An Effective Diverse Decoding Scheme for
Robust Synonymous Sentence Translation

Youngki Park ypark@cnue.ac.kr
Hwidong Na hwidong.na@samsung.com
Hodong Lee hodong.lee@samsung.com
Jihyun Lee jihyuns.lee@samsung.com
Inchul Song icsong@samsung.com

Samsung Advanced Institute of Technology, Samsung Electronics
Suwon, 443-742, South Korea

Abstract

Existing neural machine translation (NMT) systems often mistranslate synonymous
sentences into sentences with different meanings. This problem is particularly serious
when there is lack of parallel corpora. In this paper, we propose a novel diverse decod-
ing algorithm for accurate translation of synonymous sentences in an NMT system. We
observe that the modeling power of NMT models may not be fully utilized because of
insufficient exploration of search space by beam search. The proposed algorithm over-
comes the problem by expanding search space coverage through diverse decoding.
First, it performs greedy search using an NMT model to build an initial candidate list.
Then, it expands the list by performing approximate kNN search over translation logs
to find previously translated results of similar sentences and adding them to the list. Fi-
nally, it uses the NMT model again to rescore the candidate list and returns the candi-
date with the best score. The experimental results show that the proposed scheme
enhances the BLEU score significantly over the state-of-the-art NMT system while
being much faster.

1. Introduction

One of the main barriers to building a machine translation system for commercial use is
that existing approaches often mistranslate sentences with the same meaning
(synonymous sentences) into sentences with different meanings. For example, we may
translate an English sentence, "How can I get to Gangnam Station?", into different
Korean sentences, "4'@97t% oj4d7 7}z / kang.nam.yek.kka.ci (to Gangnam station)
ettehkey (how) kacyo (go) '? and "¢ 744 7h= 22 <ei54 2 / kang.nam.yek.kka.ci (to
Gangnam station) ka.nun (going) kil.ul (way) al.lye.cu.sey.yo (let me know). Here, these
Korean sentences are synonymous sentences with the same meaning. If we back-translate
them into English using Google Translate, the translations are "I’ll go to Gangnam?" (an
incorrect translation) and "Tell us how to get to Gangnam" (a correct translation),
respectively. The second column in Table 1 shows the Korean-to-English translation
results of five synonymous source sentences obtained by using Google Translate. As
shown in the table, Google Translate translates some synonymous sentences in slightly
different forms incorrectly.

Although recent neural machine translation (NMT) systems have improved
translation accuracies greatly, they still generate mistranslations for some synonymous

! We annotate Korean words by Yale Romanization and indicate their meanings within parentheses.
A period (.) indicates the syllable boundary.

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p.53

Proceedings of AMTA 2016, vol.1: MT Researchers' Track

DL4MT-tutorial

2

Source Sentence Google Translate (Firat and Cho, 2016)
kang.nam.yek.kka.ci , 9 (O) How can I go to Gangnam
e.tteh.key ka.cyo ? (X) I'll go to Gangnam? Station?

kang.nam.yek.kka.ci , (X) "T"1l go to Gangnam Station
e.tteh.key ka.cyo (X) I'll go to Gangnam to Gangnam Station"
kang.nam.yek.kka.ci

ka.nun kil.i (X) How do I get to length (X) What is going to Gangnam
e.tteh.key Gangnam? Station?

toyp.ni.kka

kang.nam.yek.kka.ci o | (O) How’s going to Gangnam
e.tteh.key ka.na.yo (0) How do I get to Gangnam? Station?

