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Abstract
We present an interactive translation prediction method based on neural machine translation.

Even with the same translation quality of the underlying machine translation systems, the neural

prediction method yields much higher word prediction accuracy (61.6% vs. 43.3%) than the

traditional method based on search graphs, mainly due to better recovery from errors. We also

develop efficient means to enable practical deployment.

Interactive translation prediction (also called interactive machine translation) is an editing

mode for translators who interact with machine translation output. In this mode, the machine

translation system makes suggestions for how to complete the translation (“auto-complete”),

and the translator either accepts suggested words or writes in their own translation. When the

suggestion is rejected, the machine translation system recomputes its prediction for how to

complete the sentence from the given prefix and presents the corrected version to the translator.

In prior work, phrase-based machine translation systems have been used for interactive

translation prediction, and suggestions were made either by re-decoding constrained by the

prefix (Green et al., 2014) or by searching for the prefix in the original search graph (Och et al.,

2003; Barrachina et al., 2009). Recently, neural translation models have been proposed and

in some cases have shown superior performance over phrase-based models (Jean et al., 2015;

Sennrich et al., 2016). We propose to use such models for interactive translation prediction.

Parallel to this work, Wuebker et al. (2016) also explore a similar approach to using neural MT

for interactive translation prediction.

The decoding mechanism for neural models provides a natural way of doing interactive

translation prediction. We show that neural translation models can provide better translation

prediction quality and improved recovery from rejected suggestions. We also develop efficient

methods that enable neural models to meet the speed requirements of live interactive translation

prediction systems.

1 Interactive Translation Prediction

Interactive translation prediction leaves the translator in charge of writing the translation and

places the machine translation system in an assisting role. Rather than having a translator post-

edit machine translated output, the system actively makes suggestions as the translator writes

their translation. This modality is similar to an auto-complete function. Whenever the translator

diverges from the suggestion (by typing a word that differs from the model’s suggestion), the

system recalculates (taking the translator’s input into account) and generates new suggestions.

Implementations of interactive translation can be found in the CASMACAT1 (see Figure 1) and

1http://www.casmacat.eu



Figure 1: Interactive translation prediction in CASMACAT: The system suggests to continue the

translation with the words mehr als 18, which the user can accept by pressing the TAB key.

Lilt2 computer aided translation tools. This interaction mode is preferred by translators over

post-editing (Koehn, 2009).

The goal of interactive translation prediction is to offer suggestions that the translator will

accept. Existing approaches with statistical machine translation use the static search graph

produced by the machine translation system. The system attempts to match the partial transla-

tor input (called the prefix) to the search graph, using approximate string matching techniques

(minimal string edit distance) when an exact match cannot be found. As a baseline, we use a

statistical machine translation system for interactive translation prediction that closely follows

Koehn (2009) and Koehn et al. (2014). The prefix could be matched by constraint decoding,

however, at a much higher computational cost.

Initial work on interactive translation prediction can be found in the TransType and

TransType2 projects (Langlais et al., 2000; Foster et al., 2002; Bender et al., 2005; Barrachina

et al., 2009). Our current work focuses on how to produce suggestions; for various approaches

to interaction modalities, see Sanchis-Trilles et al. (2008) (mouse actions), Alabau et al. (2011)

(hand-writing) and Cubel et al. (2009) (speech).

2 Neural Machine Translation

The use of neural network methods in machine translation has followed their recent success

in computer vision and automatic speech recognition. Motivations for their use include better

generalization of the statistical evidence (such as the use of word embeddings that have similar

representations for related words), and more powerful non-linear inference.

The current state-of-the-art neural machine translation approach (Bahdanau et al., 2015)

consists of:

• an encoder stage where the input sentence is processed by two recurrent neural networks,

one running left-to-right, the other right-to-left, resulting in hidden states for each word

that encode it with its left and right context,

• a decoder stage where the output sentence is produced left-to-right, by conditioning on

previous output words in the form of a hidden state (roughly corresponding to a language

model in traditional statistical machine translation) and on the input encoding (roughly

corresponding to a translation model), and

• an attention mechanism that conditions the prediction of each output word on a distribu-

tion over input words (roughly corresponding to an alignment function).

