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Abstract
This paper describes LIMSI’s submission to the MT track of
IWSLT 2016. We report results for translation from English
into Czech. Our submission is an attempt to address the dif-
ficulties of translating into a morphologically rich language
by paying special attention to the morphology generation on
target side. To this end, we propose two ways of improving
the morphological fluency of the output: 1. by performing
translation and inflection of the target language in two sep-
arate steps, and 2. by using a neural language model with
characted-based word representation. We finally present the
combination of both methods used for our primary system
submission.

1. Introduction
This paper documents LIMSI’s participation to the MT Track
of IWSLT 2016 for English-to-Czech. The reported experi-
ments are an attempt to address the difficulties of translating
into a morphologically rich language. In Statistical Machine
Translation (SMT), the generated target language contains
several incorrect word forms that show errors in agreement
within a noun phrase, that encode the wrong grammatical
function of the word in the sentence, or that simply convey
the wrong meaning from the source. Our attempt to tackle
this issue consists in two methods that improve the morpho-
logical fluency of the output.

The first method implies a specific representation of the
target morphologically rich language. Words are normalized,
i.e. morphological information that is redundant with respect
to English is removed, such as case for nouns, that has no
equivalent in English. The MT system then translates from
English into normalized Czech. In a second step, a classifier
is used to predict the previously removed information and
helps to generate a word form.

The second method is a neural language model that is
used to re-score the n-best hypothesis from the SMT system.
This model builds word representations from the character
level, which makes it able to take into account morphology.

In the first section, we introduce our SMT baseline setup
and the data pre-processing we applied. We then describe
successively the two methods above to handle target mor-
phology. Finally, we present the results obtained by combin-
ing them.

2. Baseline System Overview
Our experiments mainly use NCODE,1 an open source imple-
mentation of the n-gram approach, as well as MOSES2 for
some contrastive experiments. For more details about these
toolkits, the reader can refer to [1] for MOSES and to [2] for
NCODE.

2.1. Data Selection

For this task, we used the data provided at IWSLT 2016, as
well as the permissible data provided at WMT 2016.3 The
parallel data used to train the translation model consists in the
TED corpus, the QED corpus4 and Europarl [3], which sum
up to 885k parallel sentences. The monolingual data consists
in the target side of the parallel data, the Czech news corpora
provided at WMT 2016 and a subset of the Czeng1.6-pre cor-
pus [4] labelled as “subtitles”, which brings us to nearly 90M
monolingual sentences.

The baseline system is optimized on a concatenation of
English-to-Czech TED test sets 2010 and 2011, and tested
over the official test sets from IWSLT 2016 (TED-2015,
TED-2016 and QED-2016). We held out the concatenation
of English-to-Czech TED test sets 2012 and 2014 as a devel-
opment set to re-rank n-best hypothesis from the MT system
(see Sections 3.3 and 4).

2.2. Data Pre-processing and System Setup

All the English data has been cleaned by normalizing char-
acter encoding. Its tokenization and truecasing relies on in-
house text processing tools [5]. The Czech data is tokenized
and truecased using scripts from the Moses toolkit.

Symmetrized word alignments are trained using
fast align. Our NCODE and MOSES systems are
optimized with mira. 4-gram language models are trained
with removed singletons using KenLM [6].

2.3. NCODE

NCODE implements the bilingual n-gram approach to SMT
[7, 8, 9] that is closely related to the standard phrase-based

1http://ncode.limsi.fr
2http://www.statmt.org/moses/
3http://www.statmt.org/wmt16
4http://alt.qcri.org/resources/qedcorpus



approach [10]. In this framework, the translation is divided
into two steps. To translate a source sentence f into a tar-
get sentence e, the source sentence is first reordered accord-
ing to a set of rewriting rules so as to reproduce the target
word order. This generates a word lattice containing the
most promising source permutations, which is then trans-
lated. Since the translation step is monotonic, the peculiarity
of this approach is to rely on the n-gram assumption to de-
compose the joint probability of a sentence pair in a sequence
of bilingual units called tuples.

