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Abstract
Statistical Machine Translation (SMT) of highly inflected, low-resource languages suffers from

the problem of low bitext availability, which is exacerbated by large inflectional paradigms.

When translating into English, rich source inflections have a high chance of being poorly es-

timated or out-of-vocabulary (OOV). We present a source language-agnostic system for auto-

matically constructing phrase pairs from foreign-language inflections and their morphological

analyses using manually constructed datasets, including Wiktionary. We then demonstrate the

utility of these phrase tables in improving translation into English from Finnish, Czech, and

Turkish in simulated low-resource settings, finding substantial gains in translation quality. We

report up to +2.58 BLEU in a simulated low-resource setting and +1.65 BLEU in a moderate-

resource setting. We release our morphologically-motivated translation models, with tens of

thousands of inflections in each of 8 languages.

1 Introduction

Statistical machine translation systems are typically trained on large bilingual parallel corpora

(bitext). Low-resource machine translation focuses on translation of languages for which there

exists little bitext, and where translation quality is subsequently often poor. Highly inflected

languages—those that exhibit large inflectional paradigms of words with a common dictio-

nary entry—excacerbate the problems of a low-resource setting. Many inflections of words in

an inflectional paradigm are complex and rare, and their translations are unlikely to be well-

estimated even in a moderately large parallel corpus. For example, Koehn (2005) point to the

highly inflected nature of Finnish as a reason for poor translation performance into English even

in high-resource settings.

However, even where bitext may be lacking or scarce, there are often many other resources

available. One source of rich morphological information is Wiktionary.1 This paper describes

a method for using resources extracted from Wiktionary to automatically map inflections in

paradigms of morphologically rich languages to ranked sets of English phrasal translations.

This is done by the following procedure:

1https://www.wiktionary.org/



Figure 1: The translation model (TM) construction pipeline. This depicts the process by which

we map each morphologically annotated inflection to a ranked set of English phrasal transla-

tions.

1. We begin with resources from the UniMorph project (Sylak-Glassman et al., 2015), which

produced millions of tuples pairing inflected words forms with their lemmas and a rich

morphological tag (which we refer to as a UniMorph tag or vector) that was designed to

be a universal representation of morphological features (§3).

2. We next take a small set of pairs of UniMorph vectors and short English sentences that

were produced in an Elicitation Corpus, designed to collect inflections that in English are

expressed phrasally instead of morphologically (§4).

3. We then produce phrasal translation pairs by extracting English phrases from these sen-

tences and pairing them with the foreign language through the UniMorph tag (§5). We

investigate different methods for extracting and scoring phrase pairs.

4. Finally, we evaluate the utility of these phrase pairs to improve machine translation in

simulated low-resource settings (§6).

A depiction of the full pipeline is in Figure 1.

2 Prior Work

Maximizing the utility of a baseline phrase table has been the focus of a large body of prior work

in translating from morphologically rich languages. Habash (2008) work on the OOV problem

in Arabic, mapping OOV types to in-vocabulary (INV) types by orthographic and morphologi-

cal smoothing methods. Mirkin et al. (2009) take inspiration from the Textual Entailment (TE)

problem, using WordNet to determine a set of entailed alternatives for English OOV tokens.

However, since this OOV-resolution scheme is dependent on the existence of a semantic re-

source like WordNet in the source language, it is unsuitable in general low-resource settings.

Yang and Kirchhoff (2006) implement a backoff model for Finnish and German, stemming

and splitting OOV tokens at test time and searching a baseline phrase table for the resulting

simplified forms.

