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Abstract
We introduce a novel method for bilingual phrase representation with Recurrent Neural Net-
works (RNNs), which transforms a sequence of word feature vectors into a fixed-length phrase
vector across two languages. Our method measures the difference between the vectors of
source- and target-side phrases, and can be used to predict the semantic equivalence of source
and target word sequences in the phrasal translation units used in phrase-based statistical ma-
chine translation. Our experiments show that the proposed method is effective in a bilingual
phrasal semantic equivalence determination task and a machine translation task.

1 Introduction

In recent years, continuous vector representations of word, phrase, and sentence which allevi-
ate issues of sparsity have successfully been used in a number of natural language processing
tasks. Language models with continuous word representations (Bengio et al., 2003; Mikolov
et al., 2010; Mikolov, 2012) based on neural networks have outperformed the previous state-
of-the-art approaches. These language models map each word to a dense, low-dimensional,
real-valued vector, and estimate the probability of words in a continuous space. Representa-
tions for phrases have been used in the context of Statistical Machine Translation (SMT). Zou
et al. (2013) used phrasal representations for computing the distance between phrase pairs and
added a feature based on this distance into the log-linear model of a phrase-based SMT system
(Koehn et al., 2003). Their method learned bilingual word representations, and subsequently
obtained the phrase-level representations by simply averaging word vectors. Continuous rep-
resentations for phrases or sentences with neural networks – such as a feed-forward, recursive,
or recurrent neural networks – have also been used in SMT. A phrase representation model
using a feed-forward neural network for phrase-based SMT was proposed by Schwenk (2007,
2012), and achieved significant BLEU score improvements. Since the model directly projects
feature vectors not from words but from phrases or sentences onto a continuous vector space,
the representations can contain more global semantic information.

In this paper, we propose a new method to learn bilingual phrase representations for phrase-
based SMT using two Recurrent Neural Networks (RNNs) (source- and target-side) combined
in a simple linear architecture. We follow the idea of Cho et al. (2014) that the last hidden
state of the RNN is a summary representation of the whole input phrase, and the summary
representations with the same meaning are trained to be the same vector representation. The
procedure is similar to that used in the RNN of Cho et al. (2014), which predicts the next word
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in the sequence with a conditional probability. In contrast to this, our model uses an objective
with a similarity distance instead of a conditional probability, and learns to minimize the error
distance. Furthermore, we developed a novel extension of the model that uses an autoencoder,
which is an architecture trained to provide a latent representation of its input by means of a
nonlinear encoder and an associated decoder. The objective involves three kinds of errors: a
next symbol error for predicting the next word in a phrase, a semantic error for the comparison
of the summary phrase representations, and a reconstruction error for the autoencoder. The
prediction error represents how well the intermediate hidden states can predict the next word
in a sequence. The semantic error represents the dissimilarity between the final hidden states
on the source- and target-side. The reconstruction error represents how well the hidden states
represent the words in a phrase.

We introduce a bilingual phrase similarity feature derived from our proposed method as
a new feature into the log-linear model of a phrase-based SMT system applied to a English-
Japanese translation task, and confirm the effectiveness of our method on this task. The results
of the experiments show that our model is able to indicate the effective phrase pairs for machine
translation. In this paper, though our model is symmetric and does not differentiate between
source- and target-side, we use the following notation: the left-side RNN is referred to as the
source-side and the right-side RNN (we use overbars on the symbols to differentiate it) is re-
ferred to as the target-side.

2 Related work

In this section, we review recent work on neural network phrase representation models.
Continuous phrase representation models with a feed-forward neural network were studied

in Schwenk (2007, 2012). The models estimated translation probabilities for unseen phrases
with a continuous vector space of phrases. Le et al. (2012) proposed a similar approach to
score phrase pairs using fixed-size inputs and outputs. Devlin et al. (2014) proposed a neural
network joint model (NNJM) as an extension of the NNLM (Bengio et al., 2003). The NNJM
calculates the target-side word probability by using a target-side language model in combination
with a context from the source-side. The NNJM requires a maximum length for the source-side
phrases. These approaches employ feed-forward neural networks and are constrained to operate
on phrases of limited length.

The use of recursive neural networks addresses the fixed-size issue by using a tree structure
of phrases and sentences. The recursive neural network maps features from subsequences of a
phrase to a continuous vector on each node of the tree recursively. Li et al. (2013) described an
ITG reordering classifier which predicted phrase reorderings in SMT that was able to exploit
syntactic and semantic information, Zhang et al. (2014, 2015) proposed bilingually-constrained
recursive autoencoders, which generated phrasal embeddings for machine translation by learn-
ing to minimize the semantic distance between translation equivalents, and maximizing the
distance between non-translation pairs.