llzzl;gligalinﬂ.ﬁk.kka.m (O) Tell us how to get to (O) Tell me the way to

al iye cu s;ey Yo Gangnam Gangnam Station

Table 1. Five example synonymous source sentences and their translations

sentences as shown in the third column of Table 1, which is the translation results of a
state-of-the-art NMT system. There are two main reasons for such mistranslations. First,
there is lack of parallel corpora for synonymous sentences. Thus, only a limited number
of forms of synonymous sentences may be seen during training. Second, standard
decoding algorithms, such as beam search, do not efficiently explore the search space. For
NMT models with an increased modeling power, the problem of insufficient exploration
of search space is more significant. For example, when we performed beam search using
an NMT model to translate Sentence A below (the answer is Sentence B'), the search
returned Sentence A’, which is an incorrect translation:

e Source Sentence A: sar9] o}z A wkell A Zlo] vhiz whEdh ik 3 T oA Bote
FAoR o#3Eet o944 ¢ / hankukuy (Korean) a.chim (morning)
sik.tan.ey.se (menu) kim.i (steam) na.nun (emitting) tta.kkun.han (hot)
pap (rice) han (one) kong.ki.nun (bowl) tay.chey (substitution) pul.ka.han
(disallowing) cu.sik.u.lo (main dish) o.lays.tong.an (for a long time)
ye.kye.cye (considered) wass.ta (have been) .

e Sentence A": Kim on the morning calm in korea in the breakfast table in
korea, kim’s warm, steamed air has long been shadowed for a long week-
end.

e Sentence B': A hot, steamy bowl of rice was long considered an irreplace-
able staple in Korean breakfast.

However, when we computed the scores of Sentence A’ and B using the NMT
model, the model assigned a higher score to Sentence B'. In other words, the
mistranslation is caused not by the NMT model’s insufficient modeling power, but the
failure of consideration of Sentence B’ during beam search. This problem may arise
similarly for the synonymous sentences of Sentence A: some synonymous sentences,
especially seen during training, may produce the correct answer as a candidate during
beam search whereas others may not. The main idea of our approach is that if the

2 https://translate.google.com/
Note the translation results were obtained on 7 July 2016.

Austin, Oct 28 - Nov 1, 2016 | p. 54

translation results of synonymous sentences are all available, we could find the correct
answer for any synonymous sentence by rescoring the results (using NMT model).

In this paper, we present a novel diverse decoding algorithm for robust
synonymous sentence translation. It is designed to use the modeling power of an NMT
model throughout the decoding process by expanding search space coverage. First, it per-
forms greedy search using an NMT model to build an initial candidate list. Then, it ex-
pands the list with those candidates that might not be considered during beam search. This
is done by finding synomyous sentences through approximate kNN search over transla-
tion logs and then adding previously translated results of those sentences to the list. Final-
ly, it uses the NMT model again to rescore the candidate list and returns the candidate of
the highest score as the final answer. The experimental results show that the proposed
scheme increases the BLEU score significantly over the state-of-the-art NMT system
while also being much faster. The rest of this paper is structured as follows. In Section 2,
we review the state-of-the-art neural machine translation architecture as well as the beam
search algorithm. In Section 3, we present a novel diverse decoding scheme that consists
of greedy decoding, n-best list expansion by (approximate) kNN search, and n-best
rescoring. In Section 4, we conduct extensive experiments to compare our approaches to
beam search in a number of configurations. In Section 5, we discuss related work on
diverse decoding. Finally, we conclude the paper and present future research directions in
Section 6.

2. Neural Machine Translation

In order to build our baseline machine translators, we exploit the encoder-decoder archi-
tecture with attention mechanism presented by (Bahdanau et al., 2015). In addition, we
apply the conditional gated recurrent unit in the hidden layer of the decoder (Firat and
Cho, 2016). The encoder and decoder are formulated as follows:

Encoder Let X,Y be a source and target sentence, respectively. If X and Y have the T,
and T,, number of tokens (words, subwords, or characters, etc.), we can represent them as
(x4, o, x7,) and (yy, ., yTy). For each source word, the encoder produces an embedding
vector and feed the vector into a bidirectional recurrent neural network:

]_{t = q_b)(ex(xt)']_1)1:—1),
Et = é;(ex(xt)ﬂ Et+1)r
hy = [Ht; Et]a
where q?)) / 5 is the activation function for the forward/backward hidden state of the encod-
er, and_) e (x;) (_is a word embedding vector of the t** word. Two hidden states of the en-

coder h, and h, are concatenated as the hidden state h, of the t* word.
The context set C consists of the hidden states h; of the encoder, and the initial
hidden state of the decoder s, depends only on the context set C:

¢ ={hy, ..., hr},
So = finit(fmean(c))r

where f,,.q4n (+) averages a set of vectors and f;,,;¢(+) is a nonlinear function.