e∗ = argmax
e,a

K∑
k=1

λkfk(f, e, a)

where K feature functions (fk) are weighted by a set
of coefficients (λk) and a denotes the set of hidden vari-
ables corresponding to the reordering and segmentation of
the source sentence. Along with the n-gram translation mod-
els and target n-gram language models, 13 conventional fea-
tures are combined: 4 lexicon models similar to the ones used
in standard phrase-based systems; 6 lexicalized reordering
models [11, 2] aimed at predicting the orientation of the next
translation unit; a “weak” distance-based distortion model;
and finally a word-bonus model and a tuple-bonus model
which compensate for the system preference for short trans-
lations. Features are estimated during the training phase.
Training source sentences are first reordered so as to match
the target word order by unfolding the word alignments [12].
Tuples are then extracted in such a way that a unique seg-
mentation of the bilingual corpus is achieved [9] and n-gram
translation models are then estimated over the training cor-
pus composed of tuple sequences made of surface forms or
PoS tags. Reordering rules are automatically learned during
the unfolding procedure and are built using part-of-speech
(PoS), rather than surface word forms, to increase their gen-
eralization power [12].

3. Two-step Machine Translation
The first method we propose to handle target-side rich mor-
phology is a two-step MT procedure where translation and
morphology generation are processed apart. The first step
of the proposed scenario consists in translating from English
into normalized Czech. For this purpose, the target side of
the parallel data and the monolingual data have to be pre-
processed.

3.1. Normalization of the Czech Data

Goldwater and McClosky [13] and Durgar El-Kahlout and
Yvon [14] show the benefits of normalizing the morphologi-
cally rich language (respectively Czech and German) on the
source side when translating into English. Such a normal-
ization consists in grouping different word forms sharing the
same lemma into a common class, by removing one or many
attributes (e.g. gender, number, case) that are considered as
redundant with respect to English. This pre-processing has

the effect of reducing the source vocabulary, making both
languages more symmetric, and has a positive impact on the
translation quality.

When translating in the reverse direction, these ideas
hold, but one needs in addition to make sure that the at-
tribute that was removed at normalization step is recoverable
from the monolingual context in the SMT output. Indeed,
the models we propose for re-inflexion do not have access to
source side information (see Section 3.2). Therefore, when-
ever an attribute is redundant with respect to English but is
needed for the prediction of other attributes in surrounding
words, it needs to be kept.

In our pre-processing, a word is represented as a lemma
and a tag sequence, which we obtained using Morphodita
[15]. Normalizing such a word simply means removing one
or many tags from the sequence. We propose a deterministic
schema for each part of speech. The following attributes are
preserved:

• Nouns: lemma, PoS, gender and number. Number is
an attribute that is common to English, and gender is
an intrinsic part of Czech nouns, meaning that it may
serve to disambiguate two identical lemmas that have a
different lexical meaning. Moreover, as head of a noun
phrase, the word propagates gender to its dependents.
Case is systematically removed and we consider that it
should be predictable from the monolingual context5.

• Adjectives: lemma, PoS, negation, degree of compar-
ison. Since the adjective is invariable in English, we
remove gender and number, but keep both negation,
which has a lexical value, and the degree of compari-
son, which is also marked in English.

• Numerals: lemma, PoS. Numbers have only one form
in English.

• Pronouns: lemma, PoS, subPoS, person, gender, num-
ber, number[psor], gender[psor]. Only case is re-
moved from pronouns. Gender and number of both
possessor ([psor]) and possessed are hard to predict
and are generally not well handled in SMT. We leave
these attributes and are aware that their prediction
would require a special attention that is beyond the
scope of these experiments. Person is also kept and we
expect it to be a useful predictor of nominative case
when a pronoun agrees with a verb in the context.

