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Abstract
In this paper, we propose a new data selection method which uses semi-supervised convolu-

tional neural networks based on bitokens (Bi-SSCNNs) for training machine translation sys-

tems from a large bilingual corpus. In earlier work, we devised a data selection method based

on semi-supervised convolutional neural networks (SSCNNs). The new method, Bi-SSCNN,

is based on bitokens, which use bilingual information. When the new methods are tested on

two translation tasks (Chinese-to-English and Arabic-to-English), they significantly outper-

form the other three data selection methods in the experiments. We also show that the Bi-

SSCNN method is much more effective than other methods in preventing noisy sentence pairs

from being chosen for training. More interestingly, this method only needs a tiny amount of

in-domain data to train the selection model, which makes fine-grained topic-dependent transla-

tion adaptation possible. In the follow-up experiments, we find that neural machine translation

(NMT) is more sensitive to noisy data than statistical machine translation (SMT). Therefore,

Bi-SSCNN which can effectively screen out noisy sentence pairs, can benefit NMT much more

than SMT.We observed a BLEU improvement over 3 points on an English-to-French WMT

task when Bi-SSCNNs were used.

1 Introduction

When building a statistical machine translation (SMT) system, it is important to choose bilin-

gual training data that are of high quality 1 and that are typical of the domain in which the

SMT system will operate. In previous work, these two goals of data selection, i.e., picking

high-quality data and picking data that ensure the SMT system is well-adapted to a given do-

main, have often been achieved separately. For instance, the papers (Munteanu and Marcu,

2005; Khadivi and Ney, 2005; Okita et al., 2009; Jiang et al., 2010; Denkowski et al., 2012)

focus on reducing the noise in the data. They use different scoring functions, such as language

model perplexity, word alignment score, or IBM model 1 score, to score each sentence pair,

top scored sentence pairs are selected. While the papers (Zhao et al., 2004; Lü et al., 2007;

Yasuda et al., 2008; Moore and Lewis, 2010; Axelrod et al., 2011; Duh et al., 2013; Axelrod

et al., 2015) focus on domain adaptation. They all select monolingual or bilingual data that

1Within each sentence pair, the target-language sentence is a good translation of the source sentence



are similar to the in-domain data according to some criterion. These state-of-the-art adaptive

data selection approaches (Axelrod et al., 2011; Duh et al., 2013; Axelrod et al., 2015) search

for bilingual parallel sentences using the difference in language model perplexity between two

language models trained on in-domain and out-domain data, respectively. Furthermore, (Duh

et al., 2013) extends these approaches from n-gram models to recurrent neural network lan-

guage models (Mikolov et al., 2010). While some previous work considers achieving the two

goals simultaneously, such as (Mansour et al., 2011) which uses IBM model 1 and a language

model to do data selection, (Durrani et al., 2015) uses a neural network joint model to select the

in-domain data.

In a recent paper (Chen and Huang, 2016), we describe one type of neural network for

carrying out data selection: a semi-supervised Convolutional Neural Network (SSCNN) that is

trained on the in-domain set to score one side of each sentence in a general-domain bilingual

corpus (either the source side or the target side) for its suitability as training material for an

SMT system. The highest-scoring sentence pairs are chosen to train the SMT system. Experi-

ments described in that paper, covering three different types of test domain and four language

directions, show that this SSCNN method yields significantly higher BLEU scores for the re-

sulting SMT system than for three state-of-the-art data selection methods when the amount of

training data selected is held constant. The advantage of the SSCNN over the earlier methods

is especially dramatic when the amount of in-domain data used to train the selection model is

small (less than 800 sentence pairs): the in-domain set for the SSCNN can be as few as 100

sentences, which makes fine-grained topic-dependent translation adaptation possible. In some

cases, the SSCNN is so effective at selecting good training data that it is possible to greatly

reduce the amount of training data for the SMT system without negative impact on translation

quality: this reduces the footprint of the system, which can be advantageous for many practical

applications.