We describe a fairly general neural machine translation approach in order to motivate its

use in the interactive translation prediction setting, illustrated in Figure 2. For more details,

see Bahdanau et al. (2015), whose notation this section follows, or Edinburgh’s WMT 2016

submission (Sennrich et al., 2016), whose system we use in our experiments.

2https://lilt.com/



Target words yt are emitted from hidden states st.

The hidden state st is informed by the input

sequence, weighted by an attention mechanism

αt,1, ..., αt,T .

The source language sequence x1, ..., xT is en-

coded as the hidden states h of two recurrent neu-

ral networks.

Figure 2: Neural MT model used in this paper (figure from Bahdanau et al. (2015)).

At each time step t, the standard decoder computes the conditional probability of generat-

ing a word yt given the input sentence �x. This is defined to be:

p(yt|{ŷ1, · · · , ŷt−1}, �x) = g(ŷt−1, ct, st) (1)

where g is a non-linearity, ŷt−1 is the word produced by the previous decoding step, ct is a

context vector, and st is the hidden state for time t.
During encoding, annotations ht were produced for each word xt in the input sentence

�x = (x1, · · · , xT ). These ht were produced by concatenating the forward and backward hid-

den states produced for each word by the forward and backward RNNs, respectively. The

context vector ct in Equation 1 is a weighted average of the annotations. First, weights

αtj = exp(etj)/
∑T

k=1 exp(etk) are computed, where etj = a(st−1, hj) can be thought of

as an alignment model (parameterized as a neural network and jointly trained with the rest of

the system). The weight αtj can be interpreted as the probability that yt is aligned to xj , re-

sulting in soft alignments used by the system’s attention mechanism to weight the focus of the

context vector. The context vector is then computed as ct =
∑T

j=1 αtjhj .

As indicated above, decoding in this attention-based neural machine translation approach

proceeds word by word. At each step of the decoding process, a probability distribution over

possible next words is computed. This is conditioned on the previous word, the context vector,

and the hidden state. The highest scoring word is selected and used in the conditioning con-

text for the next step. Alternatively, similar to beam search in traditional statistical machine

translation decoding, the top n next words may be considered and competing hypotheses with

different output words maintained. Each of the hypotheses (consisting of a word sequence and

a hidden state, and ranked by the combined word translation probabilities) is extended at the

next decoding step.

There are various choices for the exact design of the recurrent neural networks used in

the encoder and decoder. Going beyond basic approaches that use a simple hidden layer, more

complex designs such as long short term memory (LSTM) cells or gated recurrent units (GRU)

may be employed.

3 Neural Interactive Translation Prediction

The decoding process for neural translation models points to a straightforward implementation

of interactive translation prediction. Instead of using the model’s predictions in the conditioning

context for the next step, the words in the prefix provided by the translator can be used. Hence,



the next word prediction is conditioned on the choice of the translator, rather than the prediction

of the model.

During decoding for translation (as described above), the model’s predictions

{ŷ1, · · · , ŷt−1} are fed back into the model to produce the next predicted word. In order to

do interactive prediction, we instead feed the true prefix {y∗1 , · · · , y∗t−1} produced by the trans-

lator back into the model. Thus we redefine the conditional probability of generating a word yt
to be:

p(yt|{y∗1 , · · · , y∗t−1}, �x) = g(y∗t−1, ct, st) (2)

In this work, we present two variations on neural interactive translation prediction:

• The no beam search method produces the single best hypothesis for each new word, given

the prefix provided by the translator, which is fed into the model during decoding (as

described above).

• The beam search method conducts beam search and selects the most probable full trans-

lation of the sentence. If and when the translator diverges from this full translation, a new

beam search is conducted from the translator-generated prefix through to the end of the

sentence. We show results for beam size 12, but note that a beam size of 2 provides most

of the improvement (a similar observation was made by Sutskever et al. (2014) with respect

to standard MT evaluation).