• Prepositions: word form, PoS, case. Here, we keep
the word form, since some prepositions have differ-
ent forms depending on the right side context, e.g. s

5Some contexts make case prediction hard and this attribute should prob-
ably sometimes be conveyed from the source, as in the normalized output
jı́m ruka+Plur (eat hand+Plur). Instrumental case needs to be predicted for
the noun, in order to obtain jı́m rukama (I eat with my hands). If the case
tag is lost in this output, the classifier used for re-inflexion may ignore the
semantic aspect of the clause and consider the noun as a direct object, gen-
erating the semantically less likely sentence with accusative case jı́m ruce (I
eat hands).



tebou (with you) - se mnou (with me). The SMT sys-
tem handles well this phenomenon. Case is kept, since
some prepositions can be followed by different cases
and we expect this attribute to propagate through the
entire preposition phrase in the output. This choice
implies that verb constructions are expected to be han-
dled by the SMT system that is considered to be able
to distinguish jı́t v + Accusative (go to) and být v +
Locative (be in).

• Verb: The lemma and the whole tag sequence are kept.
Verbs are not normalized, and we follow the same prin-
ciple as Fraser et al. [16] that this PoS be considered
an anchorage point of the output. The full tag sequence
should mainly help distinguish the object from the sub-
ject with which it should agree in person, gender, and
number.

• Adverb, interjection, conjunction, particle: Word
forms are kept, since they have no morphological vari-
ation.

In this setup, only three attributes can be removed: gen-
der, number and case. This constraint makes the tag predic-
tion task easier, since only sequences of three tags need to be
predicted (as opposed to sequences of fifteen tags according
to the Morphodita tagset6). Finally, it allows us to train one
different classifier for each attribute, as described in the next
section.

3.2. Output Re-inflection

The machine translation system outputs a text in a normal-
ized language that needs to be re-inflected. At this step, we
have lemmas associated with a fixed sequence of attributes,
some of them having missing values (gender, number and/or
case). The task is therefore similar to any sequence label-
ing problem where the goal is to predict the right value for
each empty attribute. When the full tag sequence has been
predicted, a dictionary is used to recover the word form cor-
responding to the predictions.

The model we considered is a conditional random field
[17] that predicts three morphological attributes using the
Wapiti toolkit [18]. A joint prediction of all these attributes
allows us to better account for the dependencies between
them, but such a model can be challenging to train due to
the potentially high number of attribute combinations to con-
sider.

A total of 180 different combinations of attributes are ob-
served in our corpus, which are reachable for a CRF model
but would require more training data than available to ob-
tain reasonable performance. To overcome this problem, we
train a cascade of CRF models, in which the first three mod-
els predict a single morphological attribute. That output is
used to feed the final joint classifier. The final joint model

6https://ufal.mff.cuni.cz/pdt2.0

is therefore only responsible for discovering the dependen-
cies between the attributes and for correcting the predictions
made by the previous models.

All four models are trained using 1- to 3-gram word fea-
tures in an 11-word window as well as 1- to 4-gram fea-
tures concerning the known morphological information in
the same window. Additionally, 1- to 4-gram features on
the output of each previous models are used. The models
are trained in a specific order: gender, number and case are
successively trained, then the joint model is learnt. The same
order is followed for decoding.

To extract the features based on previous models, a full
decoding of the training data by these models is necessary.
To get unbiased predictions, a 10-fold cross-validation is
done for the training of the first three models.

The three morphological attributes should be predicted
only in words for which they have been removed during
the normalization process. Gender, for example, has to be
predicted for adjectives but not for nouns. The models are
trained to predict the attributes for every relevant words even
if they are already known, but during inference the Viterbi
decoder is forced to only consider paths that go through the
already known attributes. This forced decoding allows the
model to take account of this knowledge to make its predic-
tions.

In order to train this CRF model, we used data from
the Universal Dependencies Treebank project7. We used the
Czech and Czech-CAC corpora covering general domain and
transcripts of spoken language for a total of 2G words, from
which 170k where held out as a development set.