In the experiments for (Chen and Huang, 2016), we found that the best variant of the SS-

CNN method was one in which we trained two CNN models - one that scores source-language

sentences and one that scores target-language sentences - and sum the scores of these two mod-

els to get the overall score of each sentence pair in the bilingual corpus. Thus, the SSCNN

variant we used assigns high scores to sentence pairs where both the source-language sentence

and its target-language partner resemble sentences in the in-domain corpus. Note what this

method does not do: it does not check that the target sentence is a good translation of the

source sentence. Essentially, it scores the extent to which both the source and target sentence

are in-domain, but does not in any way penalize bad translations. We say that such a method

is “symmetric”: it incorporates equal amounts of information from the source and the target

language, but it is not “bilingual”: it does not incorporate information about the quality of

translations.

The main motivation for this paper is to explore CNN-based data selection techniques that

are bilingual. It is based on semi-supervised CNNs that use bitokens as units instead of source or

target words (Marino et al., 2006; Niehues et al., 2011). For the bitoken semi-supervised CNN,

we should use the abbreviation “Bi-SSCNN”. We also experiment with the bilingual method

that combines IBM model 1 and language model (LM) scores and neural network joint model.

In this paper, we carried out experiments reported on two language pairs: Chinese-to-

English and Arabic-to-English. We fix the number of training sentences to be chosen for the

data selection techniques so that they can be fairly compared, and measure the BLEU score on

test data from the resulting MT systems. It turns out that three techniques have roughly the same

performance in terms of BLEU: the symmetric but non-bilingual word-based SSCNN method,

and two symmetric, bilingual techniques - the simple IBM-LM method, and the NNJM method.

The Bi-SSCNN method, on the other hand, outperforms all other methods: by +0.5 BLEU for



Chinese-to-English task, and by +0.3 BLEU for Arabic-to-English task.

Because the main motivation for the paper is exploration of bilingual methods for SSCNN-

based data selection, we perform another set of experiments to see how good each method is at

rejecting sentence pairs whose target side is not a translation of the source side. We do this by

permuting 50% of the pairs in the bilingual corpus. We then count the proportion of pairs chosen

by each method that are mismatched. In these experiments, all three bilingual methods - IBM-

LM, NNJM, and Bi-SSCNN outperform the other methods (they chose a smaller proportion of

mismatched sentence pairs) and Bi-SSCNN is even more effective than the other two bilingual

methods.

2 Four Data Selection Methods

In this section, we focus on four methods for data selection: the IBM-LM method, the NNJM

method, the original word-based SSCNN method, and the Bi-SSCNN method. The IBM-LM

method is similar to Mansour et al. (2011), which is a simple bilingual method that is a good

baseline for other bilingual methods. The NNJM-based data selection (Durrani et al., 2015)

is the first bilingual NN method. The word-based SSCNN method is described in (Chen and

Huang, 2016). The SSCNN method is symmetrical but not bilingual. The Bi-SSCNN method

is a newly proposed method, which is symmetrical as well as bilingual.

2.1 Data Selection with IBM1 and Language Models
The IBM-LM method is straightforward, since state-of-the-art methods use IBM models to

measure the mutual translation quality, and language models to select in-domain data. We

combine length-normalized scores from these models into a global score, i.e., target-given-

source IBM model 1 score, source-given-target IBM model 1 score, source language model

cross entropy difference, and target language model cross entropy difference, are normalized by

the corresponding sentence length and then averaged to obtain one score. The IBM models are

trained on whole general-domain data plus the in-domain set, while the language models are

trained on the in-domain set or a small (equal size to the in-domain set), random subset of the

general-domain corpus (excluding the small in-domain set).

To select a subset of data to be used for training an SMT system from a bilingual corpus,

the user must specify the number N of sentence pairs to be chosen. The N sentence pairs with

the highest global scores S(s, t) will be selected. This method is symmetrical - the roles of the

source-language and target-language sides of the corpus are the same - and bilingual, because

the IBM model 1 measures the degree to which each target sentence t is a good translation of

its partner s, and vice versa.

2.2 Data Selection with Neural Net Joint Model (NNJM)
The Neural Network Joint Model (NNJM), as described in (Devlin et al., 2014), is a joint

language and translation model based on a feedforward neural net (NN). It incorporats a wide

span of contextual information from the source sentence, in addition to the traditional n-gram

information from preceding target-language words. Specifically, when scoring a target word

wi, the NNJM inputs not only the n − 1 preceding words wi−n+1, ..., wi−1, but also 2m + 1
source words: the source word si most closely aligned with wi along with the m source words

si−m, ..., si−1 to the left of si and the m source words si+1, ..., si+m to the right of si.

