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Abstract

Vectorial representations of words have grown remarkably popular in natural language process-
ing and machine translation. The recent surge in deep learning-inspired methods for producing
distributed representations has been widely noted even outside these fields. Existing repre-
sentations are typically trained on large monolingual corpora using context-based prediction
models. In this paper, we propose extending pre-existing word representations by exploiting
Wiktionary. This process results in a substantial extension of the original word vector repre-
sentations, yielding a large multilingual dictionary of word embeddings. We believe that this
resource can enable numerous monolingual and cross-lingual applications, as evidenced in a
series of monolingual and cross-lingual semantic experiments that we have conducted.

1 Introduction

Vectorial representations of words have grown to play an important role in natural language
processing and machine translation. Especially for the latter, deep learning and representation
learning-based approaches have recently proven remarkably effective (Sutskever et al., 2014;
Luong et al., 2015). Vector-based encodings of meaning are a central ingredient in many of
these recent neural machine translation systems, although they can also be beneficial in ordinary
phrase-based machine translation (Mikolov et al., 2013b).

In this work, we focus on the task of creating vector representations of multilingual words
(as well as lexicalized phrases). Previous work in this area has relied on multilingual corpora
to train bilingual word vectors. We investigate to what extent external large-scale resources can
be used to create much more multilingual word representation data. In particular, we rely on
Wiktionary, a sister project of Wikipedia that for many years now has been creating a large, col-
laboratively edited online dictionary. Due to its rich multilingual data, now with over 4 million
entries in over 1,000 languages, Wiktionary has been used extensively in natural language pro-
cessing, e.g. for part-of-speech tagging (Li et al., 2012) and named entity recognition (Richman
and Schone, 2008), for cross-language image search (Etzioni et al., 2007) and text classification
(Nastase and Strapparava, 2013), and for producing language registries (de Melo, 2015) and
etymological databases (de Melo, 2014). Wiktionary has also made it possible to translate lex-
ical knowledge bases such as WordNet to hundreds of languages (de Melo and Weikum, 2009)
and to translate thesauri (Borin et al., 2014). Finally, it has been used as an extra ingredient in
regular machine translation systems (Göhring, 2014).

Relying on Wiktionary instead of on other training data has playfully been called Wiki-
ly supervision (Li et al., 2012). Our work constitutes a form of Wiktionary-based supervision
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for multilingual word representation learning. More specifically, our method starts with ex-
isting word representations such as the widely available ones trained on large English corpora
(Mikolov et al., 2013a; Pennington et al., 2014). It then uses Wiktionary to decide how to place
new words into the same vector space.

2 Method

For obtaining the new word representations, we adopt the following framework. We assume,
we are given vectors uw for words w ∈ V0, where V0 is some initial vocabulary of words. Such
vectors may come from any of the popular methods for training word vectors. We later use the
well-known vectors from the word2vec (Mikolov et al., 2013a) and GloVe (Pennington et al.,
2014) projects. Our goal is to create new vectors vw for all words w in a substantially larger
vocabulary V , which typically will contain words from many different languages.

Note that the words w are tagged with language codes and are distinguished accordingly.
For example, the Czech word tuna refers to a ton (the weight unit), and the Spanish word tuna
means prickly pear/nopal. Neither of these bear any relationship with the fish meaning of the
English word tuna. Thus, we treat words with different language tags as distinct entities with
separate vectors. This, of course, does not preclude connections in the data from encouraging
a high degree of proximity between different vectors. For example, the method will encourage
the English word sushi to have similar vectors to those of the French and Breton sushi, which
have the same form and meaning.

The vectors vw should reflect the semantics of the words so as to be useful in downstream
applications. While in the past, word vectors were often chosen such that individual dimensions
have some interpretable meaning, current state-of-the-art vector space word embeddings do not
have this property. Instead, we allow for words to be assigned arbitrary vectors as long as vector
similarities and distances reflect corresponding word similarities and distances.

In order to achieve this, we draw on Wiktionary in order to obtain a large setW of semantic
triples taking the form

(w1, r, w2)

where w1, w2 are words, and r is a relation that holds between them. The most frequent re-
lation that we obtain from Wiktionary data is the translation relation. Other examples include
synonymy and derivational relationships. Based on the triples in W , we then define the follow-
ing objective: ∑

w1

∑
w2

fW (w1, w2) vt
w1

vw2

subject to
‖vw‖2 ≤ 1 ∀w,

where fW (w1, w2) should quantify the connection strength (and polarity) between words. Thus,
words are encouraged to have similarities that correspond to their relatedness, measured in terms
of their dot products.