While beam search is known to produce better BLEU scores than models without beam

search, it is also more computationally expensive. We demonstrate that it performs well on the

interactive translation prediction task, but note that full beam search is too slow for use in a live

system.

Passing the translator prefix into the system (when the translator diverges from the pre-

dicted sequence) may produce subsequent errors in the translation, for instance by causing the

attention mechanism to be misfocused. We show that the system is often able to recover from

these errors, but that it occasionally results in incoherent sequences of suggestions. However,

we show that the sequences of rejected suggestions produced by the neural systems tend to be

shorter than those produced by the traditional search graph based systems.

4 Experimental Setup

Since a user study that collects sufficient data for the various settings of our methods would be

too costly, we resort to a simulation where a preexisting human translation is used in place of

the translator’s input to the interactive translation system. We do this by treating the preexisting

human translation as though it is being typed live, one word (or letter) at a time, by a translator

interacting with our prediction system. While we expect that in practical use, the human trans-

lator may match the machine translation’s suggestions more closely (for example, by accepting

synonyms which we score as “wrong” as they are not exact matches), we can nevertheless com-

pare methods based on their prediction accuracy against the human translation relative to one

another.

Data Our experiment is carried out on the German–English data sets3 made available for

the shared news translation task of the Conference for Machine Translation (WMT). The data

consists of a 115 million word parallel corpus (Europarl, News Commentary, CommonCrawl),

3http://www.statmt.org/wmt16/



System Configuration BLEU
Neural no beam search 34.5

beam size 12 36.2

+ ensemble 37.5

+ r2l reranking 38.6

Phrase-based 34.5

Table 1: Quality measured by BLEU scores (case-sensitive) of the systems used in this paper

on the WMT 2016 news test set (German-English).

and about 75 billion words of additional English monolingual data (LDC Gigaword, monolin-

gual news, monolingual CommonCrawl). We use the official 2999 sentence test set (average

sentence length 23 tokens) to measure the accuracy of our methods.

Neural Translation Model The neural machine translation model uses Nematus4, a fork of

the DL4MT toolkit5 by Cho (2015). It was trained on all the available parallel data and a similar

amount of synthetic parallel data that was generated by translating part of the monolingual news

data into German (Sennrich et al., 2015a). It uses byte pair encoding (Sennrich et al., 2015b) for

a vocabulary of 90,000 words. Training this model on GPU takes about three weeks. We use the

publicly available model6 that matches the training settings of Edinburgh’s WMT submission

(Sennrich et al., 2016).

Phrase-Based Model The phrase based model, which we use as a baseline to produce search

graph based predictions, uses all available parallel and monolingual training data. The system

matches Johns Hopkins University’s submission to the WMT shared task (Ding et al., 2016).

This version does not use the byte pair encodings used by the neural models.

System Quality Since we are concerned with the translation speed, we consider a few simpli-

fications of the neural translation model. We do not use ensemble decoding (”ensemble”) or a

reranking stage (”r2l reranking”)7. Each of these simplifications makes decoding several times

faster at a cost to quality of 1-2 BLEU points. See Table 1 for a comparison of quality scores for

the different settings. Without beam search, the neural system used has the same BLEU score

as the phrase-based system. This has the nice advantage that we are comparing methods based

on systems of similar quality. It also shows the potential for improvement if computational

concerns are removed. For a longer discussion of the speed of the methods, see Section 6.

5 Results

See Figure 3 for an example of the neural interactive translation prediction model’s output for

one sentence. The figure displays the correct word choices (taken from the reference trans-

lation), the model’s prediction (using the prefix of the reference translation as conditioning

context), and the most probable word choices according to the model’s probability distribution.

Some of the failures are near-synonyms (numbers instead of levels, or increasing instead

of rising) that we might expect would be accepted by real human users of the system. For the

purposes of our evaluation, we count even these near-synonyms as incorrect (as they are not

exact string matches). However, it is worth noting the prevalence of these near-synonyms: in

the neural versions, we find that 21.0% of incorrect predictions (22.4% with beam search) are

4https://github.com/rsennrich/nematus/
5https://github.com/nyu-dl/dl4mt-tutorial/
6https://github.com/rsennrich/wmt16-scripts/
7For more on these methods, please see Sennrich et al. (2016)



Input: Das Unternehmen sagte, dass es in diesem Monat mit Bewerbungsgesprächen beginnen
wird und die Mitarbeiterzahl von Oktober bis Dezember steigt.

