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Abstract

In this paper the RWTH large vocabulary continuous speech
recognition (LVCSR) systems developed for the IWSLT-
2016 evaluation campaign are described. This evaluation
campaign focuses on transcribing spontaneous speech from
Skype recordings. State-of-the-art bidirectional long short-
term memory (LSTM) and deep, multilingually boosted
feed-forward neural network (FFNN) acoustic models are
trained an narrow and broadband features. An open vocabu-
lary approach using subword units is also considered. LSTM
and count-based full word and hybrid backoff language mod-
eling methods are used to model the morphological richness
of the German language. All these approaches are combined
using confusion network combination (CNC) to yield a com-
petitive WER.

1. Introduction
The International Workshop on Spoken Language Transla-
tion (IWSLT) is an annual workshop including an evalu-
ation campaign in the tasks of automatic speech recogni-
tion (ASR), machine translation (MT), and spoken language
translation (SLT), which is the union of the aforementioned.
Participants have the opportunity to compete in this evalua-
tion campaign to compare the strength of their systems and
advance the state of the art.

The German ASR task of the 2016 evaluation campaign
employs data from the Microsoft Speech Language Transla-
tion (MSLT) task. The goal is to transcribe one side of bilin-
gual Skype voice calls. Development and test data are audio
files with a varying length between 1 and 30 seconds each
containing one part of an informal conversation between two
natural persons. This is challenging from multiple points of
view. Informal conversations tend to be highly spontaneous
which leads to an increased number of disfluencies and mis-
articulations. Conversational speech also covers a broader
range of topics which makes it hard to train and fine tune
appropriate language models.

To overcome these difficulties we propose a combina-
tion of two different acoustic models and two different lan-
guage models. We used the LIUM auto-segmenter [1] to
trim non-speech parts and to segment the longer of the au-

dio files. From the audio files we extracted standard cepstral
features: MFCC, PLP, Gammatone [2] and also the critical
band energies (CRBE) of the corresponding pipelines. A hy-
brid LSTM acoustic model was trained on the Gammatone
features to directly output tied-triphone state posterior proba-
bilities. To generate a second, largely complementary acous-
tic model for German, we trained a Gaussian mixture model
based HMM processing multilingually initialized deep bot-
tleneck feed-forward NNs using the tandem approach [3, 4].

Both systems are complemented with two 5-gram lan-
guage models for initial decoding [5]. In a second pass the
generated lattices are rescored using LSTM recurrent NN
based language models. In a final step all four lattices are
combined using confusion network combination. The re-
sults were achieved using RETURNN, the RWTH extensible
training framework for universal recurrent neural networks,
in combination with RASR, the RWTH ASR toolkit[6, 7].

The remainder of this paper is organized as follows. Sec-
tion 2 describes in detail the acoustic models while language
models are presented in Section 3. The complete decod-
ing setup including system combination is presented in Sec-
tion 4. Our results are described in Section 5 and Section 6
concludes the paper.

2. Acoustic Models
For the training of acoustic models, no in domain audio data
were provided by the organizers. This work utilizes training
data from the Quaero project (2009 - 2013) to train two state-
of-the-art neural network acoustic models. One is a bidirec-
tional long short-term memory neural network (BLSTM) in a
hybrid approach, and the other is a fine tuned multilingually
initialized deep feed-forward network adapted to the German
language.

2.1. Training Resources

For the German ASR task, acoustic training data was taken
from German broadcast news (BN), speeches from European
parliament plenary sessions (EPPS) held in German, and web
domain [8]. Table 1 lists the amount of training data from
each domain.

While the parliamentary speech and parts of the BN seg-
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Figure 1: Structure of an LSTM cell and the BLSTM acoustic model network. The Network consists of a 50 dimensional input
layer, 5 hidden layers with 600 cells for both forward and backward direction and a 4500 dimensional output layer corresponding
to triphone tied-state posteriors.

Table 1: Acoustic training data for the German LVCSR task.