The NNJMs used in our experiments input 4-grams on the target side and windows of size

11 on the source side (the aligned word, along with 5 words to the left of it and 5 words on

its right). Training is done in two passes: a pass over general-domain data plus the in-domain

set, followed by a pass over the in-domain set. While in the second pass, the source and target

word embeddings are fixed. For a particular language pair, for instance, Chinese-to-English,



four NNJMs are trained. There are two NNJMs informed by a wide-source language (Chinese)

context that act as LMs for the target language (English): a positive one NNJM(+,Chinese-to-

English) modeling in-domain target-language (English) sentences, and a negative one NNJM(-

,Chinese-to-English) modeling out-of-domain target-language (English) sentences. Both are

initialized with parameters and fixed source and target word embeddings which are learned

on the entire general-domain corpus plus the in-domain set. The second phase of training

for NNJM(+,Chinese-to-English) is on the in-domain set. It would be nice if we could train

NNJM(-,Chinese-to-English) on sentence pairs that are known to be out-of-domain, but there is

no easy way of obtaining such sentence pairs, so we simply carry out the second phase of train-

ing for this negative NNJM on a small, random subset of the general-domain corpus (excluding

the small in-domain set). The difference between the two scores, score(NNJM(+,Chinese-to-

English)) minus score(NNJM(-,Chinese-to-English)), as calculated on a sentence pair is an in-

dicator of how close to the in-domain set the sentence pair is.

We train in similar manner a positive and a negative NNJM that act as LMs for the

source language (Chinese) while consulting a wide context in the target language (English):

NNJM(+,English to Chinese) and NNJM(-,English to Chinese). The global, symmetrical

NNJM score S for a sentence pair is made up of equal contributions from these four models.

Since this metric contains information about the translation relationship between each

source sentence and its target counterpart, and since the ways in which the source and target

languages are used are mirror images of each other, the NNJM data selection method is both

bilingual and symmetrical.

2.3 Data Selection with Semi-Supervised CNN

As described in more detail in (Chen and Huang, 2016), we were inspired by the success of

convolutional neural networks (CNNs) applied to image and text classification (Krizhevsky

et al., 2012; Kim, 2014; Johnson and Zhang, 2015a,b) to use CNNs to classify training sentences

in either the source language or the target language as in-domain or out-of-domain.

Convolutional neural networks (CNNs) (LeCun and Bengio, 1998) are feed-forward neu-

ral networks that exploit the internal structure of data through convolutional and pooling layers;

each computation unit of the convolutional layer processes a small region of the input data.

When CNNs are applied to text input, the convolution layers process small regions of a docu-

ment, i.e., a sequence of words. CNNs are now used in many text classification tasks (Kalch-

brenner et al., 2014; Johnson and Zhang, 2015b; Wang et al., 2015). Chen and Huang (2016)

use CNNs to classify sentence pairs to in-domain and out-of-domain sentence pairs.

In many of these studies, the first layer of the network converts words to word embed-

dings using table lookup; the embeddings are sometimes pre-trained on an unnlabeled data.

The embeddings remain fixed during subsequent model training. A CNN trained with small

number of labled data and pre-trained word embeddings on large unlabeled data is termed

“semi-supervised”. Because we were interested in data selection scenarios where only small

amounts of in-domain data are available, we chose to use semi-supervised CNNs (SSCNNs)

with word2vec embeddings (Mikolov et al., 2013) pre-trained on a large general-domain,

monolingual corpus. The input region vector that represents a segment of data can be either

a concatenation of word vectors, in which the order of concatenation is the same as the word

order in the sentence, or it can be a bag-of-word/n-gram vector. The bag-of-word (BOW) rep-

resentation loses word order information but is more robust to data sparsity. A CNN whose

input being BOW representation is called bow-CNN while input with concatenation of vectors

is called seq-CNN.