Many systems attempt to address the incorrect independence assumptions traditional

phrase-based MT systems impose on inflections in the same paradigm. Koehn and Haddow

(2012) train a baseline phrase-based translation model, and back off to a factored model that



Inflection Lemma Mood POS Tense Gender Number Animacy Person
bude absolvovat absolvovat IND VB FUT 2 SG

absolvuj absolvovat IMP VB 2 SG

absolvujete absolvovat IND VB PST MASC 2 ANIM SG

absolvoval jste absolvovat IND VB PST MASC 2 INAN SG

Table 1: Czech verb inflections and partial annotations from Wiktionary. Empty cells indicate

that the inflection is not marked in that dimension.

decomposes OOV tokens into lemma+morphology. Dyer (2007) address the intuition that

even INV tokens may have poorly estimated translations. They decode on a confusion network

of tranformations of source sentences, imposing penalties for backing off from surface tokens.

Each of these approaches attempts to use pre- or post-processing to make up for poorly

estimated, low-coverage phrase tables. We take advantage of an entirely new resource, a very

large, massively multilingual, morphologically-annotated dictionary, to directly improve phrase

table coverage and provide improved estimations for INV types. Thus, the practical translation

gains we see through our methods should be orthogonal to those of prior work. This paper

presents a method of constructing English phrases that express inflectional features, and a novel

system of mapping these phrases to foreign inflections, with the following qualities:

• We use no bitext, and no language-dependent morphological information.

• We apply our system to the Wiktionary dataset, constructing substantial phrase tables for 8

languages, with the capacity to build a model for each of the 73 languages with more than

10,000 inflections in Wiktionary.

• We demonstrate the utility of these phrase tables, finding substantial gains when augment-

ing low-resource MT of Czech, Finnish, and Turkish.

• We present insights on the utility of morphological information in translation by conduct-

ing an ablation study in two dimensions, analyzing the effects of varying available bitext

and available morphological information for each language.

3 UniMorph Inflectional Paradigms

The Universal Morphological Feature Schema (UniMorph) represents fine-grained distinctions

in meaning expressed through inflectional morphology cross-lingually (Sylak-Glassman et al.,

2015). The schema defines 23 distinct dimensions across which inflections can vary indepen-

dently. Though English does not express many of these features through morphology, their

purposes can still be intuitive:

of the houses : NN, GEN, PL, DEF (Noun, Genitive, Plural, Definite)

with a hammer : NN, COM, SG, INDF (Noun, Comitative, Singular, Indefinite)

The dimensions are as follows:

Aktionsart, Animacy, Aspect, Case, Comparison, Definiteness, Deixis, Evidentiality,

Finiteness, Gender+, Information Structure, Interrogativity, Mood, Number, Part of

Speech, Person, Polarity, Politeness, Switch-Reference, Tense, Valency, Voice

A total of 212 possible values are distributed across the dimensions. The morphological infor-

mation of each inflection is encoded in its “UniMorph vector.”



Inflection Lemma Case Number
absurdity absurdita GEN SG

absurdit absurdita GEN PL

absurdit absurdita DAT SG

absurditm absurdita DAT PL

Table 2: Czech noun inflections and partial annotations from Wiktionary.

Sylak-Glassman et al. (2015) scraped Wiktionary, extracted inflectional paradigms in hun-

dreds of languages, and transformed the inflectional annotations to UniMorph vectors. The ed-

itors of Wiktionary often include all inflections for each lemma, so full inflectional paradigms

are scraped. The result, as shown for nouns in Table 2 and verbs in Table 1, is a list of inflec-

tions with corresponding lemmata, and inflectional values as a UniMorph vector. Each language

has a corresponding table of inflection entries with their corresponding UniMorph vector. The

size of the Wiktionary dataset varies from language to language, including 2,990,482 Finnish

inflections and 15,132 Swahili inflections.

To a large extent, combining a lemma with the information in the UniMorph vector recon-

structs the meaning of the inflection. We do not claim perfect reconstruction, as no inflectional

morphological schema can perfectly encode language-independent meaning. However, prac-

tical gains in translation quality do not require a perfect schema. We instead focus on the

substantial signal provided by UniMorph annotations, and show that they are highly effective at

providing cross-linguistic information.

