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Abstract

In this paper we provide the largest published compar-
ison of translation quality for phrase-based SMT and
neural machine translation across 30 translation direc-
tions. For ten directions we also include hierarchical
phrase-based MT. Experiments are performed for the
recently published United Nations Parallel Corpus v1.0
and its large six-way sentence-aligned subcorpus. In the
second part of the paper we investigate aspects of trans-
lation speed, introducing AmulNMT, our efficient neural
machine translation decoder. We demonstrate that cur-
rent neural machine translation could already be used
for in-production systems when comparing words-per-
second ratios.

1. Introduction

We compare the performance of phrase-based SMT, hi-
erarchical phrase-based, and neural machine translation
(NMT) across fifteen language pairs and thirty transla-
tion directions. [1] recently published the United Na-
tions Parallel Corpus v1.0. It contains a subcorpus of
ca. 11M sentences fully aligned across six languages
(Arabic, Chinese, English, French, Russian, and Span-
ish) and official development and test sets, which makes
this an ideal resource for experiments across multiple
language pairs. It is also a compelling use case for
in-domain translation with large bilingual in-house re-
sources. We provide BLEU scores for the entire trans-
lation matrix for all official languages from the fully
aligned subcorpus.

We also introduce AmuNMT!, our efficient neural
machine translation decoder and demonstrate that the
current set-up could already be used instead of Moses

'https://github.com/emjotde/amunmt

in terms of translation speed when a single GPU per
machine is available. Multiple GPUs would surpass the
speed of the proposed in-production Moses configura-
tion by far.

2. Training data
2.1. The UN corpus

The United Nations Parallel Corpus v1.0 [1] consists
of human translated UN documents from the last 25
years (1990 to 2014) for the six official UN languages,
Arabic, Chinese, English, French, Russian, and Span-
ish. Apart from the pairwise aligned documents, a fully
aligned subcorpus for the six official UN languages is
distributed. This subcorpus consists of sentences that
are consistently aligned across all languages with the
English primary documents. Statistics for the data are
provided below:

Documents Lines

86,307 11,365,709

English Tokens
334,953,817

Table 1: Statistics for fully aligned subcorpus

Documents released in 2015 (excluded from the
main corpus) were used to create official development
and test sets for machine translation tasks. Develop-
ment data was randomly selected from documents that
were released in the first quarter of 2015, test data was
selected from the second quarter. Both sets comprise
4,000 sentences that are 1-1 alignments across all
official languages. As in the case of the fully aligned
subcorpus, any translation direction can be evaluated.



2.2. Preprocessing

Sentences longer than 100 words were discarded. We
lowercased the training data as it was done in [1]; the
data was tokenized with the Moses tokenizer. For Chi-
nese segmentation we applied Jieba? first.

2.3. Subword units

To avoid the large-vocabulary problem in NMT models
[2], we use byte-pair-encoding (BPE) to achieve open-
vocabulary translation with a fixed vocabulary of sub-
word symbols [3]. For all languages we set the number
of subword units to 30,000. Segmentation into subword
units is applied after any other preprocessing step. Dur-
ing evaluation, subwords are reassembled.

3. Phrase-based SMT baselines

[1] provided baseline BLEU scores for Moses [4] con-
figurations that were trained on the 6-way subcorpus.
Their configurations were the following:

The training corpora were split into four equally
sized parts that were aligned with MGIZA++ [5],
running 5 iterations of Model 1 and the HMM model
on each part. A 5-gram language model was trained
from the target parallel data, with 3-grams or higher
order being pruned if they occured only once. Apart
from the default configuration with a lexical reorder-
ing model, a 5-gram operation sequence model [6]
(all n-grams pruned if they occur only once) and a
9-gram word-class language model with word-classes
produced by word2vec [7] (3-grams and 4-grams are
pruned if they occur only once, 5-grams and 6-grams if
they occur only twice, etc.) were added, both trained
with KenLM [8]. Significance pruning [9] was applied
to the phrase-table and the compact phrase-table and
reordering data structures [10] were used. During
decoding with cube-pruning algorithm, stack size
and cube-pruning pop limits of 1,000 were chosen.
This configuration resembles the in-house translation
systems deployed at the United Nations.

