify bats are blind (some? all?), hoping to
gain a representation of their underlying model of bats (and blind-
ness). Note that explicit quantification is an unusual phenomenon in
that it cannot directly be studied from corpora, being relatively rare
in naturally occurring text: underspecified constructions like bare plu-
rals and (in)definites starting with a/the are much more frequent than
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the equivalent some/most/all-quantified NPs.! Herbelot and Copes-
take (2011) estimate that around 7% of noun phrases are explicitly
quantified. This means that we are unlikely to find out from a corpus
study, for instance, that all cats are mammals: the generic cats are
mammals is the standard way to express the predication. Our main
contribution is to remedy this lack of data by releasing an annotation
layer for a well-known set of feature norms (the ‘McRae norms’, McRae
et al., 2005) consisting of over 7,000 concept-feature pairs, labelled by 3
native speakers of English. For each pair in the norms, coders have pro-
vided a natural language quantifier, resulting in new statements such
as all tricycles have three wheels or few apes are blind to extend the
data for pertinent computational tasks.

This paper is structured as follows. We first give some motivation for
our task, from both a theoretical linguistic and computational seman-
tic point of view (§2). We then describe our annotation setup (§3) and
follow on with an analysis of the produced dataset, conducting a quanti-
tative evaluation which includes inter-annotator agreement for different
classes of predicates (§4). We observe that there is significant agreement
between speakers but also noticeable variations. We posit that in set-
theoretic terms, there are as many worlds as there are speakers (§5),
but the overwhelming use of underspecified quantification in ordinary
language covers up the individual differences that might otherwise be
observed.

2 DMotivation

Although quantification is rarely explicit in naturally occurring text,
it is intrinsic to most utterances. Any reference act picks out some set
of individuals X in a world and, by associating a predicate P with it,
builds a model which is interpretable in terms of a quantified relation:
some, most, all individuals in X do P. This process happens intuitively
so that, when someone utters Mice are in the cellar, we don’t assume
that all mice in the world have gathered in the speaker’s cellar, only
some of them. In this paper, we will regard this process as generat-
ing a natural language quantifier with a set-theoretic interpretation.
Note that we are not making any claims about whether speakers have
set-theoretic models ‘in their head’. We only wish to argue that their
interpretation of a statement involves building some kind of model of
the state-of-affairs described by the speaker, and that this model gives
them some (rough) information about the proportion of instances of a

IThere may be certain genres where there are more or less uses of quantifiers,
however it still remains rare in ordinary natural language text.
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concept involved in the situation. We use set theory as a shorthand to
express the end-product of this intuitive process.

Being able to generate a quantifier for a given subject-predicate pair
is a prerequisite for many lexical semantics and inference tasks. It is
arguably part of the concept cat that some cat instances are tabbies
and all are mammals, and knowing this allows us to infer that given a
cat taken at random, that cat is most definitely a mammal and may
be a tabby. A lot of work in computational semantics has focused on
extracting specific set relations from text, in particular those involv-
ing set identity or set inclusion (e.g. synonymy, hyponymy: Landauer
and Dumais, 1997, Hearst, 1992 through to Bullinaria and Levy, 2012,
Baroni et al., 2012, Lenci and Benotto, 2012). But much less research
has looked into the problem of generally inducing a set-theoretic model
from corpus data, including set relations which can range from small to
consequent — but not necessarily universal — overlap (Herbelot, 2013,
Herbelot and Vecchi, 2015).

The dataset we release with this paper has two motivations. The first
is to gather linguistic data to help us understand, from a theoretical
point of view, to which extent humans agree on a single model of the
world. The second is to provide a large gold standard of quantified
predications which can be used as training/test data in computational
tasks such as entailment, inference, concept modelling, etc.

3 Quantifying the McRae norms

The McRae norms (2005) are a set of feature norms elicited from 725
human participants for 541 concepts. The annotators were asked to
provide features for each concept, covering physical, functional and
other properties. The result is a set of 7257 concept-feature pairs such
as airplane used-for-passengers or bear is-brown.