4 English Inflectional Elicitation

Wiktionary provides us with UniMorph vectors for inflections, but provides no information

about how to express these vectors in English. These expressions are difficult to generate,

as English expresses inflectional information phrasally. For this, we use a corpus of 8,000

UniMorph-annotated English sentences, which we call the Elicitation Corpus. The corpus was

developed in an attempt to document the full inflectional variation in 49 languages of morpho-

logical interest.

The process worked as follows. For each language, we first collected all its important mor-

phological tags. We then hand-built the Cartesian product of all inflectional variation expressed

by the language. Thus, if a language inflected nouns exactly for 4 values of number and 3 values

of case, we constructed 12 vectors of (Number × Case). Then, for each UniMorph tag, keeping

the specific language and part of speech in mind, we manually wrote an English sentence with

a head word on which the same inflectional features are expressed. For example, for the tag

VB, 3, PRS, PRF, PASS (Verb, 3rd person, Present, Perfect, Passive)

we might generate the sentence

[The apple] has been eaten.

These sentences were given to a bilingual native speaker. The goal of each sentence was to

elicit, in the foreign language, the inflection encoded by the lemma we used and the UniMorph

vector expressed in English. We wanted to avoid sentential translations, aiming instead for

individual inflections. To this end, portions of each sentence necessary for syntactic coherence

but deemed unnecessary to express inflectional values were enclosed in brackets. Each line in

the corpus is a tuple of (English sentence, UniMorph vector).

By construction, the corpus spans a large amount of the variance of inflectional expres-

sion of most languages. Further, equivalent UniMorph vectors in multiple languages were not



English Sentence UniMorph Vector
[They] were eating [when the door broke.] IND, PST, PROG, 3, PL

[The view was blocked] by the houses INS, PL

Was [he] not speaking? PST, PROG, NEG, INT, 3, SG

[He is] sleeping PRS, PROG, POS, 3, SG

Table 3: Entries from the Elicitation Corpus. Each sentence on the left was constructed to

express the UniMorph vector on the right. Note that not all are fully defined, e.g., missing

definiteness, potentially due to the original source language not inflecting for that dimension.

de-duplicated, so many common vectors are paired with multiple English sentences. This per-

mits the corpus to store information about the frequency with which varying ways are used to

express the same features. This eventually aids us in ranking phrase templates. For example,

the genitive in English is expressed equivalently as the house’s roof and the roof of the house.

More examples of sentences in the Elicitation Corpus are given in Table 3.

5 Constructing Morphological Phrase Tables

In this section, we detail the pipeline by which we automatically construct a translation model

or phrase table for each language represented in the Wiktionary dataset.

1. We extract and rank English phrase templates from the 8000-sentence Elicitation Corpus.

2. We use UniMorph vectors to pair our phrase templates with inflections from Wiktionary,

and estimate direct and inverse translation probabilities.

3. We complete phrase templates with lemmata to finish the translation hypotheses.

5.1 Phrase Template Extraction
Each sentence in the Elicitation Corpus expresses a UniMorph vector in English. However, the

context and specific head word of the sentence constrain the usefulness of the sentence. Taking

our earlier example, we wish to generalize

[The apple] has been eaten.

such that the inflectional values are kept, but the resulting “template” is maximally reusable in

different contexts, and for different lemmata. Recalling the UniMorph vector associated with

this sentence, we wish to extract

has been VBN : {VB, 3, PRS, PRF, PASS}
The context has been removed, the morphological head word replaced with a part of speech

“variable”. In effect, the goal of this extraction is to retain exactly the information described

by the UniMorph vector. Information like the lemma will be provided by each source language

inflection. We use two simple methods to extract phrase templates from the Elicitation Corpus.