4. Neural translation systems

The neural machine translation system is an attentional
encoder-decoder [11], which has been trained with
Nematus [12]. We used mini-batches of size 40, a
maximum sentence length of 100, word embeddings of

https://github.com/fxsjy/jieba

size 500, and hidden layers of size 1024. We clip the
gradient norm to 1.0 [13]. Models were trained with
Adadelta [14], reshuffling the training corpus between
epochs. The models have been trained for 1.2M iter-
ations (one iteration corresponds to one mini-batch),
saving every 30,000 iterations. On our NVidia GTX
1080 this corresponds to roughly 4 epochs and 8 days
of training time. Models with English as their source
or target data were later trained for another 1.2M
iterations (another 2 epochs, 8 days). For ensembling,
we chose the last four model checkpoints.

5. Phrase-based vs. NMT - full matrix

In Figure 1 we present the results for all thirty lan-
guage pairs in the United Nations parallel corpus
for the officially included test set. BLEU results are
case-insensitive, tokenized with the Moses tokenizer.
For Chinese we applied Jieba for segmentation.
BPE-subwords were concatenated.

Here we compare with NMT models that were
trained for 4 epochs or 1.2M iterations. With the excep-
tion of fr-es, the neural system is always comparable
or better than the phrase-based system. Especially
in cases where Chinese is one of the languages in a
language pair, the improvement of NMT over PB-SMT
is dramatic with between 7 and 9 BLEU points. We
also see large improvements for translations out of and
into Arabic. No special preprocessing has been applied
for Arabic. Improvements are also present in the case
of the highest scoring translation directions, en-es and
es-en.

6. Phrase-based vs. Hiero vs. NMT - language
pairs with English

The impressive results for any translation direction in-
volving Chinese motivated us to experiment with hi-
erarchical phrase-based machine translation (Hiero) as
implemented in Moses . Hiero has been confirmed to
outperform phrase-based SMT for the Chinese-English
language pair. We decided to expand our experiment
with all language pairs that include English as these
are the main translation directions the UN are working
with. For these ten translation directions we created a
hierarchical PB-SMT system with the same preprocess-
ing settings as the shallow PB-SMT system.

To test the effects of prolonged training time,
we also continued training of our neural systems for
another four epochs or 1.2M iterations (2.4M in total)
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Figure 1: Comparison between Moses baseline systems and neural models for the full language pair matrix of the
6-way corpus.
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Figure 2: For all language pairs involving English, we experimented also with hierarchal machine translation and more
training iterations for the neural models. NMT 1.2M means 1.2 million iterations with a batch size of 40, training
time ca. 8 days. NMT 2.4 means 2.4 million iterations accordingly.

which increased training time to 16 days in total per
neural system.

Figure 2 summarizes the results. As expected,
Hiero outperforms PB-SMT by a significant margin
for Chinese-English and English-Chinese, but does not
reach half the improvement of the NMT systems. For
other languages pairs we see mixed results with models
trained for 1.2M iterations; for French-English and
Russian-English, where results for PB-SMT and NMT
are close, Hiero is the best system.

However, training the NMT system for another
eight days helps, with gains between 0.3 and 1.3
BLEU. We did not observe improvements beyond 2M
iterations. For our setting, it seems that stopping train-
ing after 10 days is a viable heuristic. Training with
other corpus sizes, architectures, and hyper-parameters
may behave differently.

7. Efficient decoding with AmuNMT

AmuNMT is a ground-up neural MT toolkit implemen-
tation, developed in C++. It currently consist of an effi-
cient beam-search inference engine for models trained
with Nematus. We focused mainly on efficiency and
usability. Features of the AmuNMT decoder include:

e Multi-GPU, multi-CPU and mixed GPU/CPU
mode with sentence-wise threads (different
sentences are decoded in different threads);

* Low-latency CPU-based decoding with intra-
sentence multi-threading (one sentence makes
use of multiple threads during matrix operations);

* Compatibility with Nematus [12];

* Ensembling of multiple models;

* Vocabulary selection in the output layer [15, 16];

* Integrated segmentation into subword units [3].
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Figure 3: Beam size versus speed and quality for a single English-French model. Speed was evaluated with AmuNMT
on a single GPU. The ragged appearance is due to CaBLAS GEMM kernel switching for different matrix sizes.