We conducted the quantification of the McRae data in the following
way. We recruited three native English speakers (one Southeast-Asian
and two American speakers, henceforth denoted as A1 and A2/A43),
all computer science students. For each concept-feature pair (C, f) in
the norms, they were asked to provide a label expressing the ratio of
instances of C having the feature f. The allowable classes were NO,
FEW, SOME, MOST, ALL. Table 1 provides example annotations for
concept-feature pairs. An additional label, KIND, was introduced for
usages of the concept as a kind, where quantification does not apply
(e.g. beaver symbol-of-Canada).

Our investigation required minimising the pragmatic interferences
observed in quantifier selection. Note that the way a speaker quantifies
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Concept | Feature
is_muscular ALL
is_.wooly MOST
ape .
lives_on_coasts SOME
is_blind FEW
has_3_wheels ALL
used_by_children MOST
tricycle | is_small SOME
used_for_transportation | FEW
a_bike NO

TABLE 1 Example annotations for concepts.

bats are blind depends on a) the speaker’s beliefs about the concepts bat
and blind and b) their personal interpretation of quantifiers in context.
The first aspect concerns matters of lexical semantics and, broadly-
speaking, world knowledge. Does the speaker understand blindness as
complete lack of sight or (just) poor sight? What do they know about
bats? The second aspect relates to the pragmatics of quantifier seman-
tics: we straightforwardly observe, for example, that all has a much
wider meaning than V suggests (as in all my friends say I'm right,
which typically does not imply universal quantification). These two as-
pects had to be clearly separated in our study, as we focused on the first
question, i.e. what people believe about the actual state of the world
(regardless of their way of expressing it), and how this relates to their
conceptual and lexical knowledge.

In order to reduce such interferences, we gave clear instructions to
the coders on how to use the annotation labels (reproduced in the Ap-
pendix). We defined the label ALL as a ‘true universal’ which either
a) doesn’t allow exceptions (as in the pair cat is-mammal) or b) may
allow some conceivable but ‘unheard-of’ exceptions. In other words,
we wanted ALL to refer to near-definitional features and tried to pre-
vent participants from worrying about far-fetched exceptions to the
norm. The label MOST was used for all majority cases, including those
where the annotator knew of actual real-world exceptions to a near-
definitional norm. The NO/FEW distinction was defined as mirroring
ALL/MOST. SOME was not associated with any specific instructions.

To further minimise potential disagreements, we introduced extra
instructions for cases where the participants might hesitate between two
labels. We encouraged them to choose the label corresponding to lower
set overlap (i.e. prefer SOME to MOST, MOST to ALL, etc). This ordering
preference was set up with a view to use the dataset in computational
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inference tasks, where truth preservation is important: while cats have
four legs should ideally be annotated as MOST, the label SOME still
results in a true predication (some cats have four legs). Compare with
cats are black, where choosing MOST over SOME would result in a false
sentence (most cats are black).

Clearly, fixing the interpretation of the labels affects the type of
information encoded by the dataset. We are not modelling the way that
speakers naturally use the determiners some, most, all, etc. Rather, we
are modelling the perceived overlap between the set denoted by a noun
and the set denoted by a predicate (simplifying somewhat and regarding
predicates as sets rather than functions). Our use of a script font for our
allowable labels (e.g. SOME, MOST) reflects the fact that we have fixed
the meaning of the corresponding quantifier in one of their possible
interpretations. Fixing the labels’ interpretation, of course, does not
completely suppress all unwanted effects. For instance, understanding
ALL as a clear universal does not prevent annotators from falling into
the ‘generic’ trap identified by Leslie et al. (2011), whereby people
often agree to false statements such as all ducks lay eggs due to the
straightforward availability of the corresponding generics (ducks lay
€ggs).

The order of the data was randomised prior to distributing it to the
annotators. Participants took 20 or less hours to complete the task,
which they did at their own pace, in as many sessions as they wished.
While the task was a significant time investment, having a full set
of labels for each participant allowed us to compare agreement over
different classes of predicates (§4.3) and thus obtain an insight into
significant variations at the individual level.

4 Data analysis

This section describes the annotated dataset, concentrating on three
aspects: the overall distribution of the six labels, the overall inter-
annotator agreement, and specific variations in agreement across con-
ceptual feature classes.

4.1 Class distribution

Fig. 2 shows how the general distribution of the annotation varies across
participants. As we might expect, the labels KIND and NO are seldom
used: this can be easily explained by noting that KIND mentions are
overall rare, and that the feature norms should by definition apply to
the concept under consideration.