Decoder A hidden state of the decoder s,/ depends on its previous hidden state s,/_, its
previous target word y,_;, and its context vector c,:

Spr = ¢(St'—1' ey (Vp_1), Ct')'

where ¢ is the activation function of the decoder, and the context vector ¢,/ depends on
the context set C:

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p.55

Cer = falign (St’—1' ey(yt'—1)’ C)-

There are additional layers that calculate p(y,/|y.,’, X) based on s,r, ¢, and y;_;.
Here, y_,r is the previous target words before the time step t'. Thus the decoder can cal-
culate the log probability of the target sentence given a source sentence as follows:

Ty

logp(Y|X) = Z logp(yrly<er, X).

t'=1

Beam Search. The aim of neural machine translators is to find argmaxy (log p(Y]X)).
However, the search space is so large that the exact algorithms cannot be used in most
practical applications. Instead, we usually use the beam search algorithm for generating
approximate results: as a first step, we set t' to 1 and find argmax}jt,p(yt/|y <« X),

where argmax? is the b number of arguments that have the highest values. Then for
each selected target word, we find the argmaxfit,p(yt:lyqr,X) again for t' = 2. Since

we have the b? number of sequences now, we prune the b number of sequences and only
keep the top-b sequences that have the highest probabilities. If the end of sentence (EOS)
marker is reached, we decrease b by 1 and select the sentence as a hypothesis. This pro-
cess continues until all of the hypothesis meet the EOS marker (b = 0).

3. Robust Synonymous Sentence Translation

Although the execution time of beam search is proportional to the beam size, the algo-
rithm is one of the most efficient algorithms when the number of hypotheses maintained
is in a reasonable size (smaller than 20). However, we found that the search quality of the
beam search algorithm is not good enough, especially for synonymous sentence transla-
tion tasks. Even with a large beam size, the beam search often generates translation re-
sults with different meaning for synonymous source sentences.

In this section, we propose a novel, effective diverse decoding algorithm in order
to cope with this problem. Our approach consists of three main parts: first, we perform the
greedy search to get the 1-best (Section 3.1). After that, we obtain the additional (n — 1)-
best list by using similar source sentences and their translation results in the log database
(Section 3.2). Last, we rescore the n-best list using the original source sentence (Section
3.3).

3.1. Greedy Search

Greedy search is one variant of the beam search algorithm (beam size 1). The algorithm
selects the word of a highest probability at every time step, and continues this process
until the end of sentence marker is found. In other words, given a source sentence X, the
greedy search selects the word ¥+ for each time step t':

Ypr = argmax, ,(logp(y|J<pr, X).

After greedy search, we add the obtained result to our n-best list. Because we only
obtain one translation result by greedy search, we will get additional n — 1 results in the
following subsections.

Although we can get additional candidates by using larger beam size, we prefer to
use greedy search because of the two reasons: (1) greedy search is much cheaper opera-
tion than beam search. Not only is greedy search about four times faster than the beam
search with beam size 2, but also if we double the beam size, the decoding time will be
almost doubled, because we have to maintain and update the increased number of hypoth-
eses along with the corresponding hidden states at every time step. (2) As pointed out by

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p. 56

(Cho, 2016; Chung et al., 2016; Li and Jurafsky, 2016), beam search does not provide
diverse n-best lists effectively so that a large beam size (above 20) does not help to in-
crease the quality of translations in many cases.

3.2. n-best List Expansion

n-best List Expansion by kNN Search. Let X/, Y and s¢ be the it" source sentence, it"
target sentence, and the initial hidden state derived from the i*" source sentence,
respectively. Recall that s} is obtained as a by-product of X‘-to-Y?! translation. Thus
whenever we translate X into Y?, we can store the pair (s, V) into our own log database.

We assume that there is a log database D that contains more than the k number of
(sb,Y') pairs. Given a source sentence X!, we calculate s{ using X! and finding the k

number of s({ in D that have the lowest Euclidean distances between s§ and Sg :
R = argmin®,,d(s},s] € D).