Correct Prediction Prediction probability distribution
� the the the (99.2)
� company company company (90.9), firm (7.6)

� said said said (98.9)
� it it it (42.6), this (14.0), that (13.1), job (2.0), the (1.7), ...

� will will will (77.5), is (4.5), started (2.5), ’s (2.0), starts (1.8), ...

� start start start (49.6), begin (46.7)

inter@@ job job (16.1), application (6.1), en@@ (5.2), out (4.8), ...

� viewing state state (32.4), related (5.8), viewing (3.4), min@@ (2.0), ...

� applicants talks talks (61.6), interviews (6.4), discussions (6.2), ...

� this this this (88.1), so (1.9), later (1.8), that (1.1)

� month month month (99.4)
� , and and (90.8), , (7.7)
� with and and (42.6), increasing (24.5), rising (6.3), with (5.1), ...

� staff staff staff (22.8), the (19.5), employees (6.3), employee (5.0), ...

� levels numbers numbers (69.0), levels (3.3), increasing (3.2), ...

� rising increasing increasing (40.1), rising (35.3), climbing (4.4), rise (3.4), ...

� from from from (97.4)
� October October October (81.3), Oc@@ (12.8), oc@@ (2.9), Oct (1.2)

� through to to (73.2), through (15.6), until (8.7)

� December December December (85.6), Dec (8.0), to (5.1)

� . . . (97.5)

Figure 3: Example with about average prediction accuracy. Note the good recovery from failure

and that several of the correct choices rank highly in the probability distribution of predicted

words (values in parentheses indicate percent of probability mass assigned to words; only words

with ≥1% shown). Tokens containing @@ are an artifact of byte pair encoding.

synonyms8 of the correct answer (in the phrase-based system, this drops to 17.7%). Were these

to be accepted by a real translator, overall system accuracy scores would improve.

The neural method copes well with failure, and typically resumes with plausible predic-

tions. One exception is the prediction of talks after having seen ... will start interviewing. This

may be due to the attention mechanism being thrown off after a sequence of low-probability

prefix words.

5.1 Word Prediction Accuracy

Figure 3 also illustrates the evaluation metric we use to measure the quality of the prediction

methods. It measures how many words are predicted correctly (see the first column in the

figure). Note that we measure on the level of tokens, so we score the split word inter@@
viewing (an artifact of byte pair encoding) as a single token, rather than two tokens.

Table 2 shows the prediction accuracy for the three methods. The neural systems clearly

outperform the method based on the search graph of the phrase-based model (with over 60%

prediction accuracy for the neural systems and just 43.3% for the phrase-based). We discuss

more reasons for this improvement in Section 5.3.

8Here we define words to be synonyms if their Wu-Palmer similarity (Wu and Palmer, 1994) in WordNet (Fellbaum,

1998) is equal to 1.



System Configuration Word Prediction Accuracy
Neural no beam search 61.6%

beam size 12 63.6%

Phrase-based - 43.3%

Table 2: Word prediction accuracy: Ratio of words predicted by the interactive translation

prediction system that matched the human reference translation exactly.

System Configuration Letter Prediction Accuracy
Neural no beam search 86.8%

beam size 12 87.4%

Phrase-based - 72.8%

Table 3: Letter prediction accuracy: Ratio of letters predicted correctly.