5.1.1 Naive Template Extraction
From each sentence in our Elicitation Corpus, we extract a “naive template”. After part-of-

speech tagging the sentence, all parenthesis-denoted context is removed. Then, we replace the

rightmost word whose POS matches the UniMorph vector POS with a variable. For this vari-

able, we choose the most descriptive POS, e.g., VBD instead of VB, to preserve the information

necessary to conjugate an English lemma as a replacement for the variable.

Table 4 gives examples in which this naive method produces incorrect or incomplete re-

sults. To augment template extraction, we also use a slightly more principled heuristic method.



English Sentence Naive Template Generated Templates
(They) were eating (when the door broke.) were VBG they were VBG, were VBG

(The dog went) from the boy. from the NN from the NN

(The view was blocked) by the leaves. by the NNS by the NNS

Was (he) not speaking? was not VBG* was he not VBG

(He is) sleeping. VBG* he is VBG, is VBG

Table 4: Template extractions. * denotes a clearly incorrect result given the UniMorph vector

in Table 3.

Figure 2: The extraction process, from sentences to templates. Each line shows the next word

added to the template. Boxed phrases are final templates. Greyed words have not yet been

considered by the algorithm, or have been excluded from the template.

5.1.2 Heuristic Template Extraction
To automatically generate phrase templates, we make the assumption that we’re working only

with simple sentences, and we assume the presence of context-marking parenthesis. Given these

assumptions, we construct an algorithm to extract only the inflectional value-carrying neighbors

of the head as part of the phrase table.

1. Determine the head of the sentence by searching for the last word tagged with a POS

corresponding to the correct word class. (e.g., VBN and VBP correspond to VB)

2. Walk backwards from the head, prepending every closed-class word to the output template.

3. When an open-class word is seen, stop.

4. Replace the head of the sentence with its part-of-speech tag.

Open-class words such as nouns or verbs are unlikely to encode inflectional values, and

are likely to include undesirable specifics for the sentence (such as a verb’s subject.) However,

there are a few verbs that are necessary for expressing, for example, tense and aspect. As such,

we manually compiled a list of these words, and modified our POS tagger to let them pass.

Words such as had, have, going, am, are, did..., for example, are used to express aspect and

mood in English. We used a Brown corpus-trained tagger from the nltk python package (Bird

et al., 2009).

A few examples of this process are given in Figure 2. The first example demonstrates

the multiple potential phrase templates for a single sentence. Because our system is language-

independent, we have no information about whether a pronoun in an MT setting will be omitted

(as in languages with pro-drop). By extracting phrase templates with and without a pronoun,

we expect that the language model will bias towards the with-pronoun phrase in sentences with

pro-drop, and towards the without-pronoun phrase in sentences with a marked pronoun.



Inflection Phrase Template Lemma Translation Phrasal Translation
blafovali they were VBG blafovat, bluff they were bluffing

filmujme let ’s VB filmovat, film let ’s film

kaupunginvaltuuston of the NN kaup. . . , city council of the city council

Table 5: Phrase completion example. Once an inflection has been paired with (a) phrase tem-

plate(s), we look up its lemma translation, conjugate it, and insert it into the template to com-

plete the phrasal translation.

5.2 Matching Phrase Templates to inflections’ UniMorph Vectors
A phrase template t with UniMorph vector t.v is proposed as a candidate translation for in-

flection i with UniMorph vector i.v if t.v is a superset of the features in i.v, where UniMorph

vectors are considered unordered sets of inflectional values. We use this superset-match method

instead of only constructing phrase pairs with exact morphological matches to account for a

large amount of underdefined Wiktionary inflections, each with very few values in its Uni-

Morph vector. The superset matching scheme provides these underdefined inflections with a

large number of low-probability phrase templates, reflecting the noise due to the lack of mor-

phological information.