Here, argmin® returns the k most similar sentences to the source.

Since each sé € R has its corresponding translation Y/, and |R| = k, we can obtain
the corresponding k number of translations. Here, we set k = n — 1, because our aim is
to obtain additional n — 1 candidates.

The rationale behind this approach is that an initial hidden state s, is a vector that
embeds the corresponding source sentence, and that the encoder-decoder with attention
could learn the embeddings effectively. In Section 4, we will show that this approach
shows the high-level of accuracy even when there are many initial hidden states in the
database.

Approximate KNN Search. Finding k-nearest neighbors for a source sentence takes a
huge amount of time in the real-world scenario due to the two main reasons: first, an ini-
tial hidden state is usually a high-dimensional vector (the dimension of 512, 1024 or more)
so that even single Euclidean distance calculation takes nonnegligible time. Second, cal-
culating Euclidean distances for every possible pair consumes a huge amount of time
when there are many translation logs in the database. In other words, given a source sen-

tence X', it takes lots of time to calculate d(s{, s]) for every sj in the database.

We cope with the first problem by applying spherical hashing (Heo et al., 2012)
which is one of the most efficient Locality Sensitive Hashing (LSH) schemes. One main
characteristics of spherical hashing is that the algorithm is data-dependent, which means
that the performance does not greatly depend on the data distributions. It converts a high-
dimensional vector into a signature (relatively low-dimensional vector) by defining the H
number of binary hash functions:

sig(s3) = (Fi(sd) fo(S0)s e (SN,

where f;(+), f2(*), ..., fu(*) are the binary hash functions learnt by the spherical hashing
algorithm.

Although spherical hashing itself can find k-nearest neighbors effectively, we fur-
ther improve the algorithm by applying Signature Selection LSH (S2LSH) (Park et al.,
2015). The process of this algorithm is as follows: the first step is to generate a signature
pool consisting of many diverse signatures. Each signature in the signature pool can be
generated using M random and distinct integers 14, 15, ..., 7y each ranged from 1 and H:

sigi(s9) = (frr(50), £, (52)s o g (59))

When a query vector s is given, the algorithm determines which signatures are
the most effective for finding k-nearest neighbors of s in real time. The effectiveness of

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p. 57

signature [for query Sg is defined by the percentage of the k-nearest neighbors of g
among the vectors that have the same signature [. As a next step, we find the candidates
of k-nearest neighbors of sj and calculate the exact Euclidean distances between them.
By using this pruning process, the unnecessary Euclidean distance computations are sig-
nificantly reduced while the accuracy is only slightly decreased.

3.3. n-best Rescoring

The next step is to rescore the n-best list obtained by the previous subsections. After the
rescoring n-best lists, the target sentence with the best score will be returned to the user.
There are many ways to rescore the n-best: (1) the simplest method is to reuse the
decoder that was used in greedy search for calculating the score. (2) If we learn additional
decoders with different configurations, then the ensemble model can also be used for
rescoring. (3) Another popular rescoring method is to use language model, which has
been known as particularly efficient for statistical machine translation.

Let X!, N be a source sentence and its n-best list, respectively. Assume we reuse
the decoder that was used in the greedy search process. In order to rescore the n-best list,
we need to know log P(Y/|X") for all Y/ € N. If Y/ was obtained by greedy search, we
do not have to recalculate log P(Y’|X"). If Y/ is obtained by kNN search, we need to
calculate this probability because we only know the value of log P(Y7|X"). Here, X' # X'

Note the recalculation process is much faster than beam search (as will be shown
in the experimental results of Section 4) since log P(Y/|X%) for all Y/ can be
simultaneously calculated through the network. In addition, all of the hidden states of the
decoder can be fed into softmax layer in a batch since we know the target words already.
It is interesting because, like human beings, the scoring task is much easier than decoding
for neural machine translators.

4. Experiments

4.1. Experimental Setup

For evaluation, we use the Korean-to-English language pair and exploit a state-of-the-art
neural machine translation system introduced in Section 2 as a baseline. The system is
based on Theano (Theano Development Team, 2016) and we modify the codes to use
Platoon® for multi-gpu training. We use 4 GeForce GTX Titan GPUs.