5.2 Letter Prediction Accuracy

A useful feature of interactive translation prediction is the ability to react to single key strokes

of the user. Consider an example from Figure 3. The system has a preference for numbers over

levels. The latter is preferred by the human translator, hence the system fails to make the right

prediction. If the user types the letter l, the system should quickly update its prediction to levels,

the most likely word (from the probability distribution that generated the original hypothesis)

that starts with this letter. In general, when the user types the initial letters of a word, the

system should predict the most probable word with this letter prefix. In the beam search setting,

the system first runs through the first word of each of the hypotheses in the beam (from most

to least probable) to see if any match the the translator’s letter prefix, before falling back to

the probability distribution over the full vocabulary. With a beam size of 12, the correct word

appears in the beam (but not as the predicted word) 25.2% of the time.

To measure the accuracy of system predictions for word completion, we count the number

of incorrectly-predicted characters. To give a more complex example, suppose that the human

translator wants to use the word increased. The system first predicts rising, but after seeing the

letter i, it updates its prediction to increasing. It predicts all letters correctly until it comes to the

final e. When the user enters increase, the system updates its prediction to increased. We count

this as two wrongly predicted letters: increased. Table 3 shows the scores for our methods.

Again, the neural methods clearly outperform the phrase-based method.

Note that this measure is not as clearly tied to user actions as word prediction accuracy. In

the user interface shown in Figure 1, correctly predicted words are accepted by pressing TAB,

while incorrectly predicted words have to typed in completely (assuming no word completion).

So, the percentage of correctly predicted words reflects the ratio of words that do not have to

be typed in. The effort savings for word completion are less clear, since there are various ways

the user could interact with the system. In our example, when the user sees the prediction

increasing but wants to produce increase, there are several choices even within the CASMACAT

user interface. The user could accept the system’s suggestion, and then delete the suffix ing and

type in ed. Or, she could type in the entire prefix increase until the system makes the correct

prediction — which in this example does not yield any savings at all: the user may accept the

prediction with TAB or type in d herself.



System Configuration 1 2 3 4 5

Neural no beam search 55.9% 61.8% 61.3% 62.2% 61.1%

beam size 12 58.0% 62.9% 62.8% 64.0% 61.5%

Phrase-based - 28.6% 45.5% 46.9% 47.4% 48.4%

Table 4: Ratio of words correct after first failure.

Figure 4: Neural (no beam) recovery from first failure at each position in the window of 5 words

following the first failure, binned by probability assigned to correct solution (see legend).

5.3 Recovering from Failure

To get a more detailed picture of the performance of the neural prediction method, we explore

how it recovers from failure. First, how well does the method predict the words following its

first failure? We look at a window of up to five words following the first failure in a sentence

(note that if the first failure is near the end of the sentence, the window will be truncated at the

end of the sentence). See Table 4 for numbers for the methods.

The neural system predicts the first word in the window correctly 55.9% of the time, after

it fails on a word. The second word in the window is predicted correctly 61.8% with similar

numbers for the following words. So, failing on a word does impact the prediction of the

word immediately following the failure, but only slightly words further down the sentence. The

phrase-based method only correctly predicts 28.6% of the first words immediately after failing

on a word. This suggests that the phrase-based method has a harder time recovering initially.

Interestingly, not all failures have an equal impact on the predictability of the subsequent

words. Figure 4 shows the prediction accuracy for the neural method (without beam search)

in more detail for the same five word window following the system’s first error. We examine

the way that the probability assigned to the correct word (which the model failed to predict)

influences recovery from errors. When the model assigns extremely low probability (below

1%) to the correct answer, it performs very poorly on the next word, getting it correct only

44.1% of the time. On the other hand, when the model assigns relatively high probability to

the correct word (25% to 50%), the probability of correctly guessing the next word rises to

72.1%. We can think of the probability assigned to the correct word as approximating how

close the model was to being correct when it made the first error. When its prediction is far

from correct, it has difficulty recovering, but when it is close to correct, it does not suffer a drop

in performance in predicting the next words.



System Config. 1 2 3 4 5 6 7 8 9 10+

Neural no beam 8168 3229 1422 694 350 187 89 33 16 25

beam 12 8378 3072 1320 615 305 151 75 46 14 15

Phrase - 3403 2150 1227 825 530 360 282 212 157 774

Figure 5: The graph shows number of mispredicted words, categorized by lengths of the se-

quence of mispredicted words to which they belong. The table gives a breakdown of the number

of sequences of each length.