As far as the other quantifiers are concerned, we note relatively wide
variations across annotators. A1, in particular, uses ALL extensively,
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FIGURE 2 Class distribution per annotator (Al: blue, A2: red, A3: grey).

applying the label to over 70% of the McRae instances. A manual anal-
ysis of the data reveals that the annotator may have interpreted their
model of the world in a much more normative way than the other par-
ticipants. For instance, they may have labelled the pair ambulance —
used-for-rescuing with a universal under the assumption that the in-
trinsic function of an ambulance is to rescue people, regardless of the
fact that some ambulances might finish their days as museum objects
or converted vehicles. The generalisation effect noted by Leslie et al.
(2011) (e.g. universalising ducks lay eggs) may also be at fault, but it is
impossible to tell to what extent this might be the case. The distribu-
tions of A2 and A& are much more alike — although smaller variations
can be found between them too. Notably, A3 uses FEW significantly
more than the other two participants.

As we will show in 4.3, looking at the data in more detail also reveals
that the overall similarity between A2 and A8 does not hold across all
categories of predicates. In fact, some categories show lower agreement
between A2 and A& than between either A2 or A3 and Al.

Having analysed the overall distribution of all annotations, we re-
move the instances marked with at least one KIND label, which poten-
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tially lack a quantificational interpretation. We end up with a remaining
7138 instances out of 7257.

4.2 Inter-annotator agreement

Given the differences observed in the use of each individual quantifier,
we need an inter-annotator agreement measure that assumes separate
distributions for all three coders. We would also like to account for the
seriousness of the disagreements: for instance, a disagreement between
NO and ALL should be penalised more than one between MOST and
ALL. We select weighted Kappa (k,,) (Cohen, 1968) as our agreement
measure, since it satisfies both requirements. k., is a variant on the
kappa inter-annotator agreement measure. Simple kappa (Cohen, 1960)
measures the extent to which two annotators agree above what would
be expected by chance:

Po — Pe -1 1—po (1.1)

1- Pe 1- Pe
where p, is the observed agreement between annotators and p. the
expected agreement.

In this version, all disagreements are weighted the same. The weighted
version of kappa, in contrast, allows for penalising different types of
disagreement in different measures. The weights are given by an k % k
matrix, where k£ is the number of classes under consideration. The
weighted kappa for two annotators is given by:

T T wiioi

S b wijes
where w;; is the weight assigned to a disagreement involving classes
i and j, and o;; and e;; are respectively the observed and expected
agreements for that pair of classes.

As kK, can only be calculated for two annotators, we report all an-
notator pairs x:2, k13 and k23, as well as their average (x:}), computed
using the R ‘psych’ package.?

Calculating k., requires setting a weight matrix to control the
penalty applied to specific disagreements. Ideally, we would like this
weight matrix to reflect the prevalence of the predication (i.e. the set-
theoretic ratio between the restrictor and scope of the quantifier). So
in a world where MOST corresponds to around 80% of instances of C
having property f and ALL 100%, the penalty for a confusion between
MOST and ALL should be set to 100 — 80 = 20.

Fw = 1 (1.2)

2http://cran.r-project.org/web/packages/psych/psych.pdf
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Predication type Example Prevalence
Principled Dogs have tails 92%
Quasi-definitional Triangles have three sides 92%
Majority Cars have radios 70%
Minority characteristic | Lions have manes 64%
High-prevalence Canadians are right-handed 60%
Striking Pit bulls maul children 33%
Low-prevalence Rooms are round 17%
False-as-existentials Sharks have wings 5%

TABLE 2 Classes of generic statements with associated prevalence, as per
Khemlani et al. (2009).