Data Preparation. We use Korean-to-English parallel corpora for training. They consist
of about 2.0 million parallel sentences from various types of domains such as news,
lectures, emails, etc. These sentences are automatically tokenized, and for Korean
language, they are word-spaced, and converted to basic consonants and vowels (Korean
alphabets). Then based on these Korean/English alphabets, we construct about 30K
subwords using the technique of (Sennrich et al., 2016). Because of a limited amount of
GPU memory, we filter out the sentences of more than 50 words and use a minibatch of
size 64.

Our test data consist of 3000 parallel sentences. Each Korean sentence has 9
synonymous sentences, and all of the synonymous sentences have the same English
references. That is to say, there are 300 distinct English sentences in this test set. The test
data is constructed based on the following process: first, we selected the most popular
300 English sentences from the user translation data from Web*. The selected English
sentences are so simple that many people participated in translating them into Korean and
that there are more than 10 Korean references for each English sentence. Since there are
user ratings data that measure the quality of the Korean references, we selected only 10

3 https://github.com/mila-udem/platoon
4 http://usertranslation.naver.com/

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p. 58

Korean sentences of the highest quality for each English sentence and filtered out the
other references.

Model Training. Our model follows the default setting of the DLAMT-tutorial: we use
the GRUs for the recurrent neural networks and exploit the conditional GRU technique
for the decoder. The number of hidden layers is 1 for both encoder and decoder. The
encoder has 1000 hidden units for each forward and backward direction, the decoder has
1000 hidden units, and each subword is embedded into 500-dimensional vector space. We
use the gradient clipping technique (Pascanu et al., 2012) with a threshold 1, and
AdaDelta (Zeiler, 2012) as an optimizer. We reshuffle the entire corpus at the start of
each epoch.

kNN Search. For kNN search, we build two log databases: 3K DB and 100K DB: (1) 3K
DB consists of the source sentences from our test set and their translation results. Note
each source sentence has only 9 synonymous sentences in the test set; (2) 100K DB con-
tains 97K source sentences from our training corpus and their translation results together
with 3K DB.

For approximate kNN search, we use the default parameter settings proposed in
(Park et al., 2015): we set H to 1000 and M to a random integer ranged from 5 and 15,
and set the number of signatures in a signature pool to 500.

n-best Rescoring and Evaluation. Before we rescore the n-best list, the score of each
candidate is normalized by its decoding length. After generating translation list, the
subwords are appropriately concatenated to the words. The translation quality is measured
by Tokenized BLEU using the multi-bleu script from Moses.

4.2. Experimental Results

Figure 1 shows a comparison result of beam search (BS), our approach with kNN search
over 3K sentences (SST 3K), our approach with kNN search over 100K sentences (SST-
100K), and our approach with approximate kNN search over 100K sentences (SST*-
100K). The BLEU scores according to the n-best list are described on the left-hand side
of figure, and the total elapsed time are described on the right-hand side.

Note all of our approaches outperform beam search in terms of BLEU when there
are sufficient number of candidates provided. Even in case of using SST*-100K, the
BLEU score is higher than beam search. Also, all of our approaches are faster than beam
search when n is large enough: (1) SST-3K is the fastest, (2) SST-100K is faster than
beam search when n is larger than 16, and (3) the translation speed of SST-100K can be
significantly improved by using SST*-100K. Note if we compare BS with SST-3K when
n is 64, SST-3K increases the BLEU score by +0.99 points and is more than 28 times
faster than BS.

: 14 | —e—Beamsearch
240 e ——SST(3K)

SST (100K)
—— SST* {100K).