Corpus Duration [h] Segments Running Words
EPPS08 5 1109 45,796
WEB08 14 3452 127,086
Quaero BN 123 25061 1,391,468

ments are usually well planned, a substantial part of the
Quaero BN and the web corpus consists of talk shows and
interviews where different people speak in an unplanned and
spontaneous way. This is a good match for the MSLT Skype
Task, which consist of spontaneous conversations. Never-
theless there is a mismatch between the usually high quality
microphones used for talk show recordings and the cheaper
consumer microphones used in private Skype conversations.

2.2. BLSTM Acoustic Model

Recently bidirectional long short-term memory (LSTM) re-
current neural networks have shown promising results in re-
ducing the error rates of speech recognition systems [9]. The
model was trained on alignments obtained by our previous
best system, a multilingual hierarchical bottleneck FFNN
[10].

2.2.1. Feature Extraction

For the BLSTM acoustic model Gammatone features [2]
were extracted from the audio files. We used 50 Gammatone
filters in the frequency range of 100 Hz to 7.5 kHz followed
by full-wave rectification and temporal integration with a
Hanning window of size 25 ms shifted by 10 ms. Then,
cepstral decorrelation was performed, followed by 10th root
compression and segment-wise mean and variance normal-
ization. The resulting 50 dimensional features are directly
input into the LSTM network.

2.2.2. Network Topology

The LSTM is a variant of recurrent neural networks. A re-
current neural network can be unfolded over time and such
corresponds to a special deep neural net structure. The corre-
sponding backpropagation algorithm is called backpropaga-
tion through time. Most implementations of recurrent neural
networks share the deficiency, that the gradient either van-
ishes or grows exponentially during training. The LSTM ar-
chitecture cures this deficiency by introducing a memory cell
and gates which control the flow of information into and out
of this cell. The structure of one LSTM cell is depicted in
Fig. 1.

Let xt be the input vector at time t, ct the cell mem-
ory state, and st the output of the cell. Let A, R, A{i,f,o},
R{i,f,o} be full matrices and W{i,f,o} be diagonal matrices
which are all to be trained. Then the (recurrent) net input zt
to a cell is given by

zt = tanh (Axt +Rst−1)

The input gate it and forget gate ft determine how the cell
state should be updated.

it = σ(Aixt +Rist−1 +Wict−1)

ft = σ(Afxt +Rfst−1 +Wfct−1)

ct = ft ◦ ct−1 + it ◦ zt

The output gate ot determines how much of the cell state
should be outputted.

ot = σ(Aoxt +Rost−1)

st = ot ◦ tanh(ct)

where ◦ means element wise multiplication.



Figure 2: Structure of the FFNN acoustic model network. A 2-step hierarchical MRASTA bottleneck network is combined with a
12 layer deep network and 9 frames of standard cepstral features in a tandem fashion.

The LSTM network of this year’s submission, which is de-
picted in Fig. 1, consists of an input layer, 5 hidden layers
with 600 Cells for each direction, and a 4500 dimensional
output layer corresponding to generalized triphones deter-
mined by a decision-tree-based clustering method (CART).

The network was trained with the framewise cross en-
tropy loss criterion using Adam optimization with incor-
porated Nesterov momentum [11]. To prevent overfitting,
we used an l2 normalization parameter of 0.01. We also
employed a dropout scheme with an empirically optimized
dropout rate of p = 0.05. This means in every training step
5% of the hidden nodes outputs st were randomly set to zero.
During recognition no cells were forced to zero but the inputs
were rescaled by (1− p)−1 to account for the higher number
of inputs. This leads to a more robust network and further
prevents overfitting.

2.3. FFNN Acoustic Model

With system combination in view, a second acoustic model
was also trained. In order to make this acoustic model com-
plementary to the first model, we modified the neural net-
work structure and embedding, as well as the feature extrac-
tion pipeline, and weight initialization. Consisting of feed-
forward neural network elements, two different models were
trained. These were trained on the same corpus as the LSTM
AM, but the audio files were resampled at 8 kHz.