The set of all phrase templates T for vector i.v is

T(i.v) = { t | t.v ⊇ i.v}
Each t ∈ T(i.v) has a value freq(t|T(i.v)), the count of sentences in the Elicitation Corpus

with the phrase template t whose UniMorph vector is a superset of i.v. Thus, each vector i.v
for which there exists at least 1 template has a total count

total(i.v) =
∑

t∈T(i.v)

freq(t|T(i.v))

The direct translation probability, that t is the correct way to express UniMorph vector i.v, is

thus

P(t|i.v) = freq(t|T(i.v))
total(i.v)

We also calculate the probability that v is the best morphological analysis of t by calculating

the total probability mass of t in all T . Thus, totalP(t) =
∑

i∈I P(t|T(i.v)), where I is the set

of all inflections. The inverse translation probability is thus

P(i.v|t) = P(t|i.v)
totalP(t)

Intuitively, the inverse translation probability discounts highly specified templates (with a rich

UniMorph vector) in underspecified settings.

5.3 Phrase Template Completion
So far, we have described a system for mapping morphological feature vectors to sets of English

phrase templates. The Wiktionary dataset provides a map from foreign inflections to their cor-

responding feature vectors. Composing the two, we map foreign inflections to phrase templates.

The final step in the process is to complete, or compile out the phrase templates, replacing the

part-of-speech variable with an inflected English word whose corresponding lemma translates

to the foreign inflection’s lemma. The Wiktionary dataset provides a mapping from foreign



inflection to corresponding foreign lemma. We use a lemma dictionary built from Wiktionary

and Google Translate to map between foreign lemma and English lemma. (Note that for all

languages in Wiktionary, including those missing from Google Translate, a lemma dictionary

is extractable with the inflections used.) Finally, we inflect the English lemma using an En-

glish pattern library (De Smedt and Daelemans, 2012). The input and output of phrase template

completion are shown in Table 5.

5.4 Phrase Table Construction
Running our system on the Wiktionary inflections for Finnish, Czech, Russian, Korean, Geor-

gian, Swahili, Turkish, and Urdu, we construct a phrase table for each language, containing

the top-5 phrasal translations for each inflection, as well as their computed direct and inverse

translation probabilities. We release all constructed models for use in morphological analysis

as well as end-to-end SMT.2

6 Experimental Design

We evaluate our system by examining its effectiveness in improving the quality of end-to-end

MT from Czech, Finnish, Russian and Turkish into English. We use the Joshua decoder (Post

et al., 2015) with Hiero grammars (Chiang, 2007). For many of our target languages, the only

bitext available is the Bible. We thus simulate a low-resource setting by training on the Bible.

We simulate moderately higher-resource settings by appending differing numbers of lines of

modern bitext (described below) to the bible. We test on newswire from the Workshop on

Statistical Machine Translation (Bojar et al., 2015a).

For all translation models, we use a gigaword-trained 5-gram language model (LM). We

anticipated that the English phrases in our tables might be discounted by the language model

due to higher-order (3- and 4-gram) misses in the gigaword corpus. In preliminary experiments,

we trained language models with lmplz (Heafield et al., 2013) on the training data with our

phrases appended. However, we saw best performance when using the gigaword LM, and by

using it across all TMs, the BLEU scores are kept comparable.

Table 6 presents statistics on how many tokens and types in the test data are found in our

Wiktionary inflections, anchoring the potential benefit of the system. We note that for Finnish,

Czech, and Turkish, our system covers a large number of both OOV and in-vocabulary (INV)

tokens in each of the resource settings. This points to potential translation quality gains through

coverage of previously OOV wordforms as well as improved translation of poorly estimated

wordforms.

6.1 Morphological Information Ablation Study
Along with testing the validity of our particular generation of morphologically-motivated

phrasal translations, we present an ablation study, highlighting the effects of using varying

portions of the morphological information provided to us, in 4 cases.

1. We consider the use of no morphological information. This completely unmodified Joshua

system is our baseline.

2. We test the inclusion of a lemma dictionary with the bitext, including no morphological

information. As a small dictionary largely comes for free for even low-resource languages,

we see this as a stronger baseline.