In contrast to the work on recursive networks, it is also possible to create continuous phrase
representations with RNNs. Here, simpler models are possible that do not need take the tree
structure of their input into account. Kalchbrenner and Blunsom (2013) proposed recurrent
continuous translation models based on recurrent language models (RLMs), which predict target
words from an unbounded history of both source and target words with a conditional probability.
In their implementation convolutional neural networks were used to model the source-side. Cho
et al. (2014) proposed a gated recurrent unit which adaptively remembers and forgets its state
based on the input signal to the unit. This model was used to score each phrase pair in the phrase
table for SMT.
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Figure 1: Bilingual Phrase Representation Model Architecture

3 Bilingual Phrase Representation Model

3.1 Phrase Representations

Our bilingual phrase representation model comprises two RNNs: one for source phrases, and the
other for target phrases. Each RNN reads a sequence of word representations, and transforms
it into a fixed-length vector that holds the semantic content of the whole input sequence. We
call this vector the phrasal representation. Then, the model identifies phrase pairs with the
same meaning on both source- and target-side, by computing the similarity distance between
the respective source and target side phrase representations.

Figure 1 shows the framework of the bilingual phrase representation model, where rk(0 ≤
k ≤ l) and r̄k(0 ≤ k ≤ m) ∈ Rn×1 are word representations of the phrases r and r̄ in a
phrase pair (r, r̄), hk(0 ≤ k ≤ l) and h̄k(0 ≤ k ≤ m) ∈ Rq×1 are hidden layers, ok(1 ≤
k ≤ l) and ōk(1 ≤ k ≤ m) ∈ Rn×1 are output layers, ak(1 ≤ k ≤ l) and āk(1 ≤ k ≤
m) ∈ Rn×1 are autoencoder layers, c and c̄ ∈ Rq×1, which are also the last hidden layers,
are the summary layers which contain the summary representations of the phrases r and r̄, and
four types of transformation matrices: I and Ī ∈ Rq×n, the input vocabulary transformation
matrices, F and F̄ ∈ Rn×q , the autoencoder transformation matrices, R and R̄ ∈ Rq×q the
recurrent transformation matrices, and O and Ō ∈ Rn×q , the output transformation matrices.
The parameter q indicates the size of the summary representations. In Figure 1, n := 2 and
q := 3 for the purposes of illustration.

Each RNN minimizes the error distance over continuous word representations of each
phrase by being trained to predict the inputs, the next inputs, and the summary representation
of the whole input sequence which is shared between both source- and target-sides. Hence,
the hidden layer activation vectors H = {h0,h1, ...,hl} and H̄ = {h̄0, h̄1, ..., h̄m} contain
information of the previous input words and the next word in the input sequence. The summary
layers c and c̄, which are the last hidden layer of each RNN, contain semantic information in
common with each phrase. Any language-specific information is weakened by optimizing to
jointly predict source and target. The source-side RNN learns according to following steps: first,
the activations in the hidden layers H are calculated from the word representations recursively
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as follows:

hk =

{
σ (I · r0) k = 0

σ (R · hk−1 + I · rk) 1 ≤ k < l
(1)

where σ is a nonlinear function such as tanh. r0 and r̄0 are the representations of the source
and target start symbols. When there are no constraints on the hidden layers H, the RNNs are
able to minimize the error distance by making H → [0], which is undesirable. To prevent such
behavior, the hidden layers H are normalized to have unit length. Then, the output layers o that
predict the next word of the input, the summary layer c that predicts the target-side summary c̄,
and the autoencoder layers a that predict the vector rk (representing the source word at position
k) are calculated from the hidden layer activations H in Equation (1) as follows:

ok = σ(O · hk−1) (1 ≤ k ≤ l) (2)
c = hl (3)

ak = σ(F · hk) (1 ≤ k ≤ l) (4)

Bias values for Equations (1), (2), (3), and (4) are included in the computation. To avoid over-
fitting, we trained each layer using the dropout method (Srivastava et al., 2014). There are three
kinds of prediction error, which we denote: the next symbol Eo error, the semantic error Ec,
and the reconstruction error Ea. These were calculated by using Euclidean distance:

Eo(r|o; θ) =
1

2l

l∑
k=1

||rk − ok||2 (5)

Ec(c̄|c; θ) =
1

2
||c̄− c||2 (6)