On the one hand, for the evaluation a 12-layer network
was prepared which contained 2000 nodes in each layer and
used the rectified linear units (ReLU) non-linearity [12]. The
last hidden layer was low-rank factorized by a linear 512-

dimensional bottleneck (BN) [13]. On the other hand, a deep
hierarchical MRASTA-BN feature extractor was also trained
[14, 15]. The size of the BN layers was restricted to 62 nodes,
whereas the other layers have 2000 sigmoidal neurons. The
hierarchy consisted of 2 levels, and each level was built up
from 6 layers of non-bottleneck hidden layers. The BNs were
inserted before the last hidden layer. The two feed-forward
networks were used in tandem with a Gaussian model [3].

The ReLU network was trained on the same Gamma-
tone pipeline as the LSTM, however the input features had
only 40 dimensions due to the reduced sampling rate. The
hierarchical FFNN used three streams of critical band ener-
gies extracted from GT, PLP, MFCC pipelines. Each of them
produced 15-dimensional feature streams. In addition to the
MRASTA filtering of these streams, voicedness, F0 and the
three current critical band energy (CRBE) frames were also
fed into the NNs at each level of the hierarchy.

Instead of random initialization, both models were mul-
tilingually boosted reusing corresponding BN feature extrac-
tors from the BABEL project [16]. The cross lingually trans-
ferred models were trained on 1800 hours covering 28 lan-
guages from which none of them was German. Besides the
24 Babel languages the following resources were included
in the multilingual training: subset of Fisher English part 1
and 2 (LDC2004S13 and LDC2005S13), approx. 213 hours,
and the CMU pronunciation dictionary cmudict-0.7b;
about 153 hours of Spanish from Fisher and CallHome au-
dio (LDC2010S01 and LDC96S35) and CallHome pronunci-
ation lexicon (LDC96L16); 145 hours of Mandarin Chinese,
HKUST telephone speech corpus (LDC2005S15), CallHome



Table 2: OOV rate and in-vocabulary-word (IV) character
level PPLs are described. Comparative PPL is shown for the
hybrid system (i.e., PPL normalized w.r.t. the full word (FW)
system) for fair comparison. Vocabulary size is 377k for both
the full word and hybrid systems.

character level PPL (IV word)
dev eval

OOV count + LSTM OOV count + LSTM
FW 0.9 2.97 2.84 1.0 2.98 2.84
Hyb 0.3 3.19 3.07 0.4 3.49 3.36

Table 3: Total Perplexity - Interpolation of full word 5-gram
count-based LM and LSTM-NNLM.

LM count LSTM interpolated
dev 275 261 210
eval 262 250 196

(LDC96S34), HUB5 (LDC98S69) along with the CallHome
pronunciation lexicon (LDC96L15); and 172 hours of Lev-
antine Arabic QT Training Data Set 5 (LDC2006S29). How-
ever, the FFNNs were language adapted to the target lan-
guage following the same recipe of [17]. During this fine-
tuning step the whole hierarchical structures were updated.
Also, instead of using the previous best alignment for the lan-
guage adaptation step, a new one was obtained from scratch
using only the MRASTA-BN features.

For the tandem modeling the output of the FFNNs were
further processed. Nine-frame window of the MRASTA-
BN features were LDA transformed, whereas the ReLU
network’s 512-dimensional output was directly reduced by
PCA. The final dimension of both FFNN streams was 64.
All Parameters were empirically tuned. The ultimate tandem
model was trained on the concatenation of both FFNN fea-
tures and 45-dimensional LDA transformation of 9 frames of
MFCC, voicedness, and F0 streams. On this acoustic model,
speaker adaptive training (SAT) using constrained maximum
likelihood linear regression (CMLLR) [18] was also applied.
Furthermore, in the final training step, the minimum phone
error (MPE) training criterion was also employed.