3. We test the inclusion of an inflection dictionary. This is made possible through the Wik-

tionary dataset. This augmentation method pairs each inflection with a corresponding bare

2https://github.com/john-hewitt/morph16



Bible Bible +20k Bible+20k+Wiktionary Abs %

Covered Total % Covered Total % Covered Total % Added

Finnish Types 1,999 8,497 23.5 4,558 8,497 53.6 5,896 8,497 69.3 15.75
Finnish Tokens 7,456 16,447 45.3 11,613 16,447 70.6 13,188 16,447 80.1 9.58
Czech Types 3,445 16,581 20.7 9,616 16,581 57.9 10,110 16,581 60.9 2.98
Czech Tokens 26,377 51,373 51.3 41,972 51,373 81.7 42,618 51,373 82.9 1.26
Turkish Types 1,658 3,677 45.0 2,698 3,677 73.3 2,824 3,677 76.8 3.43
Turkish Tokens 4,268 7,337 58.1 6,036 7,337 82.2 6,205 7,337 84.5 2.30
Russian Types 4,112 15,346 26.8 9,949 15,346 64.8 9,950 15,346 64.8 0.01

Russian Tokens 25,882 45,390 57.0 38,407 45,390 84.6 38,408 45,390 84.6 0.00

Table 6: The first column reports the number of tokens and types in the newswire test set that

are in-vocabulary in a model trained on the Bible. It also reports the total number of tokens and

types in the test set, and the percent of coverage. The second column reports the same statistics

for a model trained on the Bible and 20,000 sentences of modern text. The third column reports

the same statistics for a model that is trained on the Bible plus 20,000 sentences of modern text,

and includes our inflections. The column Abs % Added reports how many percentage points of

type and token coverage are gained when adding the inflections.

English lemma. This encodes some morphological information, as it groups all inflections

of a paradigm together by their common lemma.

4. We test our full system, mapping inflections to English phrasal translations motivated by

the morphological features of the inflection.

6.2 How much does morphology help when I have X much data?
Our methods are particularly exciting as they come largely for free from the Wiktionary corpus,

and do not depend on the amount of bitext available for a language. However, it is interesting to

examine the utility of our work as we vary the definition of low-resource. We evaluate our work

by training models on Bible bitext with varying amounts of bitext and analyzing the benefit of

augmenting each model with our system:

1. We train a model only on translated portions of the Bible.

2. We consider a slightly higher-resource setting, appending 1000 sentences of Europarl

(Koehn, 2005), SETIMES3 (Tyers and Alperen, 2010), extracted from OPUS (Tiedemann,

2009), or Common Crawl (Bojar et al., 2015b) (depending on the language, described

below) to the Biblical training set.

3. We train a model with 20,000 lines of modern data and the biblical training set.

4. For Finnish and Czech only, we consider the highest of our low-resource settings, append-

ing 50,000 lines of modern data to the biblical training set.

6.3 Augmentation Method
The inclusion of outside data as augmentation for an existing translation model is non-trivial,

as the probabilities in the outside data are unrelated to those of the table. The well-estimated

translations of each must be given substantial probability mass in the resulting combined table

without adversely promoting poorly estimated phrase pairs. We test a dual grammar method,

3http://nlp.ffzg.hr/resources/corpora/setimes/



Language # of Inflections
Finnish 2,990,482

Russian 326,361

Turkish 275,342

Czech 145,230

Georgian 121,625

Korean 76,739

Swahili 15,132

Urdu 13,682

Table 7: The number of annotated inflections provided by the Wiktionary dataset for each of

the eight languages for which we build phrase tables. Note that these numbers come from the

latest release of UniMorph, and may differ modestly from the number of inflections used in our

experiments.

wherein our artificial phrases and their translation probabilities are constructed as a Joshua

phrase table, and assigned weights tuned by Joshua in tandem with its bitext-derived phrase

table. We also test a bitext augmentation method, wherein the artificial phrases are appended to

the bitext. In particular, we concatenate the bitext to itself 10X, and allocate a quota of 10 lines

total for all translation candidates of each inflection in our artificial data. Finally, we test the

two methods in combination.