System BLEU Wps Memory
Single best 49.68 ~860 301M
Last-4 ensemble 51.38 ~ 200 2.1G
Last-4 average 51.13 ~860 30IM
Last-8 average 5135 ~860 30IM

Table 2: Checkpoint ensembling and averaging. Wps is
translation speed as words-per-second, one GPU. Mem-
ory is memory consumption or total model size.

7.1. Checkpoint ensembling and averaging

Results in Figures 1 and 2 are reported for ensembles
of the last four model checkpoints. Generally, this im-
proves quality by up to 2 BLEU points, but reduces
translation speed with growing ensemble size. An al-
ternative found to work by [18] is checkpoint averaging,
where a single model is produced by element-wise av-
eraging of all corresponding model parameters, produc-
ing a single model.> We observed that averaging over 8
last checkpoints yields similar quality as ensembling of
the last 4 checkpoints (Table 2). Results for averaging
more models are uneven as increasingly weaker models
are used. We did not investigate ensembles of models
produced by separate training runs which would likely
yield more improvements.

3In later experiments and discussions with Rico Sennrich, we
have found that this effect seems to be an artifact of the Adadelta
algorithm. Training with Adam results in better single models and
seems to make checkpoint ensembling or averaging obsolete.

7.2. Vocabulary selection

Our vocabulary size is already greatly reduced due to
the use of subword units (30k items), but especially for
the CPU version of AmuNMT decoding time is domi-
nated by the calculations in the final output layer. Previ-
ous work [15] proposed to clip the per-sentence vocabu-
lary to the K = 30k (out of 500k) most common target
words and K’ = 10 most probable translations for each
source word. We re-use Moses lexical translation tables
trained on data segmented into subword units to obtain
the translation probabilities.

Our implementation is based on [15], however, sim-
ilar as [16], we find that relying mostly on K’ does not
result in deterioration of translation quality and that K
can be greatly reduced. We empirically chose K = 75
and K’ = 75, which results on average in ca. 1250 vo-
cabulary items per sentence. BLEU scores remain the
same although translations are slightly changed. For
performance comparisons see Section 7.4.

7.3. Beam size vs. speed and quality

Beam size has a large impact on decoding speed. In
Figure 3 we plot the influence of beam size on decod-
ing speed (as words per second) and translation quality
(in BLEU) for the English-French model. The English
part of the UN test set consists or ca. 120.000 tokens,
the whole test set was translated for each experiment.
As can be seen, beam sizes beyond 5-7 do not result
in significant improvements as the quality for a beam
size of 5 is only 0.2 BLEU below the maximum. How-
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(a) Words per second for Google NMT
system reported by [17]. We only give
this as an example for a production-
ready system.

(b) Moses vs. Nematus vs. AmulNMT: Our CPUs are Intel Xeon E5-2620 2.40GHz,
our GPUs are GeForce GTX 1080. CPU-16 means 16 CPU threads, GPU-1 means
single GPU. All NMT systems were run with a beam size of 5. Systems marked
with * use vocabulary selection.

Figure 4: Comparison of translation speed in words per second

ever, decoding speed is significantly slower. We there-
fore choose a beam-size of 5 for our experiments.

7.4. AmMuNMT vs. Moses and Nematus

In Figure 4a we report speed in terms of words per sec-
ond as provided by [17]. Although their models are
more complex than ours, we quote these figures as a
reference of deployment-ready performance for NMT.

We ran our experiments on an Intel Xeon E5-2620
2.40GHz server with four NVIDIA GeForce GTX 1080
GPUs. The phrase-based parameters are described in
Section 3 which is guided by best practices to achieving
reasonable speed vs. quality trade-off [19]. The neural
MT models are as described in the previous section.

We present the words-per-second ratio for our NMT
models using AmuNMT and Nematus, executed on the
CPU and GPU, Figure 4b. For the CPU version we use
16 threads, translating one sentence per thread. We re-
strict the number of OpenBLAS threads to 1 per main
Nematus thread. For the GPU version of Nematus we
use 5 processes to maximize GPU saturation. As a base-
line, the phrase-based model reaches 455 words per sec-
ond using 16 threads.