3.3. Experimental Results

Experimental results for this two-step MT setup are shown in
Table 1. Re-inflecting the one-best hypothesis from the MT
system does not improve the baseline system on TED-2015
set, slightly improves it on TED-2016 and significantly dete-
riorates it on QED-2016. These mixed results become closer
to each-other and provide a significant improvement in the
nk-best re-inflection setup (except for the QED test set that
shows no improvement with NCODE MT system). The latter
results where obtained by taking the n-best hypothesis from
the MT system (n = 300) and by keeping the k-best pre-
dictions of the CRF (k = 5). These nk-best hypothesis were
then re-scored using mira over the official development data
provided at the Workshop as test-2012 and test-2013. This
optimization procedure considers the scores given by the MT
system, as well as two additional scores: the score of the hy-
pothesis given by the same language model used in the en2cs
system8 and the score returned by the CRF.

We can observe that the QED corpus gives the highest
deterioration while re-inflecting one-best hypothesis and the

7http://universaldependencies.org
8Thus we end up with two distinct scores from two language models

trained over the same data: the first one over normalized Czech (in en2cx
system) and the second one over fully inflected Czech (in en2cx2cs system).



Table 1: BLEU scores for Moses and Ncode systems over direct translations (en2cs) and two-step translations (en2cx2cs) over
the official IWSLT 2016 test sets.

Setup TED-2015 TED-2016 QED-2016
MOSES NCODE MOSES NCODE MOSES NCODE

en2cs 18.24 18.37 15.38 15.27 16.30 16.20
CRF 18.09 (-0.15) 18.35 (-0.02) 15.85 (+0.47) 15.86 (+0.59) 15.97 (-0.33) 15.83 (-0.37)
+ nk-best 18.84 (+0.60) 19.65 (+1.28) 16.32 (+0.94) 16.63 (+1.36) 16.70 (+0.40) 16.25 (+0.05)

worse improvement with nk-best re-inflection. We under-
stand these scores as a result of the fact that the sentences
from this test set are segmented, which drastically narrows
the context that the CRF can use to make the right predic-
tion.

We finally notice that, for the TED test sets, NCODE sys-
tems seem to make better use of the normalization of Czech
data than MOSES systems in the nk-best re-inflection setup.
Indeed, NCODE re-inflection outperforms MOSES by 0.81
(TED-2015) and 0.31 (TED-2016) in terms of BLEU. On the
opposite, MOSES is 0.34 BLEU points higher than NCODE
in the same setup over the QED test set.

4. Character-Based Neural Language Model
To address the difficulties of translating into a morpholog-
ically rich language, we choose to use an open-vocabulary
character-level neural language model to re-score the n-best
hypothesis of the MT system. We use a convolution layer
followed by pooling to compute word representations from
character n-grams. On top of this layer, we use a feedfor-
ward n-gram neural language model [19].

4.1. Character-level Word Embeddings

In word-based neural language models, word embeddings are
parameters stored in a Look-up matrix L. The embedding
eword
w of a word w is simply the column of L corresponding

to its index in the vocabulary:

eword
w = [L]w

To infer a word embedding from its character embed-
dings, we use a convolution layer [20, 21]. As illustrated
in figure 1, a word w is a character sequence {c1, .., c|w|}
represented by its embeddings {Cc1 , ..,Cc|w|}, where Cci

denotes the vector associated to the character ci. A convolu-
tion filter Wconv ∈ Rde × Rdc∗nc is applied over a sliding
window of nc characters, producing local features :

xn = Wconv(Ccn−nc+1 : .. : Ccn)
T + bconv

where xn is a vector of size de obtained for each position
n in the word.9 The i-th element of the embedding of w is

9Two padding character tokens are used to deal with border effects. The
first is added at the beginning and the second at the end of the word, as
many times as it is necessary to obtain the same number of windows than
the length of the word. Their embeddings are added to C.

the mean over the i-th elements of the feature vectors, passed
by the activation function φ :

[echar]i = φ

|w|−nc+1∑
n=1

[xn]i
|w| − nc + 1

 (1)

Using a mean after a sliding convolution window ensures
that the embedding combines local features from the whole
word, and that the gradient is redistributed at scale for each
character n-gram. The parameters of the layer are the matri-
ces C and Wconv and the bias bconv .