We found no consistent best method out of the three. Thus, we present either the best of the

three, or just the dual grammar method, as it simplified manually identifying when artificially

constructed phrases were used by the decoder.

6.4 Training, Tuning, Testing Sets

For the Finnish-English, Czech-English, Russian-English, and Turkish-English language pairs,

we train a Hiero model on 29,000 sentences of Biblical data. Separately, for Finnish and Czech,

we train models on 29,000 sentences of Biblical data with 1,000, 20,000, and 50,000 sentences

of Europarl. For Russian and Turkish, we train models on 29,000 sentences of biblical data with

1,000 and 20,000 sentences of CommonCrawl and SETIMES data, respectively.

Our tuning and test sets are consistent, per language, through all experiments. We tuned

Finnish-English on the Workshop on Machine Translation (WMT) 2015 dev set (1810 sen-

tences), and tested on the WMT 2015 test set (1724 sentences). We tuned Czech-English on the

WMT 2013 test set (3000 sentences) and tested on the WMT 2014 test set (3287 sentences). We

tuned Turkish-English on half of the WMT 2016 test set (506 sentences) and tested on the other

half (505 sentences). We tuned Russian-English on the WMT 2013 test set (3000 sentences)

and tested on the WMT 2014 test set (3308 sentences).

7 Results and Analysis

Figure 3 illustrates that our system is able to correctly generate the English expression of com-

plex inflectional information, both intelligently filling in OOVs and providing better translations

for poorly-estimated inflections. Table 8 shows the results of our end-to-end tests. Our study of

end-to-end MT proceeds in two dimensions, varying both the amount of training data and the

amount of morphological information. We focus our analysis on Finnish, Czech, and Turkish,

for which we see substantial gains in BLEU. We present a negative result for Russian, docu-

mented in Table 8. Post-hoc examination of the tokens and types of test corpora in Table 6

explains this: only a few, low-frequency types in the Russian test corpus are covered in the



Figure 3: Newswire sentences from the test set where a source inflection is either OOV or

poorly estimated in a low-resource setting, and a precise translation is generated by our system.

The baseline system is trained on the Bible + 20,000 sentences of Europarl. Our system’s

translation is denoted by “With morph”. Targeted inflections are boxed, and their translations

from our system are in rounded boxes along with the reference translations. Also provided, for

reference, is Google Translate’s translation of the inflection. We note that Google’s Finnish and

Czech models were not constrained in the amount of training data, but still fail to capture the

genitive case of city council in Finnish and the instrumental case of nickname in Czech. Manual

analysis showed that for the Czech citovna, the baseline was was not generated in the system

translation; instead, the Czech inflection was expressed fully as was quoted.



Unmodified Lemmata Inflections Full Morph

Finnish Bible 4.70 5.29† **5.85 **7.28

Bible + 1k Europarl 5.39 6.07† **6.59 **7.73

Bible + 20k Europarl 8.58 9.07† **9.51 **10.37

Bible + 50k Europarl 9.76 10.43 10.61† **11.41
Czech Bible 5.29 5.69† **5.91 **6.17

Bible + 1k Europarl 6.98 7.33† **7.64 ** 8.01

Bible + 20k Europarl 13.98 14.04 14.22 *14.33

Bible + 50k Europarl 16.23 16.20 *16.02 **16.69
Turkish Bible 3.58 4.09† 4.02 4.23

Bible +1k SETIMES 4.78 5.00 4.96 *5.28

Bible +20k SETIMES 7.85 8.05 8.19 8.26
Russian Bible 1.18 1.32† 1.26 1.20

Bible + 1k Common 6.24 6.26 6.25 6.26

Bible + 20k Common 11.20 11.22 11.17 11.21

Table 8: All experiment results. * and ** denote significantly better results than the lemma-

lemma model of on the same bitext, at p < 0.05 and 0.01, respectively. To motivate our use

of the lemma-lemma model as a sronger baseline for significance testing than the unaugmented

MT system, we denote with a † where the lemma-lemma model is significantly better than the

unaugmented system. We use the bootstrap resampling method of Koehn (2004) to estimate

significance tests.