On the other hand, the input sentence can also be represented with one-hot vectors, where

each vector’s length is the vocabulary size, value 1 at index i indicates word i appears in the



Figure 1: Semi-supervised CNN structure.

sentence, and 0 indicates its absence. The one-hot vector can be either one-hot “BOW” or one-

hot “seq” too. We input all four kinds of representations, i.e., bag-of-word one-hot vectors (one-

hot BOW), concatenation of one-hot vectors (one-hot seq), bag-of-word embedding vectors

(embedding BOW), concatenation of embedding vectors (embedding seq), to the CNN layers

to train the classification model, as shown in Figure 1.

To train the CNN itself, we take the in-domain set as the positive training sample and

randomly select the same number of sentences from the general-domain training data as the

negative training sample. The positively and negatively labeled data and the word embeddings

are fed to the convolution layer to train the final classification model. The resulting SSCNN

is then used to score each sentence in the general-domain corpus. As with the other methods

described above, the SSCNN was applied symmetrically - two SSCNNs were trained, one on

the source-language half of the in-domain set, the other on the target-language half, and their

scores were summed to obtain a global score for each sentence pair in the big general-domain

corpus. The top N sentence pairs are selected to train the SMT system. Note that though this

SSCNN method is symmetrical, it is not bilingual: there is no evaluation of whether the two

halves of each sentence pair are good translations of each other.

The experimental results given in (Chen and Huang, 2016) for the SSCNN method on

four different language directions and a variety of genres (SMS, tweets, Facebook posts, etc)

show that the resulting SMT systems typically outperform baseline systems trained with all

the general-domain data, and (for a fixed amount of selected training data) previously state-of-

the-art data selection methods. The advantage of the SSCNN method over other data selection

techniques is especially strong when the size of the initial in-domain data (the dev set) is small.

Therefore, if we wish to build a large scale topic-specific MT system with hundreds of topics,

we only need to collect a few hundreds sentence pairs for each topic. This makes fine-grained

topic-dependent translation adaptation possible.

2.4 Data Selection with a Bitoken Semi-supervised CNN

Despite the excellent performance of the SSCNN method described in the previous paragraphs,

we believed that further improvement might be possible if we devised a method based on SSC-

NNs that was not only symmetrical, but also bilingual. The problem with SSCNN is that unlike

the IBM-LM method or the NNJM method nothing about it filters out sentence pairs whose

source and target halves are bad translations of each other. We decided to experiment with

SSCNNs that take as input the bitokens of (Marino et al., 2006; Niehues et al., 2011).



Figure 2: Bitoken sequence.

The paper (Niehues et al., 2011) describes a “bilingual language model” (biLM): the idea

that SMT systems would benefit from wider contextual information from the source sentence.

BiLMs provide this context by aligning each target word in the training data with source words

to create bitokens. An n-gram bitoken LM for the sequence of target words is then trained.

Figure 2 (taken from (Stewart et al., 2014)) shows how a bitoken sequence is obtained

from a word-aligned sentence pair for the English to French language pair. Unaligned target

words (e.g., French word “d’́’ in the example) are aligned with NULL. Unaligned source words

(e.g., “very”) are dropped. A source word aligned with more than one target word (e.g., “we”)

aligned with two instances of “nous” is duplicated: each target word aligned with it receives a

copy of that source word.

The word embeddings for bitokens are learned directly by word2vec, treating each bitoken

as a word. For instance, in the French sentence shown in Figure 2, there are two occurrences

of the new target-language word nous/we, one occurrence of devions/had to, etc. To reduce the

size of the bitoken vocabulary, we exclude low-frequency bitokens from consideration: to be

taken into account, a Chinese-English bitoken must occur at least 10 times in the training data,

and an Arabic-English bitoken must occur at least 5 times.

After this embedding has been performed, the Bi-SSCNN is trained similarly as was de-

scribed above for the original word-based SSCNN. The only difference is the pooling strategy.

For the word-based SSCNN, we use maximum-pooling, while for the bitoken-based SSCNN,

we use average-pooling. This is because if a sentence contains one or more in-domain words,

it is very likely an in-domain sentence, so we use maximum pooling to highlight those typical

in-domain words for the word-based SSCNN. The reason for choosing average-pooling for Bi-

SSCNN is that if a sentence pair contains one or more in-domain bitokens, it is not necessarily a

good quality in-domain sentence pair. It is only when a sentence pair contains some in-domain

bitokens, and most of the bitokens are good translations, that it is considered to be a high quality

in-domain sentence pair.



language zh2en ar2en

test domain webforum nw&wl

train size 12.20M 5.29M

dev size 2,748 1,360

test size 1,224 5,812

Table 1: Summary of the data. Data is given as the number of sentence pairs, “M” represents

“million”. “nw” stands for “newswire”, “wl” stands for “weblog”.