4.2. Models

Our model follows the classic n-gram feedforward architec-
ture [19]. The input of the network is a n-words context
Hi = (wi−1, . . . , wN−i+1), and its output the probability
P (w|Hi) for each word w ∈ V . The embeddings of the
word in the context are concatenated and fed into a hidden
layer:

hHi = φ(Whidden(ei−1 : . . . : eN−i+1) + bhidden)

A second hidden layer my be added. Finally, the output layer
computes scores for each word:

sHi = exp (WouthHi + bout)

Whidden, bhidden, Wout and bout are the parameters of the
model. As the input Lookup-matrix L, the output weight
matrix Wout contains word embeddings, that are output rep-
resentations of the words in the vocabulary:

eoutw = [Wout]w

Then, the output scores are expressed as:

sHi(w) = exp (eouthHi + bout) (2)

Later, we will use two different input layers to obtain
word representations:

• A classic NLM using word-level embeddings only,
that we will note WE.

• A NLM using embeddings constructed from character
n-grams by convolution + pooling, concatenated with
word embeddings, that we will note CWE.
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Figure 1: CWE Model architecture

4.3. Objective Function for Open Vocabulary Models

Usually, such a model is trained by maximizing the log-
likelihood. This objective function raises two important is-
sues. For conventional word models, it implies a very costly
summation imposed by the softmax activation of the output
layer. More importantly, this objective requires the defini-
tion of a finite vocabulary, while the proposed model may
use character-based word embeddings, especially in the out-
put, making the notion of vocabulary obsolete.

Therefore, the parameter estimation relies on Noise-
Contrastive Estimation (NCE) introduced in [22, 23].

4.4. Character-based Output Weights with Noise-
Contrastive Estimation

The output weights representing each word in the vocabulary
eout can also be replaced by embeddings computed by a con-
volution layer on character n-grams. In this case the model
can efficiently represent and infer a score for any word ob-
served during the training process or not, while with conven-
tional word embeddings, out-of-vocabulary words only share
the same representation and distribution. Instead of using a
parameter matrix Wout to estimate the score like in equa-
tion 2, eout can be replaced by echar−out vector estimated on
the fly based on its character sequence as described in equa-
tion 1. With this extension, the model does not rely on a vo-
cabulary anymore, hence motivating our choice of the NCE :
this criterion allows us to train both types of models based on
conventional word embeddings, along with character-based
embeddings. This unnormalized objective allows us to han-
dle an open vocabulary, since we only need to compute k+1

word representations for each training examples. Models that
use character-based embeddings both for input and output
words are denoted by CWE-CWE.

4.5. Training

WE, CWE, and CWE-CWE models were trained using
Adagrad [24] and using batches of 128 for various context
sizes. The ReLu activation function is used, along with an
embedding size of de = 128. When relevant, we used a
character embedding size of dc = 32 and a convolution on
nc = 5-grams of characters for all experiments10. We sam-
pled 25 examples from the noise distribution for each exam-
ple. The models were implemented using C++. Our Neural
language models are trained on the target-side of the parallel
data and the monolingual data used for the MT system, but
training examples are sampled from corpora given weights
that are computed to balance in-domain parallel data (TED),
out-of domain parallel data, and additional monolingual data.

4.6. Re-scoring of en2cs Outputs

Experimental results are shown in Table 2. The procedure
is similar to what is described in section 3.3: the 300-best
hypothesis from the MT system are scored by our language
models, and re-ranked using mira over the official develop-
ment data provided at the Workshop as test-2012 and test-
2013. We re-scored only outputs from NCODE systems, with
WE, CWE and CWE-CWE systems. Models used here are

10Results do not improve significantly when increasing these embedding
sizes, while a negative impact is observed on convergence speed and com-
putation time.



Table 2: BLEU scores for re-ranked n-best direct translations (en2cs) Ncode outputs over the official IWSLT 2016 test sets.