Quantifiers are however notoriously difficult to associate with stable
prevalence estimates (i.e. ALL might correspond to 90%, 95%, 100% of
a set, depending on its context of use). Even in our scenario, where
we are forcing a certain interpretation of the quantifiers, MOST could
easily range from, say, 80% to 99%. The best we can do is to provide a
mean for each quantifier, so that, for instance, Pr(SOME) is the average
prevalence of all predications annotated with SOME. We consider two
ways to get such averages:

1. Prevalence estimates have been previously elicited in Khemlani

et al. (2009) (henceforth K H09), where 50 generic predications
received an estimate from 17 coders. We use the results of this
study to set k,’s weight matrix.
K HO09 did not work on quantifiers per se but on types of generic
statements, so their proposed classification must be mapped to
ours for comparison. We reproduce their results in Table 2, includ-
ing an example of each class, as included in their original paper.
The ‘quasi-definitional’ class clearly corresponds to an ALL quan-
tification, while the ‘false-as-existential’ corresponds to NO. So we
give a prevalence of 92% to ALL and of 5% to NO. Similarly, the
low-prevalence class can be mapped onto FEW, as it refers to pred-
icates which are existentially true for a small number of instances.
We also average the ‘striking” and ‘minority characteristic’ class
to get a prevalence for SOME (49% — probably an overestimate, as
the minority characteric class tends to elicit inflated prevalences).
We finally conflate the ‘high prevalence’, ‘majority’ and ‘quasi-
definitional’ generics to obtaining an average prevalence of 74%
for MOST.

2. We also exhaustively try all possible prevalence values in the
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Best | KH09 ) )

oo 2 |l |2 | ol
FEW 5 17 full

MOST 95 74 BEST 44 40 .50 .45
ALL | 100 92 maj

KHO9 | .49 | 48 | .60 | .52

TABLE 3 Prevalence estimates for BEST | .57 | .53 67 | .Bb9

each class. Best shows the
estimates that led to the highest TABLE 4 Ky for MCRAE £y and
Kuw, reported with those derived MCRAEmq; .
from K HO09.

range 0-100, with the only constraint that Pr(NO) < Pr(FEW) <
Pr(soME) < Pr(MosT) < Pr(aLL). We record xZ} for each com-
bination, hoping to find that the best agreement does roughly
correspond to the prevalence values elicited by K H09.

We calculate x,, on our full dataset (denoted here as MCRAEf,;),
as well as on the subset in which there was majority agreement among
annotators (i.e. where two or more annotators used the same la-
bel: MCRAE,,,;, 6120 instances, corresponding to 86% of our data).
MCRAE,q; can straightforwardly be turned into a gold standard for
any computational task by setting the quantification of each instance
to the majority class. Table 3 reproduces the prevalences derived from
K HO09, alongside the estimates that led to the highest «,, overall in the
systematic search (marked Best). Table 4 reports the calculated kappa
values for both MCRAE ¢,;; and MCRAE ;4.

We find that x2? is consistently higher than x1? and x13, indicating
better agreement between A2 and A3. This is expected given the dif-
ferences in class distributions observed in Fig. 2. The K H09 estimates
give reasonable kappas, reaching 0.52 for MCRAE,,q;. But a significant
improvement in agreement can be observed when systematically search-
ing for the ‘best’ weight matrix (k4=0.59 for MCRAE,,,;). The corre-
sponding prevalences show MOST and ALL, as well as NO and FEW, to
be virtually indistinguishable.

These results indicate that, as far as prevalence was concerned, our
annotators interpreted MOST as a near-universal, probably analogous
to the ‘principled’ class in K H09 — even though our guidelines would
have left some scope for a less strict majority reading. For some ap-
plications, users of the dataset may thus want to conflate the MOST
and ALL classes. However, we also note that out of the 6120 instances
in MCRAE,qj, 1136 correspond to a majority of MOST annotations —
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giving some sizeable data for the comparison of universals and near-
universals.

Finally, we consider the correlation between the original production
frequencies and the annotation agreement for each concept-feature pair.
The production frequency of a feature for a concept is the number of
times it was generated in the original McRae experiment. For exam-
ple, the property is-crunchy was produced 11 times for the concept
apple. In doing this, we test whether a feature that is very salient for
a concept leads to a more stable set relation across speakers. We first
compare the amount of agreement among annotators (0:no agreement;
l:majority agreement without consensus; 2:unanimous consensus) and
the original production frequencies: this results in a very low correla-
tion (Spearman’s p <0.2). This tells us that high agreement values can
be expected in cases of high production frequency, as well as cases of
very low production frequency. Indeed, is-yellow may be produced with
high frequency for banana and still not prevent annotators from inter-
preting the concept as referring to either all bananas or only ripe ones.
Conversely, few people may produce an-inanimate for anchor, but the
relevant set relation is unarguably one of inclusion.