As with the other methods, this data selection method is applied in a bilingual manner:

the gobal score used to evaluate sentence pairs is the unweighted sum of a score for two bi-

SSCNNs, one of which reverses the polarity of the source language (Chinese or Arabic) and the

target language (English).

3 Experiments on SMT

Our goal is to adapt the MT system when only a small amount of in-domain data is available.

So in most of our experiments, we ignored domain information about the training data, such as

the source of each corpus. What we have is a small development set (dev) and one or more test

sets (test) which are in the same domain.

3.1 Data setting

We carried out experiments in two different data settings. The first setting is the Chinese-to-

English “webforum” task from the BOLT project (zh2en); the test domain is a combination of

news and web posts. The training data from LDC2 are a mixture of newswire, web crawls, UN

proceedings, etc. The second setting is the NIST 2012 Arabic-to-English task (ar2en). Again,

the training data are available from LDC, and the test domain is a combination of newswire and

weblog. We use the NIST 2008 test data as the dev set and the NIST 2012 test set as the test.

Table 1 summarizes the statistics of the training, dev, and test data for both tasks. Note that

for both, the test domain includes newswire data, and the training data include a proportion of

newswire data are extracted from comparable data, around 10% for the Chinese-to-English task

and 20% for the Arabic-to-English task. We used all the comparable data available from LDC.

Some of the comparable data are quite noisy, making the task of data selection more challenging

both for two tasks.

Once a subset of the large in-domain, bilingual corpus has been selected by one of the

methods described above, that subset is used as training data for a standard phrase-based SMT

system.

3.2 Experimental setup

We employ the dev set as in-domain data. All the supervised CNN models (both the SSCNN

ones and the Bi-SSCNN ones) are trained with the in-domain dev data as positive examples

and an equal number of randomly selected general-domain sentences as negative examples. All

the meta-parameters of the CNN are tuned on held-out data; we generate one-hot based bow-

regions and seq-regions, word-embedding-based bow-regions and seq-regions and input them

to the CNN. We set the region size to 5 and stride size to 1. The non-linear function we chose

is “ReLU”, the number of weight vectors or neurons is 500. We use the online available CNN

2https://catalog.ldc.upenn.edu/



toolkit conText3. To train the general domain word embedding, we used word2vec4. The size

of the vector was set to 300.

The baseline SMT system for each language direction, “alldata” is trained using all

general-domain data. All other systems are trained with a subset of the general-domain data of

fixed size: 1.8 million sentence pairs (about 15% of the available training data) for the Chinese-

to-English task, and 1.4 million sentence pairs (about 26% of the available training data) for the

Arabic-to-English task. We experimented with the following five data selection methods. Note

that the last three methods are bilingual - they measure not only the quality of the source and

target sides of a sentence pair, but also the degree to which one is a good translation of the other

- but the first two are not:

1. LM: Data selection by 3-gram LMs with Witten-Bell 5 smoothing, using bilingual cross

entropy difference as the criterion. This is considered to be a state-of-the-art data selection

method for domain adaptation (Axelrod et al., 2011). The “sum LM” variant uses the sum

of the source and target LM scores for a sentence pair.

2. SSCNN: Data selection by semi-supervised CNN based on monolingual tokens (Section

2.3)

3. IBM-LM: Data selection by both IBM and language models (Section 2.1)

4. NNJM: Data selection by neural network joint models (Section 2.2)

5. Bi-SSCNN: Data selection by bitoken based semi-supervised CNN (Section 2.4)

3.3 Experimental results
We evaluated the system using the BLEU (Papineni et al., 2002) score on the test set. Follow-

ing (Koehn, 2004), we apply the bootstrap resampling test to do significance testing. Table 2

summarizes the results for each task. The number of selected sentence pairs for each language

pair (1.8 million pairs for Chinese-to-English, and 1.4 million pairs for Arabic-to-English) was

decided on the basis of tests on held-out data using the IBM-LM method. That is, 1.8 million

was the value of N that maximized the BLEU score of the final SMT system when IBM-LM

was used to select N sentence pairs as training data for Chinese-to-English, and 1.4 had the

same property for Arabic-to-English.