BLEU
<]
[ERY
d:
°
o o~

—e— Beam Search

—&—SST(3K) 0.4
SST (100K)
415 0.2

—*—SST* (100K)

Elapsed Time (seconds)
o
EE

1-best 2-best 4-best 8-best 16-best 32-best 6d-best 1-best 2-best 4-best 8-best 16-best 32-best 64-best
Candidates Candidates

Figure 1. A comparison of beam search and our approaches in terms of BLEU and
elapsed time

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p. 59

m Greedy Search

kNN Search

W n-best Reranking

~

o 9
o o
>

Elapsed Time (seconds)
o
o
wv

0.04
0.03
0.02
0.01 -
0.00 -
1-best 2-best 4-best 8-best 16-best 32-best 64-best
Candidates

Figure 2. The elapsed time of greedy search, approximate kNN search, and n-best
rescoring for SST*-100K

o
°
»

07 /\\’/ﬁ\‘
08
}E‘\ _ 06
0.7 3
8 os
g 06 - § o
2 05 \ 2 04 —o— kNN Search (3K)
£ \ F —&— kNN Search (100K)
04 ' 3 03
0 | o KN seareh (3K) g —— Approximate KNN Search (100K)
—&— kNN Search (100K) \ \ \ * 02
0.2 .
—— Approximate kNN Search (100K) \ \g N o1

0.1 -
_— 4 - -
0.0 0.0 — g g g = g

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1-best 2-best 4-best 8-best 16-best 32-best 64-best
Recall Candidates

Figure 3. An analysis of recall, precision, and elapsed time for different kNN methods

4.3. Performance Analysis

Elapsed Time. The total elapsed time of our approaches consists of three major compo-
nents: greedy search time, (approximate) kNN search time, and n-best rescoring time.
Figure 2 shows the elapsed time of each component for SST*-100K: (1) obviously, the
greedy search time does not depend on the number of candidates; (2) the kNN search
time also does not greatly depend on n, because the S2LSH algorithm carefully controls
the elapsed time; (3) as the number of candidate increases, so does the n-best rescoring
time.

Note that the n-best rescoring time increases slowly as the number of candidates
increases: for example, while the rescoring time is 0.0325 seconds when n is 8, it is
0.0430 seconds when n is 16. That is to say, even if we have to rescore twice as much as
before, the elapsed time would not be doubled. It is because we do the rescoring in a
batch. Even when n is 64, the rescoring time is still lower than 0.1 seconds.

kNN Search. Because the kNN search methods play a crucial role in our approches, we
need to analyze their behaviors. The left-hand side of Figure 3 shows the recall-precision
curve of different kNN operations: if we kNN search over 3K sentences, the recall is
more than 80% when precision is 50% , which means that our encoder-decoder
architecture embeds the sentences quite well. If we approximate/exact kNN search over
100K sentences, the recall and precision are slightly decreased, but still shows the high
level of accuracy.

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p. 60

54.00 52.85 52.97 53.06
52.32

52.00 I I

50.00 ® 1 Model, BS

® 1 Model, SST

48.00

BLEU

® 2 Model, BS

46.00 -
® 2 Model, SST

44.00 - u 5 Model, BS

m 5 Model, SST
42.00 -

40.00 -

1-best 2-best 4-best 8-best 16-best 32-best 64-best
Candidates

Figure 4. Effect of advanced rescoring models on BS and SST-3K

The right-hand side of Figure 3 shows the practicality of our approach. In
summary, even for the large database which contains very diverse sentences with very
small portion of synonymous ones, we can find the synonymous sentences in a very
efficient way.

Rescoring Methods. Through the manual investigation of our n-best lists obtained, we
found that the quality of candidates is much higher than we expected. Thus we wondered
whether the difference of BLEU scores between SST and BS would be higher than before
when we use a high-quality model (such as ensemble models) for rescoring.

Figure 4 shows the effect of advanced rescoring models on BS and SST-3K. Here,
“1 Model BS” indicates the beam search algorithm with single-model rescoring, “2 Model
BS” indicates the beam search algorithm with ensemble-model (2-model) rescoring, and
so on. Assume n = 8. When we use a single model for rescoring, the difference of BLEU
scores between BS and SST-3K is 0.59. However, when we use an ensemble model con-
structed by 2 different models for rescoring, our approach increases 1.36 and 6.82 BLEU
points over 2 Model BS and 1 Model BS, respectively. When we use a more advanced
rescoring model (5 Model SST), 3.23 and 8.91 BLEU points are increased over 5 Model
BS and 1 Model BS, respectively. This is a surprising result because the difference could
be higher if we train the ensemble models more carefully. Although the ensemble models
can also be used for decoding instead of rescoring, we do not consider the ensemble mod-
el decoding, because this requires significant amount of execution time in practice.