We observe examples of this phenomenon (and its ties to near-synonyms) in Figure 3.

When the model assigns low probability to the correct answer (e.g. interviewing), there are

sequences of incorrect predictions. In the case of rising, the model predicts increasing, a near-

synonym, and assigns the highest probability to increasing, rising, and climbing (in descending

order). As we saw in Section 5.2, the neural system predicts more synonyms than the search

graph system. We hypothesize that this is partly due to the neural system having additional

information about the semantics of words (as represented by their embeddings), while the search

graph system treats synonyms and non-synonyms alike.

5.4 Length of Sequences of Mispredicted Words
Another revealing set of statistics is the length of sequences of word prediction failures. If

the method fails on one word, and predicts the next word correctly, we have a 1-word failure

sequence. However, if it misses the next word also and only recovers after that, we have a 2-

word failure sequence, and so on. Shorter failure sequences indicate better models (and a better

user experience). Figure 5 visualizes the sequences of word prediction failures by showing how

many mispredicted words can be accounted for by each failure sequence length (mispredictions

in shorter sequences are represented by light colors while mispredictions in long sequences are

shown in darker red).

The methods show a stark contrast. The neural methods have a much higher number of 1-

word failure sequences (8168 and 8378 vs. 3403) and 2-word failure sequences (3229 and 3072

vs. 2150, comprised of 6458 and 6144 vs. 4300 mispredicted words) but comparably very few

long failure sequences. For instance, only a small fraction of the neural systems’ mispredicted

words occur in sequences of greater than 15 errors in a row (93 or 16 words total), while 7129

of the phrase-based system’s word prediction errors occur in misprediction sequences of length

greater than 15 words. This is not simply a consequence of the greater word prediction accuracy

of the neural systems; in particular, the phrased based model shows far more long misprediction

sequences than one would expect were those errors distributed uniformly randomly (the neural

systems also have more long misprediction sequences than would be expected if the errors



Length 1-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 100-104

CPU 108.6 115.7 122.7 127.0 131.3 136.1 140.7 145.2 184.4

GPU 7.0 7.2 7.4 7.4 7.4 7.4 7.6 7.6 7.6

Table 5: Decoding speed per word in milliseconds (neural model, no beam search) for different

sentence lengths.

occurred randomly, but to a lesser extent).

These numbers suggest that the neural method recovers much better from failures, while

the phrase-based system has more difficulty. Since the neural method considers every word in

the vocabulary at any point in the sequence, it can always place the user’s choice in a word

prediction sequence, and does not have to resort to string edit distance to match up with the

user’s translation.

6 Speed Considerations

We have shown that the neural method delivers superior prediction accuracy, but is it fast

enough? To be used in an interactive user interface, the method has to quickly produce alterna-

tive sentence completion predictions. A common time limit in human computer interaction is

100 milliseconds for the system’s response. Any longer feels sluggish and annoying to the user.

6.1 Speed Measurements

In a basic setup, the neural machine translation decoder has to step through the user’s prefix, and

then produce predicted words until the end of the sentence. In other words, it has to translate the

entire sentence for a response to a user interaction. Table 5 gives numbers for decoding speed,

running on a multi-core CPU (32 core 3.20GHz Intel Xeon CPU E5-2667 v3, although only 2-3

cores are utilized on average) and a GPU (Tesla K80).

Decoding time is spent mostly on the matrix multiplications to compute hidden and output

layer vectors. The computational cost of the argmax operation to pick the best word is negligi-

ble, hence the computational cost is essentially the same for matching words in the user prefix

and predicting new words.

To predict a single word, the CPU requires over 100 milliseconds, which is clearly too slow.

The time it takes to translate a single word slightly increases with the length of the sentence,

since the attention mechanism has to sum over a larger context of source language words.

On a GPU, the cost to predict one word drops to 7 milliseconds. For a 20-word sentence,

this means (7 × 20) 140 milliseconds which is also beyond our 100 millisecond time limit.