In the table, the bilingual methods are the ones below the horizontal line. All methods

shown were applied in their symmetrical version, where the global score is obtained by adding

a source-based score to a target-based score.

It can be seen from the table that the three NN-based data selection methods - the orig-

inal word-based SSCNN, NNJM, and bitoken-based SSCNN - outperform the other methods.

Among these three, Bi-SSCNN is significantly better than the other two, outperforming the

original SSCNN by +0.5 BLEU on Chinese-to-English and +0.3 BLEU on Arabic-to-English.

What about the original motivation for devising data selection methods based on IBM-LM,

NNJMs and Bi-SSCNN: that methods employing bilingual information will do a better job of

screening out noisy sentence pairs, i.e., sentence pairs where each side is a bad translation of the

other? The BLEU results above do not make this aspect of the behaviour of the various methods

clear. For instance, the bilingual IBM-LM method obtains lower scores for both the Chinese-

to-English and the Arabic-to-English task than the non-bilingual original SSCNN method.

3http://riejohnson.com/cnn download.html
4https://code.google.com/archive/p/word2vec/
5For small amounts of data, Witten-Bell smoothing performed better than Kneser-Ney smoothing in our experiments



symmetrical bilingual zh2en ar2en

alldata – – 24.6 45.7

LM yes no 24.7 45.2

SSCNN yes no 25.1** 45.9

IBM-LM yes yes 24.9 45.4

NNJM yes yes 25.0* 45.8

Bi-SSCNN yes yes 25.6**++ 46.2**+

Table 2: Summary of BLEU results. */** means result is significantly better than the “alldata”

baseline at p < 0.05 or p < 0.01 level, respectively. +/++ means result is significantly better

than the “SSCNN” method at p < 0.05 or p < 0.01 level, respectively.

We therefore decided to test the ability of the methods above to screen out noisy sentence

pairs directly. Inspired by the experimental approach of (Goutte et al., 2012), we deliberately

corrupted a randomly chosen 50% of the sentence pairs in the two large general-domain corpora

for Chinese-to-English and Arabic-to-English by permuting the order of the target-language

(English) sentences, while leaving the rest of each general-domain corpus (and the dev set on

which data selection methods are trained) untouched. We can then see what percentage of

the sentence pairs chosen by each data selection method have a mismatched source-language

and target-language side. Because the NNJM-based and bitoken SSCNN-based approaches use

word alignment information, we re-ran word alignment on all the general-domain data (using

the IBM and HMM models trained on the original version of the data).

Table 3 shows the proportion of mismatched sentence pairs in the top N selected sen-

tence pairs. For each language direction, two different values of N are tried: N = 1.8M and

N = 200K for Chinese-to-English, and N = 1.4M and N = 200K for Arabic-to-English.

Data selection based on only a source LM (“src LM”) or target LM (“tgt LM”) is completely

ineffective at screening out mismatched sentence pairs: their proportion in the selected subset

is around 50%, just as it was in the large corpus the subset was selected from. Symmetrizing

LM data selection by adding the source LM and target LM yields an improvement that is par-

ticularly noticeable when only 200K sentence pairs are selected for each language direction:

38% of the highest-scoring 200K Chinese-English pairs and 39% of the highest-scoring 200K

Arabic-English pairs are mismatched. The variants of the original SSCNN method show a sim-

ilar pattern, with the symmetrical version performing better than the versions that rely only on

the source-side or target-side scores.

A definite improvement in performance is seen when we consider the three bilingual data

selection methods: IBM-LM, NNJM, and Bi-SSCNN. By far the best performer of the three is

Bi-SSCNN. When it ranks sentence pairs in the Chinese-English corpus, of the 1.8M pairs with

the highest scores, about 29% are mismatched; of the 200K pairs with the highest scores, about

11% are mismatched. The mismatch proportions for the highest-scoring Arabic-English pairs

are about 28% for the 1.4M subset and 10% for the 200K subset.