Ea(r|a; θ) =
1

2l

l∑
k=1

||rk − ak||2 (7)

where θ = {I,R,F,O} is the set of source-side parameters to be learned, together with the
bias parameters. Equation (5) represents the sum of the next symbol error distance between
each input rk in the source-side phrase and the output prediction ok. The output from the last
hidden layer hl is the summary representation c (c ≡ hl). A shared semantic representation of
both source and target is required, and therefore c and c̄ are trained jointly using error signals
based on the distance between them. The error is calculated using the semantic error defined in
Equation (6). Equation (7) is the sum of the reconstruction error distance between each input
rk in the source-side phrase and the autoencoder’s reconstruction ak. The autoencoder is used
for learning representations of words (Chandar A P et al., 2014), phrases (Zhang et al., 2015),
and sentences (Socher et al., 2011; Li et al., 2013). The target-side errors were calculated in the
same manner. The objective function J is the sum of the total error distance from the source
and target RNNs, and is represented by using Equations (5), (6), and (7) as:

J = αEo(r|o; θ) + Ec(c̄|c; θ) + βEa(r|a; θ) + λ∥θ∥
+αEo(r̄|ō; θ̄) + Ec(c|c̄; θ̄) + βEa(r̄|ā; θ̄) + λ∥θ̄∥

= 2 · Ec(c̄|c; θ, θ̄)
+α(Eo(r|o; θ) + Eo(r̄|ō; θ̄))
+β(Ea(r|a; θ) + Ea(r̄|ā; θ̄))
+λ(∥θ∥+ ∥θ̄∥) (8)
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Training Development Test Monolingual
Data sent word types sent word types sent word types sent

en ja en ja en ja en ja
IWSLT 2007 40K 9.5K 10K 0.5K 1.2K 1.3K 0.5K 0.8K 0.9K - -
NTCIR-10 720K 119K 85K 2.0K 5.0K 4.4K 0.5K 2.4K 2.1K 41M 81M

Table 1: Data sets

where θ̄ is the set of target-side parameters, and α and β are the hyper-parameters for the balance
of each error. We also use an L1 regularization term in the objective function. In Equation (8),
we group the semantic error Ec terms of source- and target-side (which use the summary vectors
c and c̄) into one term, and arrange the terms according to error type.

The parameters θ and θ̄ are optimized to minimize Equation (8) using the AdaGrad stochas-
tic adaptive subgradient algorithm (Duchi et al., 2011; Green et al., 2013):

θi = θi−1 − η
∂J

∂θi−1
G

−1/2
i (9)

Gi = Gi−1 +
∂J

∂θi−1

2

(10)

where η is the learning rate, i is the number of the training iterations, and G is the sum of the
squares of the past gradients. θ and θ̄ are learned and updated in every iteration through the
training data of phrase-pairs. The number of training iterations was determined using develop-
ment data.

3.2 Word representations
Word representations, in which words are represented as real-valued vectors (Bengio et al.,
2003; Mikolov et al., 2013), serve as the inputs to our model. The word representations r are
calculated as:

ri = Lui ∈ Rn×1 (11)

where n is the number of dimensions of the vector, L ∈ Rn×|V | is a word embedding matrix,
|V | is the vocabulary size, and ui is a binary vector which is zero in all positions except for the
ith index. Given a phrase which is a sequence of l words, each word has a vocabulary index i
into the columns of the word embedding matrix L. The ith column of the embedding matrix is
the word’s representation vector. The matrix L is pre-trained by training a neural network on
unlabeled monolingual data. In our experiments, we trained the matrices L and L̄ for source
and target word representations using the Word2Vec toolkit (Mikolov et al., 2013). The size of
the word representation vector n is usually determined empirically.

4 Experiments

We conducted two experiments with the Bilingual Phrase Representation Model: a phrase-pair
extraction task and a phrase-based SMT task.

4.1 Data and model parameters
Both experiments were conducted on two English-Japanese (en-ja) corpora. One was from
IWSLT 2007 (Fordyce, 2007) which is in the domain of spoken travel conversation and the other
was a patent translation corpus from NTCIR-10 (Goto et al., 2013). The Japanese sentences
were tokenized using KyTea (Neubig et al., 2011).
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Table 1 provides statistics on each corpus. The “sent” column indicates the number of
sentence pairs, and the “word types” columns of “en” and “ja” indicate the number of English
and Japanese unique words. The “Monolingual” column indicates the size of the monolingual
data for the training of the word representations described in Section 3.2. For IWSLT 2007,
we used the training data for the training of the word representations. For NTCIR-10, we
used about 723K sentence pairs belonging to the physics domain, which contains the most
documents among the domains, according to International Patent Classification (IPC) code 1.
720K sentence pairs from the documents published between 1993 to 2005 were used as the
training data, and 2.0K and 0.5K sentence pairs randomly sampled from the 2006 and 2007
documents were used as the development and test data respectively. We also used the 2006 and
2007 documents to extract the similar phrases. Furthermore, we used the English and Japanese
monolingual corpus in NTCIR-10 for the training of word representations.