The CPU-bound execution of Nematus reaches
47 words per second while the GPU-bound achieved
270 words per second. In similar settings, CPU-bound
AmuNMT is three times faster than Nematus CPU,
but three times slower than Moses. With vocabulary
selection we can nearly double the speed of AmuNMT
CPU. The GPU-executed version of AmuNMT is more
than three times faster than Nematus and nearly twice
as fast as Moses, achieving 865 words per second, with
vocabulary selection we reach 1,192. Even the speed
of the CPU version would already allow to replace a
Moses-based SMT system with an AmuNMT-based
NMT system in a production environment without
severely affecting translation throughput.

AmuNMT can parallelize to multiple GPUs pro-
cessing one sentence per GPU. Translation speed in-
creases to 3,368 words per second with four GPUs, to
4,423 with vocabulary selection. AmuNMT has a start-
up time of less than 10 seconds, while Nematus may
need several minutes until the first translation can be
produced. Nevertheless, the model used in AmuNMT
is an exact implementation of the Nematus model.

The size of the NMT model with the chosen param-
eters is approximately 300 MB, which means about 24
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Figure 5: Latency measured in milliseconds per sen-
tence. NMT systems were run with a beam size of 5.
Lower is better. Translations were executed serially.
Nematus CPU exceeded 8,500 ms and was omitted.

models could be loaded onto a single GPU with 8GB of
RAM. Hardly any overhead is required during transla-
tion. With multiple GPUs, access could be parallelized
and optimally scheduled in a query-based server setting.

7.5. Low-latency translation

Until now, we have evaluated translation speed as
the time it takes to translate a large test set using a
large number of cores on a powerful server. This
bulk-throughput measure is useful for judging the
performance of the MT system for batch translation of
large number of documents.

However, there are use-cases where the latency for
a single sentence may be important, for example predic-
tive translation [20]. To compare per-sentence latency,
we translate our test set with all tools serially, using at
most one CPU thread or process. We do not aim at full
GPU saturation as this would not improve latency. We
then average time over the number of sentences and re-
port milliseconds per sentence in Figure 5, lower val-
ues are better. Here AmuNMT GPU compares very
favourably against all other solutions with a 20 times
lower latency than Moses and Nematus. Latency be-
tween the CPU-only variants shows similar ratios as for
bulk-translation.

8. Conclusions and future work

Although NMT systems are known to generalize bet-
ter than phrase-based systems for out-of-domain data,
it was unclear how they perform in a purely in-domain
setting which is of interest for any organization with
significant resources of their own data, such as the UN
or other governmental bodies.

We evaluated the performance of neural machine
translation on all thirty translation directions of the
United Nations Parallel Corpus v1.0. We showed
that for all translation directions NMT is either on
par with or surpasses phrase-based SMT. For some
language pairs, the gains in BLEU are substantial.
These include all pairs that have Chinese as a source
or target language. Very respectable gains can also be
observed for Arabic. For other language pairs there is
generally some improvement. In the future we would
like to verify these results with human evaluation.

We introduced our efficient neural machine
translation beam-search decoder, AmuNMT, and
demonstrated that high-quality and high-performance
neural machine translation can be achieved on com-
modity hardware; the GPUs we tested on are available
to the general public for gaming PCs and graphics
workstations. A single GPU outmatches the per-
formance of 16 CPU threads on server-grade Intel
Xeon CPUs. Access to specialized hardware seems
unnecessary when planning to switch to neural machine
translation with lower-parametrized models.

Even the performance of the CPU-only version of
AmuNMT allows to set-up demo systems and can be
a viable solution for low-throughput settings. Training,
however, requires a GPU. Still, one might start with one
GPU for training and reuse the CPU machines on which
Moses has been running for first deployment. For future
work, we plan to further improve the performance of
AmuNMT, especially for CPU-only settings.

We did not cover architecture-related questions.
Reducing the hidden state size by half could improve
performance 4-fold. Determining the influence on
translation quality would require more experiments.
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