These results show that the three bilingual methods - IBM-LM, NNJM, and Bi-SSCNN -

are more effective at screening out noisy sentence pairs than the non-bilingual methods. It may

seem surprising that all three of these methods do not therefore also have the highest BLEU

scores in Table 2. A possible reason is that the general-domain data we used to train the system

are not too noisy. Moreover, (Goutte et al., 2012) showed that phrase-based MT is highly robust

to the sentence alignment errors: “performance is hardly affected when the misalignment rate is

below 30%, and introducing 50% alignment error brings performance down less than 1 BLEU

point.” Thus, the proportion of misaligned sentence pairs in a training corpus and the BLEU



symmetrical bilingual zh2en ar2en zh2en ar2en

#selected 1.8M 1.4M 200K 200K

src LM no no 0.501 0.502 0.497 0.489

tgt LM no no 0.496 0.505 0.495 0.492

sum LM yes no 0.461 0.454 0.376 0.389

src SSCNN no no 0.487 0.495 0.481 0.481

tgt SSCNN no no 0.488 0.498 0.476 0.488

sum SSCNN yes no 0.453 0.455 0.365 0.401

IBM-LM yes yes 0.411 0.417 0.355 0.312

NNJM yes yes 0.428 0.402 0.376 0.298

Bi-SSCNN yes yes 0.292 0.280 0.113 0.100

Table 3: The proportion of mismatched sentence pairs in the top N sentence pairs selected from

the 50% sentence pairs permuted corpora.

language zh2en ar2en

alldata 24.6 45.7

Bi-SSCNN 25.6 46.2

clean-in 25.4 46.0

Table 4: BLEU Results for Manually Selected Data.

score obtained from a system on that corpus are not highly correlated.

For most practical purposes, we care more about a data selection method ability to produce

a training corpus that will yield an SMT system with a high BLEU score than its ability to screen

out noisy sentence pairs. Nevertheless, it is reassuring that the method which yields the highest

BLEU score in our experiments, Bi-SSCNN, is also the one that is far better than the other

methods at screening out noisy pairs.

In another experiment, we manually selected subsets made up of data that were likely to be

in-domain (because they came from newswire and weblogs, just like the test set) and clean (we

excluded comparable data). We selected around 1.4M sentence pairs for Chinese-to-English

task and 1.0M for Arabic-to-English task.

As Table 4 shows, the resulting “clean-in” training data set yielded an SMT system that

performed about as well, or slightly worse, than an SMT system trained on data selected by

“Bi-SSCNN”. This is a strong argument in favour of using Bi-SSCNN, which is fully automatic

and doesn’t require any outside knowledge about the sentence pairs in the large general-domain

corpus.

3.4 Discussion

When we examined a random selection of sentence pairs in the big general-domain corpora and

looked at their scores as assigned by the Bi-SSCNN method, we made an interesting observa-

tion. The sentence pairs with lowest scores are out-of-domain, as expected, but also tend to

have very good translation quality. The overall ordering (from highest to lowest score) tends to

be 1. clean and in-domain pairs 2. noisy and in-domain pairs 3. noisy and out-of-domain pairs

4. clean and out-of-domain pairs.

This tendency, which is surprising at first glance, is understandable. Both the positive sam-

ples in the dev set and the sampled negative examples used to train the Bi-SSCNN classification

model are of good quality. Thus, the Bi-SSCNN has learned two top priorities: selecting for



clean, in-domain sentence pairs, and selecting against clean, out-of-domain sentence pairs. It

thus scores the former type of sentence pair highest, and the latter type lowest. Noisy sentence

pairs thus receive intermediate scores. This behaviour may be desirable from a practical point

of view: clean, out-of-domain sentence pairs are dangerous in the sense that they will populate

the phrase table with phrase translations that are likely to compete with the correct translations

for the given domain. Noisy out-of-domain sentence pairs will have a more random effect,

sprinkling the phrase table with low-frequency, unlikely translations, thus doing less harm (and

noisy in-domain pairs will probably have a mildly positive effect on the performance of the

resulting SMT system).