For the extraction of phrase pairs, we used MGIZA++ (Gao and Vogel, 2008) and grow-
diag-final-and heuristics of the Moses toolkit (Koehn et al., 2007). To facilitate effective learn-
ing, we used only phrase pairs that contained content words (i.e. had at least one noun or verb
word in the phrase) and had a high translation probability (a threshold on the source-given-target
conditional probability was used). We extracted phrase pairs from the training, development and
test data. The training phrase-pairs were used for training the neural network models. The de-
velopment phrase-pairs were used to control the training of the models. The model was trained
for 4,000 iterations, and estimated parameters θ and θ̄ by evaluating the highest accuracy of
the top-1 phrase pair extracted with the development data. The evaluation of the accuracy was
performed as follows: for each source-side phrase in a 100-phrase pair development set, the
system was requested to choose the top-n candidate target word sequences from the target-side
100 phrases. The minimum error distance defined in Eq. (8) was used to produce the top-n
list. The test phrase-pairs were used for the experiment on the phrase-pair extraction. Conse-
quently, we extracted about 316K phrase pairs from IWSLT 2007 and 23M phrase pairs from
the NTCIR-10 training set. Due to the computation time, we randomly selected 10K phrase
pairs for IWSLT 2007 and 100K phrase pairs for NTCIR-10 as the training set from the full set
of phrase pairs. For the development set, we randomly selected another 300 phrase pairs. We
also extracted 100 phrase pairs from the test data for the experiment on phrase-pair extraction.

For the parameters of the model, the input and output vector-size n was set to 200. The
summary vector-size q was also set to 200. The activation function σ was tanh. The dropout
rate was 0.9 for the hidden layers and 0.5 for the other layers. The learning rate η was set to
0.01 for the experiments with IWSLT 2007 and 0.02 for the experiments with NTCIR-10. The
regularization rate λ was set to 0.01. The hyperparameters α and β in Equation (8) were set to
0.01. All weight parameters θ and θ̄ were randomly initialized, and all bias parameters were
initialized to zero.

4.2 Experimental design
4.2.1 Phrase-pair Extraction
We did two sub-experiments for the phrase-pair extraction: the evaluation of the accuracy and
the extraction of phrases with similar meaning. The accuracy was calculated with the test
phrase-pairs. In order to mitigate the issue of the training process terminating in a local mini-
mum, we evaluated the accuracy at each iteration on four data sets: three different development
data sets (DEV.1, DEV.2, and DEV.3) and a fourth (closed) set which was the test data itself.
This resulted in four different models, each defined by the estimated parameters θ and θ̄ at the
iteration that gave rise to the highest accuracy on the respective data set. Each of the develop-
ment data sets contained 100 phrase pairs sampled randomly without replacement from the full

1SECTION G of IPC code indicates the physics domain
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DEV.1 DEV.2 DEV.3 closed
IWSLT 2007 BPRM (without autoencoder)

1-best 0.03 0.06 0.04 0.10
10-best 0.23 0.25 0.24 0.32

BPRM
1-best 0.03 0.03 0.03 0.08
10-best 0.27 0.28 0.28 0.28

NTCIR-10 BPRM (without autoencoder)
1-best 0.20 0.17 0.18 0.21
10-best 0.45 0.43 0.44 0.48

BPRM
1-best 0.20 0.24 0.20 0.24
10-best 0.43 0.41 0.45 0.47

Table 2: Accuracy of the phrase-pair extraction: 1-best and 10-best on three development sets

300-pair development set.
The data for extracting the similar phrases was obtained by searching for English phrases

that were close to their Japanese counterpart phrases in NTCIR-10. We used the English phrases
in unseen sentences published in 2006 and 2007 and the Japanese phrases from sentences ran-
domly selected from the training sets. We calculated the error distance between the Japanese
and the English phrases with the model terminated using the accuracy on DEV.1. To limit the
number of the English phrase candidates, we only used the English sentences that were similar
to the Japanese sentences. The similarity was assessed using the number of lemmatized words
in the Japanese sentences, that could be translated to lemmatized words in the English sentences
by using a Japanese-English dictionary.