Wiktionary dataset. We also note that the potential benefit of our system is constrained by the

quality and size of the Wiktionary dataset for a given language. Table 7 gives the size the dataset

for each of the eight languages for which we release a phrase table.4

7.1 Full Morphological Translation Model
Augmenting an SMT system with a translation model built by our full morphological analysis

and generation improves translation quality significantly across Finnish, Czech, and Turkish,

even at higher levels of resources. We expected that the potential benefit of adding morpho-

logical information would decrease as the training set size of the baseline model increased. At

increasing sizes of training corpora, the gains from morphology decrease, but remain significant

for Finnish and Czech. This may suggest that morphological information aids in the translation

of poorly estimated inflections even in settings of moderate resources. It is worth noting that

adding even 20k sentences of Europarl to the training data improved over a baseline Bible sys-

tem more than adding the entirety of our morphological information. However, when adding

the morphology on top of the added bitext, there are substantial gains.

7.2 Inflection-Lemma Model
Augmenting an SMT system with a translation model that naively pairs all Wiktionary inflec-

tions with their English lemma equivalents also improves translation quality, often to a substan-

tial percentage of the full model’s gains. These gains may be due to OOV coverage, even with

poor translations. It is encouraging to see that this model does not perform as well as the full

morphological model. This points to the utility of the UniMorph vectors and our phrases in

providing the capacity for good translation estimates, not just OOV coverage. For Finnish and

Czech, the percentage of a full morphological system’s gains recovered by an inflection-lemma

4http://unimorph.org



model seems to be independent of the resource setting. This model recovered an average of

50% of the gains of the full Finnish system, and 50.2% for Czech.

7.3 Lemma-Lemma Model

Augmenting an SMT system with a translation model that pairs entries in a dictionary also

improves translation at most resource levels. However, it is an impoverished system that lacks

the OOV coverage of the inflection-lemma model. Except for Turkish at the 0k and 1k levels, the

lemma-lemma model underperforms the inflection-lemma model, as expected. Regardless, it is

a stronger baseline than an unmodified MT system, significantly outperforming the unmodified

system in half of the experimental settings.

8 Summary and Future Work

Translation of highly inflected languages presents compounding data scarcity problems for SMT

systems with little bitext. The information encoded in the inflections of highly inflected lan-

guages is formalized in UniMorph, and a large, multilingual, freely available repository of

UniMorph-annotated inflections exists in the Wiktionary dataset. Using a small UniMorph-

annotated English corpus, we generalize English inflectional phrase templates to express a wide

range of UniMorph vectors. We then use the inflectional information to assign English phrase

templates as translation candidates to inflections from Wiktionary. Building translation models

from these pairs, we substantially improve the quality of MT in a range of low-resource settings.

Analyzing a range of resource settings and levels of morphological information, we find

that a full morphological system outperforms inflection-lemma mappings and lemma-lemma

mappings. We also find that morphological information is less useful in higher-resource set-

tings, but can still provide substantial gains. We believe this approach holds promise for con-

structing translation systems for language pairs that do not have much in the way of bitext.

In service of this goal, we release translation models constructed for Finnish, Czech, Russian,

Korean, Georgian, Swahili, Turkish, and Urdu.

For future work, we believe it would be useful to investigate how well these phrase-table

augmentation techniques work when combined with other approaches to low-resource machine

translation into English, such as lemmatized backoff models.
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