In our experiments, NNJM-based data selection did not stand out from other methods either

in terms of its impact on BLEU or in terms of its ability to screen out noisy sentence pairs. Study

of the NNJMs we trained suggests that part of the problem is their limited vocabulary size: 32K

words for both the source and the target language. All other words are mapped into a small

number of clusters. Unfortunately, many sentence pairs of poor quality end up with several

occurrences of particular cluster on both the source and the target side, which may mislead the

NNJMs into thinking that these sentence pairs are of good quality.

Note also that the SMT systems trained on the selected data did not contain an NNJM

feature (or, indeed, any neural component). It is possible that the NNJM-based method will

work better when applied to the task of selecting data from a bilingual corpus to train a second,

larger NNJM. We intend to explore this possibility in our future work.

4 Follow-up experiments on NMT

After we submitted this paper, we did some experiments with a neural machine translation

(NMT) system (Sutskever et al., 2014; Bahdanau et al., 2015) using Bi-SSCNN. 6 The exper-

iments were carried out with an open source system called Nematus (Sennrich et al., 2016),

which is an attention-based NMT system (Bahdanau et al., 2015). We carried out experiments

on English-to-French (en2fr) WMT task 7. The training data contain 12 million sentence pairs;

the dev set is a concatenation of newstest2012 and 2013, which contains 6,003 sentence pairs;

the test set is newstest2014, which contains 3,003 sentence pairs.

Table 4 summarizes our experiments. If we introduce 30% sentence alignment error to

the original data, we lost over 3 BLEU score (35.4 vs 32.0 on the 12.0M data set; 33.7 vs 30.6

on the 6.4M sampled data set.) Then, if we apply Bi-SSCNN to the 12.0M data which contains

30% sentence alignment error, by carefully manipulating the negative training samples of the

Bi-SSCNN, we can turn on the noise reduction and domain adaptation separately. Experiment

5 shows that when the data contain 30% alignment error, Bi-SSCNN can screen out the noise

in the data and improve the performance to 33.9 BLEU, from 30.6 BLEU for the experiment 4

baseline. Experiment 6 showed that if we only use Bi-SSCNN for domain adaptation on a data

with 30% sentence alignment error, the improvement is smaller, only 0.4 BLEU. Finally, if we

turn on both noise reduction and domain adaptation for Bi-SSCNN, we obtain the best result,

which is 34.2: a 3.6 BLEU point improvement over the baseline in experiment 4. This series of

experiments shows that 1. neural machine translation is more sensitive to noise than SMT; 2.

Bi-SSCNN is effective in carrying out both noise reduction and domain adaptation.

5 Conclusions

We proposed a new method for data selection from a large bilingual corpus for the purpose of

training an SMT system. The new method is based on a bitoken semi-supervised convolutional

6Due to the time limit, we did not finish the experiments with other data selection methods.
7The data is available at http://www-lium.univ-lemans.fr/ schwenk/nnmt-shared-task/



id data size data description BLEU

1 12.0M all original data 35.4

2 12.0M 30% alignment error 32.0

3 6.4M sampled from data 1: original data 33.7

4 6.4M sampled from data 2: with 30% alignment error 30.6

5 6.4M Bi-SSCNN noise reduction on data 2 33.9

6 6.4M Bi-SSCNN domain adaptation on data 2 31.0

7 6.4M Bi-SSCNN noise reduction and domain adaptation on data 2 34.2

Table 5: BLEU Results for English-to-French WMT task with neural machine translation sys-

tem.

neural networks. It outperformed its nearest competitor, a method that uses a word-based SS-

CNN, by +0.5 BLEU on a Chinese-to-English task and by +0.3 BLEU on an Arabic-to-English

task. Since one of the motivations underlying the creation of the Bi-SSCNN method (and two

other data selection methods, those based on IBM-LM and NNJM) was the ability to screen

out noisy sentence pairs, we carried out another type of experiment in which the methods were

explicitly tested for the ability to do this when half the pairs in the bilingual corpus have been

deliberately corrupted. According to this criterion, too, the Bi-SSCNN outperformed all other

methods.

In the follow-up experiments, we find that neural machine translation is more sensitive to

noisy data than statistical machine translation. Therefore, Bi-SSCNN, which can effectively

screen out noisy sentence pairs, can benefit NMT much more than SMT. For instance, given

a potential training corpus with 30% sentence alignment error, data selected with Bi-SSCNN

yields a system with a performance gain of over 3 BLEU points above the baseline.
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