3. Language Modelling
The language modeling text contains sources from differ-
ent domains like broadcast news, spontaneous speech tran-
scripts, web data and audio transcriptions [8]. The text
is normalized using a language dependent set of rules and
semi-automatic methods. Vocabularies are generated based
on word frequency. Domain adapted full word and hybrid
count-based language models are generated. The hybrid vo-
cabulary contains the most frequent 5k full words as pre-
served vocabulary. It has been observed that the news do-
main text is closer to the IWSLT-2016 skype audio corpus. In
addition, both the full word and hybrid long short term mem-

Figure 3: Schematic diagram of our speech recognition sys-
tem. The output of two acoustic models and two language
models is combined using confusion network combination.

ory (LSTM) LMs are generated using selected in-domain
data containing 100M running words [19]. They are lin-
early interpolated with their respective count-based backoff
LMs and are used for lattice rescoring [20, 21]. Table 3
compares full word perplexities for the count based, LSTM
and interpolated language model. OOV rates and charac-
ter level perplexities are shown in Table 2. As OOVs are
mapped to an unknown token <unk> in both language mod-
els, total perplexities are not comparable. However they are
shown for the full word system as an additional information.
For this reason only character level perplexities measured on
the in-vocabulary words for both systems are shown. How-
ever, a proper direct comparison of the full word and hy-
brid systems is difficult in terms of word/subword level PPLs
due to different vocabularies, sizes, and OOV rates. There-
fore, word/subword perplexities are renormalized to charac-
ter level perplexities. This is also called comparative or pro-
jected PPL. The increase in in-vocabulary character perplex-
ity can be attributed to the increased confusability introduced
by subword modeling. Thus, a trade-off between a lowering
of the OOV rate and an increase in-vocabulary word confus-



Table 4: Word and Character Error Rate [%] for each system separately and for different combination methods. Numbers in
boldface indicate the systems used for combination. FW: full word, SW: subword, CN/CNC: Confusion Network Combination

dev2016 tst2016
Pass WER FW WER SW CER FW CER SW WER FW WER SW CER FW CER SW
2013 system 27.3 27.3 15.0 15.1 24.4 24.7 14.6 14.8
LSTM AM 24.7 24.9 14.1 14.2 22.7 23.0 13.8 13.9
+ LSTM LM 23.2 24.0 13.0 13.5 21.5 22.3 13.3 13.7
FFNN AM 27.3 27.4 15.1 15.1 24.7 24.8 14.9 14.8
+ CMLLR 25.6 25.7 14.0 14.1 23.2 23.5 14.0 14.0
+ MPE 24.5 24.4 13.4 13.3 21.9 22.1 13.1 13.1
+ LSTM LM 23.4 23.9 13.0 13.1 20.6 21.5 12.6 12.8
Method combined WER combined CER combined WER combined CER
ROVER 22.8 13.3 20.9 13.3
CNC 21.6 12.9 19.6 13.1

ability can be observed. After lattices have been created with
both the full word and hybrid language models, confusion
network combination is used to combine the advantages of
both approaches.

4. Recognition Pipeline

In this section we describe the complete recognition pipeline
and how the different acoustic and language models are com-
bined to produce the final output. A schematic representation
of our pipeline can be found in Figure 3.

We were given a set of separate audio files with a sam-
pling rate of 16kHz. For the FFNN acoustic model these files
were resampled at 8kHz. On both sets of files the LIUM auto
segmenter was used to filter out non speech parts and to gen-
erate a segmentation. After this, MFCC, PLP and Gamma-
tone features, along with the corresponding CRBE, voiced-
ness and F0 frames were extracted.

These features were then used by both acoustic models to
generate, in conjunction with both 5-gram language models,
in total four different word hypothesis lattices. The LSTM
language models are then used to rescore the corresponding
lattices. The new LM score was obtained from an interpola-
tion of both LSTM and 5-gram language model. The optimal
interpolation weight was found by optimizing the resulting
perplexity on the dev data.