We then attempt to test the correlation between the prevalence esti-
mates of quantifiers and the original McRae production frequencies to
see if there is a direct relationship between the production of a feature
and the proportion of instances having that feature (using the majority
opinion from MCRAE;q;). The assumption here is that a feature that
is shared by all instances of a concept is more likely to be produced.
Again, we obtain very low correlation (Spearman’s p <0.3). This result
underlines the fact that we cannot extract or estimate quantifier val-
ues directly from the feature norms. Instead, it is clear that we need a
dataset where that information is explicitly annotated.

4.3 Analysis of various feature types

The McRae norms are annotated with feature classes which correspond
to types of knowledge stored in separate brain regions (marked as ‘BR
Features’ in the data — see Cree and McRae, 2003). These classes map
onto different modalities such as colour, shape or taste, which have been
found to activate particular areas of the brain. This includes ‘function’
for predicates denoting the use of an object (e.g. hoe used-for-farming),
or ‘tactile’ for features associated with the sense of touch (e.g. toaster
is-hot). In addition, two categories were defined for features that fell
out of the brain region classification: the ‘taxonomic’ category for is-a
relations (e.g. aze is-a-tool), and the ‘encyclopedic’ category, designed
as a catchall for all other features. Table 5 shows the different classes,



12 / LILT VOLUME 13, ISSUE 2 May 2016

together with examples of corresponding predications. It also records
the frequency of each class in our data (after the instances marked KIND
were removed), and the inter-annotator agreements (pairs and average,
using the Best weights obtained in 4.2).3

The agreement results show several interesting effects. First, while
we noticed that overall, A2 and A3 agreed significantly more than Al
with either of them, it turns out that for specific feature classes, this
tendency does not hold. For instance, A1 and A2 obtain much better
agreement on ‘visual-colour’ items than either with A3. This is also the
case for the ‘taxonomic’ class. This result indicates that, as we might
expect, differences in human perception and conceptual make-up are
reflected in their use of quantifiers. Note that this does not seem to be
linked to cultural effects: the Southeast-Asian speaker (A1) and one of
the American speakers (A2) seem to have a closer notion of colour than
the two Americans (A2/A3). Similarly, A1 and A3 share much better
agreement on ‘smell’ features than A2 and A3 — pointing at individual
rather than cultural differences.

Second, the ranking of classes by x4 highlights several notable facts.
One is that, although at the top of the table, the ‘taxonomy’ class does
not result in as good an agreement as we might expect. Annotators
disagreed on examples such as bulls are cows, cats are pets, or again
cloaks are coats. While the second of those examples probably does
relate to actual disagreements in quantification, the other two seem to
be artefacts of conceptual differences: what are cows, cloaks and coats?
Or in other words, which individuals should be included in the sets of
cows, cloaks and coats?

Another enlightening aspect is the kappa values obtained by different
types of perceptual classes. While the ‘form and surface’ class comes in
second position in the ranking, ‘colour’ and ‘motion’ features get much
lower kappas. Perhaps expectedly, ‘smell’, ‘taste’, ‘tactile’ and ‘sound’
features are at the bottom of the table: these features correspond to
senses that are on the whole less emphasised in English.

Generally, the observed ranking may be explained by the type of
cognitive process at work in the quantification task. We note that
there is evidence for quantification being relatively straightforward in

3The R psych package does not calculate kappa in cases where the contingency
table is unbalanced — i.e. whenever annotators did not use the same set of labels.
Because of this, we encountered problems when calculating x,, for the three classes
‘smell’, ‘taste’ and ‘tactile’ (marked by an asterisk in Table 5), as the NO and FEW
quantifiers had only been used by one annotator. In order to overcome this issue,
we made two minor changes to each of these files, changing one ratings from FEW
to NO, and one from SOME to FEW.
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BR Label Example Freq. | k2 [ kI3 [ 23 || k2
taxonomic axe a_tool 713 | .66 | .48 | .56 || .57
visual-form ball is_round 2330 | 48 | 44 | b4 || 49
function hoe used_for_farming | 1489 | .36 | .35 | .50 || .40
encyclopaedic | wasp builds_nests 1361 | .39 | .34 | .37 || .37
visual-colour | pen is_red 421 | 44 | 27 | .30 || .34
visual-motion | canoe floats 332 | .28 | .20 | .46 || .31
xsmell skunk smells_bad 24 34 1 48 | 12 | 31
xtaste pear tastes_sweet 84 22 1.29 | .36 || .29
xtactile toaster is _hot 242 19 | .31 | .30 || .27
sound tuba is_loud 143 | .11 | .10 | .36 || .19