Examples of Improvements. Table 2 shows examples of improvements when using our
approach. The first column indicates the 14 synonymous source sentences, and the second
column shows the result of beam search. The sentences of the third column are obtained
by applying our approach to the source sentences, assuming that given a source sentence,
the other 13 synonymous sentences are already translated and stored in the log database.
The results show that while beam search generates six incorrect translations, our approach
generates only three incorrect translations.

5. Related Work

(Li and Jurafsky, 2016) proposes a diverse decoding scheme, called Diversity. The main
idea is that at each decoding time step t’, if the words A and B are both preceded by y_,
and p(Aly,, X) > p(Bly.,r, X), then it decreases the value of p(B|y.,’, X). For exam-
ple, suppose that there are four candidates, “he is”, “he has”, “it is” and “it has”, their log-
probabilities are —2.5, —2.8, —3.0 and —3.1, respectively, and the beam size is

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p. 61

Source Sentence

Beam Search

Robust SST

kang.nam.yek.kka.ci (X) How do you get to (O) How can I go to Gang-
e.tteh.key ka.cyo ? Gangnam Station? nam Station?
kang.nam.yek.kka.ci (X) “I’ll go to Gangnam Sta- (X) “Let’s go through Gang-
e.tteh.key ka.cyo tion to Gangnam Station.” nam Station.”

kang.nam.yek kka.ci (O) Tell me the way to Gang- | (O) Give me directions to
ka.nun kil.ul al.lye nam Station. Gangnam Station.

CU.SEY.YO .

kang.nam.yek.kka.ci (O) Tell me the way to Gang- | (O) Tell me the way to Gang-
ka.nun kil.ul nam Station nam Station.

al.lye.cwe .

kang.nam.yek.kka.ci (X) What is going to Gang- (O) What is the road going
ka.nun kil.i e.tteh.key | nam Station? to Gangnam Station?
toyp.ni.kka ?

kang.nam.yek.kka.ci (O) How’s going to Gangnam | (O) How can I go to Gangnam

e.tteh.key ka.na.yo ?

Station?

Station?

kang.nam.yek.u.lo
e.tteh.key ka.na.yo ?

(O) How’s going to Gangnam
Station?

(O) How can I get to the
Gangnam Station?

kang.nam.yek.u.lo
ka.nun kil.ul al.lye
CU.SeY.yo .

(O) Tell me the way to Gang-
nam Station.

(O) Please give me directions
to Gangnam station.

kang.nam.yek.u.lo
ka.nun kil.ul
al.lye.cwe .

(O) Please let me know the
way to Gangnam Station.

(O) Tell me the way to Gang-
nam Station.

kang.nam.yek.u.lo
ka.nun kil.ul

(O) Please let me know the
way to Gangnam Station.

(O) Please let me know the
path to Gangnam Station.

al.lye.cwe

kang.nam.yek.u.lo (X) Please answer the way to | (O) Give me a way to Gang-
ka.nun kil.ul al.lye Gangnam Station.” nam Station.

cu.sey.yo

kang.nam.yek.u.lo
ka.nun kil.ul al.lye
cu.si.keys.sup.ni.kka ?

(O) Can you give me a way to
Gangnam Station?

(O) Can you give me a way to
Gangnam Station?

kang.nam.yek.u.lo (X) How do you go with (X) How do you go with
e.tteh.key kal kka.yo ? | Gangnam Station? Gangnam Station?
kang.nam.yek kka.ci (X) “How do we go from (X) How about going to
e.tteh.key kal.kka.yo Gangnam Station to Gangnam | Gangnam Station

Station?”