6.2 Fast Recovery

However, we can employ the following optimizations:

• We can precompute the initial translation when the document is uploaded. This gives us

the entire prediction sequence.

• The user will diverge from the suggested translation at some point. We do not need to

match the accepted user prefix again, since we can use the cached prediction sequence up

to this point.

• We can produce a limited sequence of predicted words rather than a completely new full

translation. In the user interface illustrated in Figure 1, only three words are shown. We

may initially respond to the user interface with a small sequence of words and deliver the

remaining words later.



• To have a full sentence completion at any time, we may initially patch together a limited

prediction with the original sentence completion, since later words are less likely to be

influenced by the local user choice.

(1) Initial hypothesis A sovereign prel@@ ate of the Champions League season .
(2) Translator prefix A confident

(3) New prediction (3 words) start to the

(4) Alignment start to the→ prel@@ ate of the Champions
(5) New hypothesis A confident start to the Champions League season .

Figure 6: Example of patching a 3-word prediction into the original sentence completion.

We propose a method (without beam search) that patches together a limited (say, 3 word)

new prediction with the existing sentence completion each time that the translator diverges

from the predicted translation. An example of this is shown in Figure 6 (we reference the

row numbers parenthetically in the following description). We begin by precomputing a full

translation when the document is uploaded (row 1). If and when the translator diverges from

this (row 2), we compute predictions for the next 3 words only (row 3) and attempt to patch

them together with the original translation.

We find the patch position by computing the KL divergence between the probability dis-

tribution that produced the last of the 3 new words and the stored probability distributions that

produced the words in a 5-word window (following the position of the the last word in the trans-

lator prefix). This results in an alignment between the last of the 3 new words and the index

of some word in the existing translation (row 4). The new translation hypothesis consists of

concatenating the translator prefix, the 3 newly predicted words, and any words following the

position of the index in the existing translation hypothesis that minimized the KL divergence

(row 5).

By patching together earlier predictions with a short sequence of predictions based on new

input from the translator, we can guarantee that we can serve the translator new predictions

quickly. The new prediction and patching combined takes an average of 54.3 milliseconds to

compute. This approach yields a word prediction accuracy of 56.4% and a letter prediction

accuracy of 84.2% (a drop from the full search neural model by 5.2% and 2.4%, respectively,

but still vastly outperforming the phrasal search graph system).

In a real-life setting, we may sometimes have enough time to recompute the full sentence

in the background, rather than relying on patching together different predictions, so we could

expect performance closer to the performance noted earlier. Additionally, we could use beam

search (or other improvements to the neural model) in order to precompute better initial se-

quences, which we expect would also improve performance.

6.3 Analysis

In the example in Figure 6, the new hypothesis is in fact the correct translation. If the initial

error by the system is a single-token error (for example a synonym), we might expect the last

of the 3 newly translated words to align to the word at the center of the window. In this case it

(correctly) aligns one position to the right of this and produces the desired hypothesis.

When the alignment is close to the center of the window, this suggests that the sentence

does not require much reordering. The patching heuristic is somewhat imprecise and has dif-

ficulty handling sentences with long-range reordering. In Figure 7 we compute the failure



Figure 7: Ratio correct after first failure for the 4th and 5th words in the window.

recovery ratios for the 4th and 5th words in the window following the first error,9 conditioned

on the alignment position.

An alignment position of 3 indicates that the 3rd newly translated word aligned with the

3rd word in the window (as would be expected if no reordering were needed). Similarly, an

alignment position of 1 indicates that the 3rd newly translated word aligned to the 1st word

following the failure, and so on. We see that when a longer-distance alignment occurs, the

ratio drops, demonstrating either an error of alignment or the system’s difficulty in handling

long-distance reordering.

7 Conclusion

In this paper we demonstrate that neural machine translation systems can effectively be applied

to interactive translation prediction, improving upon the performance of traditional methods.

We show that they recover well from errors, have shorter sequences of incorrect predictions,

and produce more near-synonyms of the correct answers. Finally, we demonstrate a method

that allows for practical deployment given real-life time constraints.
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