TABLE 5 Per-feature agreement for MCRAE,;, sorted by KA

some grounded contexts (those involving exact, rather than approxi-
mate number sense, and small cardinality — see Clark and Grossman,
2007). But quantifying feature norms involves using one’s approximate
number sense over large, non-grounded sets. This is bound to affect
agreement for non-definitional features, i.e. those contingent features
which cannot be abstractly derived (see bottle is-green vs. aze is-tool).

When looking more closely at the data, it seems clear that vague
and gradable adjectives affect agreement negatively. This explains the
relatively low kappa for the ‘colour’ class, as well as the four lowest
classes in the table. For example, the ‘sound’ class contains a significant
proportion of features such as is-loud, is-quiet, produces-high-pitched-
sounds, etc. However, this is not the only issue. It seems that in many
cases, a statement was read by an annotator as involving some kind
of potentiality, and labelled accordingly. For instance, missile explodes
received the labels SOME, MOST and ALL. It is likely that the SOME
interpretation quantifies over missiles which actually explode, while the
MOST/ALL interpretation considers the potential of a missile to explode.
A similar explanation can be provided for predications such as mouse
squeaks or balloon floats.

Overall, this short analysis illustrates that, even when features are
reliably produced for a given concept, their quantification may vary
significantly between annotators and agreement is highly dependent on
the corresponding functional or sensory type. To finish this section,
we will come back to our initial observation that most NPs in English
lack explicit quantification (see §1). In addition, we should mention
that several studies have shown that generics are acquired by children
much earlier than quantifiers (e.g. Hollander et al., 2002), strengthening



14 / LILT VOLUME 13, ISSUE 2 May 2016

arguments for the general precedence of ‘vague’ quantification. Given
the results reported here, it seems fair to assume that communication
is generally more successful when avoiding explicit quantification: a
speaker is more efficient in uttering tubas are loud than the potentially
controversial some tubas are loud (unless, for pragmatic reasons, they
want to emphasize the quantification). This remark also holds for read-
ings of adverbial or modal quantification which involve quantification
over individuals, as in tubas are sometimes loud, tubas can be loud.*
This is not to say that speakers’ models of the world are fundamentally
different: the weighted kappas obtained on our dataset are very reason-
able, and in over 86% of the 7,138 instances 2 or 3 annotators agreed on
their judgment (majority agreement). Still, disagreements are common
enough that they might be costly in conversation.

5 Conclusion

In this paper, we have presented an annotation layer for the McRae
feature norms (McRae et al., 2005), which shows quantifier labels of
each concept-feature pair in the norms, as given by three native speak-
ers of English. We are freely releasing this data for future research.’
A subset of the dataset totalling 6120 instances contains all cases of
majority agreement and can easily be used as gold standard for any
computational application requiring examples of explicitly quantified
statements about a range of concepts.

For evaluation purposes, we systematically matched the quantifiers
under study to a range of prevalence estimates and calculated the cor-
responding weighted kappas over our data. Following the assumption
that more accurate estimates should result in better kappa agreement,
we derived prevalence figures for each one of our five quantifiers. For
MOST, we found that, within the scope allowed by the guidelines (simple
majority to near-universal), annotators applied the label to cases with
prevalence close (but not equal) to 100%, clearly reading the quanti-
fier as a ‘universal with exceptions’. In spite of this, SOME did not end
up covering cases of ‘logical’ majority (i.e. anything over 50%): with
a prevalence of 35%, it was interpreted as a simple existential. This
result is interesting, as it suggests that coders may not have felt the
need for a quantificational category covering generally high prevalence.
We also showed that agreement is not correlated with the frequency

4For some discussion on the relation between event and individual quantification
in generic sentences, see Dobrovie-Sorin (2003).