To further improve the accuracy of the system, all sys-
tems were combined using ROVER or confusion network
combination [22, 23, 24]. Confusion network combination
(CNC) first transforms every lattice into a separate confu-
sion network and then only joins the individual confusion
networks.

In a final step the resulting hypotheses are post-processed
with a compound joining script that identifies and joins com-
pound words and numbers in the target language [25]. The
error rates of each step are reported in the next section.

5. Results
In this section we describe in detail the results and relative
improvements of each step in our ASR pipeline. The word
error rates are shown for the dev2016 and tst2016 set com-
puted using an unofficial scoring script. Official error rates
can be found in [26], where the combined system is our pri-
mary system and the other bold systems are contrastive sys-
tems. Since this is the first year with a Skype video confer-
ence transcription task, we give the results of our previous
best German system [8] on this task as a progress report. As
the previous language models were adapted to the lecture do-
main, we used the old acoustic model together with the newly
estimated language models to give a fair comparison.

Table 4 shows the results for both acoustic and language
models. The single best system is the combination of LSTM
acoustic model and full word language model. For all acous-
tic models we see a performance degradation when using the
subword language model. When we rescore with the LSTM
language model, the difference increases to up to 0.9% ab-
solute (4% relative). Due to the fairly low OOV rates, this
might be expected, as subwords also increase confusability.
However, combining full word and subword LMs lead to im-
provements.

Comparing both acoustic models we see that the LSTM
acoustic model baseline error rates are lower than the FFNN
baseline. CMLLR speaker adaption reduces the error rates
by 6% relative and with MPE training we gain an additional
4% relative improvement. The final multilingually initialized
and combined FFNN acoustic model performs then on par
with the LSTM AM.

There are two methods of system combination proposed
in this paper. ROVER only combines the single best recog-
nition output of each system and achieves an improvement
of 0.4% absolute (1.7% relative) compared to the single best
system. Confusion network combination combines multiple
hypotheses of all systems and can further improve the recog-
nition results. The error rate after CNC is 1.6% absolute (7%
relative) below the single best system.



This year’s submission performs significantly better than
our last submission to the IWSLT from 2013. We can report
an improvement of 5.7% absolute (20.8% relative).

On the test set we see similar results. Error rates for the
test set are about 10% lower compared to the dev set. Com-
paring the different systems we see that the full word lan-
guage model still performs better than the subword model.
While on the dev set the LSTM acoustic model was sightly
better than the FFNN AM, on the test set the FFNN outper-
forms the LSTM by about 1% absolute (5% relative).

6. Conclusions

We presented the RWTH ASR 2016 system for the German
MSLT Skype transcription task [26]. We made heavy use of
different deep and/or recurrent neural network architectures
in acoustic modeling.

A deep multilingual hierarchical bottleneck MRASTA
FFNN trained on narrow-band audio was successfully com-
bined with a very deep monolingual FFNN in a tandem ap-
proach to accompany a deep hybrid bidirectional LSTM NN
acoustic model. Full word and hybrid 5-gram language mod-
els were used in decoding. The Results were further refined
using LSTM language models for rescoring of hypothesis lat-
tices. Although the hybrid LM did not outperform the tradi-
tional full word approach, the advantages of both language
models and both acoustic models were sucessfully combined
using confusion network based system combination.

We were able to achieve a WER of 21.6% on the dev
set and 19.6% on the test set. We also reported a relative
improvement of 20% WER compared to our previously sub-
mitted IWSLT German LVCSR system [8].
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Thom, R. Schlüter, and H. Ney, “RWTH LVCSR Sys-
tems for Quaero and EU-Bridge: German, Polish,
Spanish and Portuguese,” in Interspeech, Singapore,
September 2014, pp. 973–977.

[6] D. Rybach, S. Hahn, P. Lehnen, D. Nolden, M. Sunder-
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