Setup TED-2015 TED-2016 QED-2016
en2cs baseline 18.37 15.27 16.20
WE 19.64 (+1.27) 16.40 (+1.13) 17.54 (+1.34)
CWE 19.67 (+1.30) 16.48 (+1.21) 17.05 (+0.85)
CWE-CWE 19.22 (+0.85) 15.83 (+0.56) 16.21 (+0.01)

Table 3: BLEU scores for re-ranked re-inflected nk-best translation hypothesis (en2cx2cs) over the official IWSLT 2016 test
sets.

Setup TED-2015 TED-2016 QED-2016
en2cs baseline 18.37 15.27 16.20
CRF 19.65 (+1.28) 16.63 (+1.36) 16.25 (+0.05)
WE 19.65 (+1.30) 16.66 (+1.39) 16.26 (+0.06)
CWE 19.77 (+1.42) 16.80 (+1.53) 15.96 (-0.24)
CWE-CWE 19.25 (+0.88) 16.31 (+1.04) 15.27 (-0.93)

trained with a context size of n = 6 words.

5. Re-inflection and Re-scoring
Our primary submission for the TED test sets consists in a
combination of both methods that handle target-side mor-
phology: the re-inflection procedure (introduced in Sec-
tion 3.2) and the re-scoring of nk-best hypothesis from
NCODE system (as shown in Section 3.3) using the neural
language model with a character-based word representation
(introduced in Section 4).

The results obtained in this manner are shown in Table 3.
They bring out the fact that re-ranking nk-best hypothesis
with the CWE model gives a slight improvement over the
use of an n-gram word-based language model.

As for the QED set, the character-based word representa-
tions are not able to give any improvement over the baseline
in the re-inflection setup. Therefore, our primary submission
for this set is a direct English-to-Czech translation with an
n-best re-ranking using a word-based neural language model
(WE in Table 2). This setup gives the best improvement we
could achieve over the baseline.

6. Conclusions
This paper describes LIMSI’s system submission for IWSLT
2016. We report results on English-to-Czech systems as an
attempt to address the difficulties of translating into a mor-
phologically rich language.

We have introduced a representation of Czech words that
does not take into account morphological information that is
redundant with respect to English, such as case for nouns.
This morphology normalization is expected to improve the
translation step. In the next step, we showed that a CRF
model could be used to transform a normalized Czech word
into an inflected form. However, this re-inflection step does
not give any improvement over the baseline when it is per-

formed on the one-best hypothesis of the MT system. Run-
ning re-inflection over the n-best hypothesis and keeping the
k-best hypothesis from the CRF model improves translation
in terms of BLEU score when we proceed to a re-ranking
using a language model. We have shown results with a clas-
sic n-gram language model, as well as an open vocabulary
neural language model building word representations from
characters.

The n-best hypothesis re-ranking using a neural language
model was introduced as an alternative to the two-step MT
setup, since the characted-based representation it uses is able
to model rich morphology. Both neural language model n-
best re-ranking and nk-best re-inflection turned out to bring
a comparable improvement over the baseline. Finally, their
combination only gives a slight improvement over the results
obtained with each model separately, which tends to show
that both models address the same issue: target-side mor-
phological correctness.
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Tools for Morphology, Lemmatization, POS Tagging
and Named Entity Recognition,” in Proc. ACL: System
Demos, Baltimore, Maryland, 2014, pp. 13–18.

[16] A. Fraser, M. Weller, A. Cahill, and F. Cap, “Modeling
inflection and word-formation in SMT,” in Proc. EACL,
Avignon, France, 2012, pp. 664–674.

[17] J. Lafferty, A. McCallum, and F. Pereira, “Conditional
random fields: probabilistic models for segmenting and
labeling sequence data,” in Proceedings of the Inter-
national Conference on Machine Learning. Morgan
Kaufmann, San Francisco, CA, 2001, pp. 282–289.

[18] T. Lavergne, O. Cappé, and F. Yvon, “Practical
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