5The full dataset, the majority cases and our annotation
script are available at http://www.aurelieherbelot.net/research/
computational-linguistics-resources/.
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of feature production, indicating that a feature which is widely seen
as relevant for a concept may still cause disagreements with regard
to the set-theoretic interpretation of the norm. Finally, we observed
that inter-annotator agreement was strongly dependent on the type
of feature involved, with non-visual, sensory features generating more
disagreements than definitional or functional features.

While overall, we observe good agreement on our quantification task
(reaching x=.59 for instances with a majority opinion), it seems un-
warranted to assume that generalised quantifiers are entirely and reli-
ably shared amongst speakers. Rather, we must posit a ‘many speak-
ers, many worlds’ hypothesis: individuals share some generic conceptual
knowledge which helps them efficiently communicate, but their actual
models of the world (what exactly counts as a cloak, and which pro-
portion of those are coats) can differ fairly significantly. In addition,
it is unclear how cognitively complex the quantification process is for
a given speaker. While we did not monitor the difficulty of our task
per se, it seems fair to assume that it is non-trivial: a simple pair
such as bowl used-for-eating requires retrieving all subkinds of bowls
the speaker may be familiar with, building a model of the entire set
(across subkinds) and finally making a decision about the quantifier. It
is not unreasonable to think that this process is only called upon when
absolutely needed.

This has consequences for the way we formalise models and, more
specifically, quantification and inference. Our observations above point
at models which, most of the time, are left underspecified but can be
specified when necessary — although at some cost and with some inter-
speaker variations (for an example of a formalisation of underspecified
quantification, see Herbelot and Copestake, 2011). Such variations will
presumably affect agreement in logical inference tasks. For instance,
inferring the probable colour of a hypothetical bathtub may turn out to
be non-trivial: the fact that speakers produce the norm is-white for the
corresponding concept may not be correlated with any expectation with
regard to individuals (leading to the three annotations SOME, MOST and
ALL in our data).

We conclude by arguing in favour of a speaker-dependent notion
of model which accommodates variations in people’s beliefs about the
world, while satisfying the requirement for broad general agreement,
necessary for successful communication. We hope, at any rate, that the
dataset we are releasing will be of use for further investigations of this
question.
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Appendix: Annotation guidelines for the McRae
quantification task

You have been given a text file containing concept-feature pairs. The
features associated with each concept are things that some people might
judge salient for that concept. For instance, some people strongly as-
sociate ‘made_of wax’ with ‘candle’.

For each concept-feature pair, your task is to decide which proportion
of the things designated by that concept actually share the feature
associated with it in the real world. For example, you might decide that
in the real world, ‘all’ candles are made of wax, or again that ‘most’
tables have four legs. We will call this ‘quantifying’ the concept-feature
pair.

You can quantify each pair using any of the following labels:

+ all: a universal. This applies to ‘truly’ universal features, i.e. those
that do not accept exceptions (e.g. ‘mammal’ for ‘cat’). It also applies
to features which are nearly universal, i.e. features which you can
conceive might be missing in some instances of the concept, but
without having ever heard of such a case. So you might decide, for
instance, that it is conceivable for a cat to be born without eyes, but
have never heard of this happening. In that case, you would quantify
the pair ‘cat has_eyes’ with all.

+ most: majority case (e.g. ‘has_4_legs’ for ‘cat’). This also applies to
cases where exceptions are conceivable and known of (e.g. ‘is_black’
for ‘raven’: you might know that a small quantity of ravens are al-
binos).

+ some: self-explanatory.

- few: applies to (conceivable and known of) exceptions (e.g. Few
ravens are albinos).

+ no: negated universal (e.g. the feature ‘fish’ for the concept ’cat’).

+ kind: this applies to cases where the feature does not relate to
instances of the concept but to the concept itself. For instance,
‘on_Lebanese_flag’ might be a feature of ‘cedar_tree’, but it does not
apply to individual trees, just to the concept itself.

Extra guidance

+ In case of doubt, select the ‘weaker’ quantifier (most has precedence
over all, some over most, etc.)

+ There is no right answer, the most important aspect of the task is
consistency, so just use your intuition to complete it. But if you really
get stuck, you may look for information using an external resource
(Internet, encyclopedia, etc.)