Table 2. An example of synonymous source sentences and their translations

2. Then, beam search would keep the first and second candidates, namely “he is” and “he
has”. On the other hand, because p("is"|"he",X) is larger than p("has"|"he", X)and
p("is"|"it", X) is larger than p("has"|"it", X), Diversity decreases the log probabilities of
the second and fourth candidates by, say, 0.5, which become —3.3 and —3.6, respectively.
Then the first and third candidates, namely “he is” and “it is”, would be kept, which re-
sults in more diversification.

(Cho, 2016) points out that the main disadvantage of beam search and Diversity is
that they may incur high communication overhead when implemented on multiple-GPUs
for decoding. Cho proposes a new decoding algorithm, called noisy parallel approximate
decoding (NPAD), in which N parallel greedy searches are launched. In each greedy
search, weight noise is randomly injected to the transition function of a recurrent neural
network to consider a set of semantically similar configurations in the input space. Then
the obtained N-best list is rescored and the one with the highest score is returned.

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p. 62

Although these state-of-the-art approaches have been proposed to improve beam
search, none of them significantly has been able to increase the BLEU scores: (1) while
Diversity increases the BLEU score of English-to-French translation by 1.0~1.2 points
with a large beam size (e.g., 200), with a small beam size (e.g., 10), it improves the BLEU
score by only 0.03~0.07 points, as shown in (Cho, 2016). Since a large beam size may
lead to a prohibitively long decoding time, Diversity is ill-suited for use in a real-world
scenario. (2) Similarly, even with 50 simultaneous greedy searches, NPAD does not out-
perform the beam search with a beam size of 5.

6. Conclusion

In this paper, we propose a novel diverse decoding algorithm for accurate translation of
synonymous sentences in an NMT system. We observe that the modeling power of NMT
models may not be fully utilized because of insufficient coverage of search space by
beam search. The proposed algorithm expands search space coverage by using previous
translations of synonymous sentences through diverse decoding. The experimental results
show that the proposed scheme enhances the BLEU score significantly over the state-of-
the-art NMT system while being much faster.

One limitation of our approach is that, given a source sentence, there must be syn-
onymous sentences in our log database. As future work, we plan to extend the applicabil-
ity of our work by automatically generating and translating synonymous sentences in ad-
vance.

References

Bahdanau, D., Cho, K. and Bengio, Y. (2016). Neural Machine Translation by Jointly Learning to
Align and Translate. arXiv preprint arXiv: 1409.0473.

Cho, K. (2016). Noisy Parallel Approximate Decoding for Conditional Recurrent Language Model.
arXiv: preprint arXiv: 1605.03835.

Chung, J., Cho, K. and Bengio, Y. (2016). A Character-level Decoder without Explicit Segmenta-
tion for Neural Machine Translation. arXiv preprint arXiv: 1603.06147.

Firat, O and Cho, K. (2016). DLAMT-Tutorial: Conditional Gated Recurrent Unit with Attention
Mechanism. https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf.

Heo, J. Lee, Y., He, J. and C., Y, S. (2012). Spherical Hashing. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 16-21, Rhode Island,
USA.

Li, J., Jurafsky, D. (2016). Mutual Information and Diverse Decoding Improve Neural Machine
Translation. arXiv preprint arXiv: 1601.00372.

Park, Y., Hwang, H., Lee, S. (2015). A Fast k-Nearest Neighbor Search Using Query-Specific Sig-
nature Selection. In Proceedings of the 24" ACM International Conference on Information
and Knowledge Management, pages 1883-1886, New York, USA.

Pascanu, R., Mikolov, T. and Bengio, Y. On the Difficulty of Training Recurrent Neural Networks.
arXiv preprint arXiv: 1211.5063.

Sennrich, R., Haddow, B., Birch, A. (2016). Neural Machine Translation of Rare Words with Sub-
word Units. arXiv preprint arXiv: 1508.07909.

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p. 63

Theano Development Team (2016). Theano: A Python Framework for Fast Computation of Math-
ematical Expressions. arXiv e-prints arXiv: 1605.02688.

Zeiler, M. (2012). ADADELTA: An Adaptive Learning Rate Method. arXiv preprint arXiv:
1212.5701.

Proceedings of AMTA 2016, vol.1: MT Researchers' Track Austin, Oct 28 - Nov 1, 2016 | p. 64