4.2.2 Phrase-based SMT
The phrase-based SMT experiments were performed with the two models, in which the param-
eters θ and θ̄ were estimated on DEV.1 and DEV.2 of the phrase-pair extraction experiment,
using the phrase-pairs extracted using the Moses toolkit. We added the inverse of the error
distance used in the ranking experiments, as a feature into the log-linear model of the Moses
decoder. The 5-gram language models were built using the SRILM toolkit (Stolcke, 2002) with
modified Kneser-Ney smoothing (Chen and Goodman, 1996). For word and phrase alignments,
we used MGIZA++ and grow-diag-final-and heuristics. To tune the weights with respect to the
BLEU score (Papineni et al., 2002), we used n-best batch MIRA (Cherry and Foster, 2012). The
distortion limit parameter was set to 10. We evaluated each model on BLEU using the NIST’s
mteval-v13a.pl 2 script. Statistical significance testing of the BLEU differences was performed
using paired bootstrap resampling (Koehn, 2004).

For both experiments, we tested with two models. The first was the proposed Bilingual
Phrase Representation Model (BPRM). The second was the same BPRM model with the au-
toencoder layer removed.

5 Results and Analysis

Tables 2 and 3 present the results of the phrase pair extraction task, and Table 4 presents the
results of the phrase-based SMT task.

2ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl
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English Phrase in training data English Phrases from unseen data
as was described above as has been described above
a series of operations are and the sequence of operations
each processors each of the processors
an exposing device the exposure device / the exposure apparatus

Table 3: Examples of the new phrase pairs extracted with BPRM in NTCIR-10

DEV.1 DEV.2
IWSLT 2007 PBMT 46.55

+BPRM (without autoencoder) 47.75 47.65
+BPRM 48.19 48.08

NTCIR-10 PBMT 32.13
+BPRM (without autoencoder) 32.14 32.35
+BPRM 32.49 32.29

Table 4: BLEU scores on the IWSLT 2007 task (PBMT denotes phrase-based SMT)

5.1 Phrase-pair Extraction

In Table 2, the results of the experiments on NTCIR-10 data show higher levels of accuracy than
the experiments on IWSLT 2007 data. The reason for this may be indicated in Table 1 which
shows that the number of the word types on IWSLT 2007 is smaller than on NTCIR-10, and the
proportion of words that appear multiple times in the corpus was 70% for IWSLT 2007 and 30%
for NTCIR-10. The set of phrases from the IWSLT 2007 data is likely to contain many similar
phrases, thereby making the discrimination more difficult. The differences between DEV.1,
DEV.2 and DEV.3 were small. It is likely that there is no local minimum problem in these three
models. Table 3 shows examples of phrase pairs in the training data and the English phrases
which were extracted from the English monolingual documents with BPRM, illustrating the
kinds of semantically similar phrases our model is capable of identifying.

5.2 Phrase-based SMT

The results of the phrase-based SMT experiments on IWSLT 2007 data show that the proposed
method was able to improve machine translation quality. The statistical significance tests be-
tween PBMT and the other models shows a significant improvement on both DEV.1 and DEV.2
at p < 0.05. Although the results were not statistically significant, the full BPRM approach
achieved higher BLEU scores than the BPRM without the autoencoder. Therefore we believe
it is likely that the autoencoder is effective for the improvement of translation quality. For
NTCIR-10, the improvements in performance were smaller than on the IWSLT 2007 data set.

In terms of computational time for training the model, training with 10K phrase pairs on
IWSLT 2007 took about 40 seconds for one iteration, and training with 100K phrase pairs
on NTCIR-10 took about 3 minutes for one iteration. Training was performed on an 8-core
2.00GHz Intel Xeon CPU.

In summary, our model was capable of identifying phrase-pairs with semantically source
and target word sequences, and this knowledge could be exploited to yield an respectable im-
provement in machine translation quality.
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6 Conclusion

In this paper, we proposed a Bilingual Phrase Representation Model which learns phrase repre-
sentations by using source- and target-side Recurrent Neural Networks. We demonstrated the
effectiveness of the proposed model on an English-Japanese corpus on two tasks: phrase-pair
extraction and statistical machine translation. Future avenues of research include investigating
hyper-parameter tuning for the objective function, and discovering a method to select appropri-
ate initial values of the weights which were set randomly in this work.
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