In practice, we maximize this objective function iteratively using stochastic gradient as-
cent. Initially, we set

vw =

{
uw w ∈ V0
0 otherwise

(1)

We then repeatedly make local updates for individual triples in order to optimize the vectors in
the direction of the objective. We use two different learning rates α1, α2 with α1 ≥ α2 for this.
The first one, α1, is the greater of the two and is the learning rate used for new words, whilst
the second, α2, is the learning rate used for words that were already in V0, i.e., the vocabulary
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Figure 1: Wiktionary example, showing an excerpt of the page for the word pulse.

of the input word vectors. Since the original words have already been optimized in some prior
learning process, this severely tempers the extent to which they may be negatively affected
by noise, especially towards the beginning, when the vectors for the new words have not yet
stabilized.

In our experiments, we simply use

fW (w1, w2) = |{t ∈W | ∃r : t = (w1, r, w2)}|

to quantify relation strengths. While this function is non-negative, the fact that we start off with
existing high-quality word vectors, that we constrain L2 norms to not grow indefinitely, and that
we choose slow learning rates allow us to end up with high-quality word vectors.

3 Wiktionary Parsing

The word relationship triples in W are taken from Wiktionary. Unfortunately, Wiktionary’s
data is created and maintained using a rather informal semi-structured wiki markup form that is
difficult to parse and not very standardized at all. For example, Figure 1 shows just a small part
of the page for the word pulse. We rely on a custom information extraction system to produce a
conversion of Wiktionary to structured data, as required for W . This is a rule-based system that
partitions the raw wiki markup into different parts looking for sections and other subdivisions.
It extracts translations both from the translation sections and from the gloss text, as these are a
rich resource as well. In the gloss text, we sometimes have short translations, and sometimes
we may also find inflectional or derivational links, as, for instance, in Figure 2.

Table 1 provides details about the extracted data, obtained by applying our parser on an
XML dump of the English edition of Wiktionary (2013-12-17 version). Note that the links
counts refer to the total numbers of directed links after adding inverses and removing any du-
plicates. We see that Wiktionary provides several million translation links as well as significant
numbers of other relationships, including inflectional and derivational ones.
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Figure 2: Simpler Wiktionary example showing the page for the French word déjeûna, which
is listed as an inflected form of déjeûner (to have lunch).

Item Count

Translational equivalence links 3,598,807
Derivational/Inflectional links 2,455,781
Related term links 580,631
Synonymy links 490,130
Orthographic/other variant links 17,357

Unique words 3,968,843

Table 1: Wiktionary input statistics, where link counts refer to directed links after adding in-
verses and removing duplicates.

4 Experiments

4.1 Training
For the original input vectors, we rely on two well-known sources. The first are the pretrained
word2vec vectors (Mikolov et al., 2013a) released by Google1. This dataset provides vector
representations for words and multi-word phrases trained on a Google News dataset consisting
of about 100B word tokens using word2vec. The vocabulary size is 3,000,000. However, out
of these 3,000,000, actually 2,070,978 terms contain a space, most of which are multi-word
expressions or named entities. Thus, the number of genuine words is much smaller.

As a second vector dataset, we experiment with the pre-trained vectors from the GloVe
project (Pennington et al., 2014), which they obtained by applying their algorithm to data from
a CommonCrawl corpus consisting of 840B word tokens. The vocabulary size is 2,195,960, out
of which none contain a space. While the corpus is larger, it should be noted that CommonCrawl
contains a lot of rather noisy Web data.

We train our model using a starting learning rate of α1 = 0.1 for new words and α2 =
0.001 for original words. The vectors stabilize fairly quickly, so we run the algorithm for only
10 epochs.

4.2 Coverage
As a result of this training process using Wiktionary data, the original word2vec representations
are modified from covering 3 million tokens in just a single language to covering nearly 6

1https://code.google.com/p/word2vec/
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Language # Words (word2vec) # Words (GloVe)

English 3,228,842 2,417,077
Italian 400,881 405,544
Latin 335,722 336,668
Spanish 242,097 242,412
French 237,189 238,744
German 113,827 114,246
Finnish 110,325 110,613
Portuguese 101,077 10,1253
Russian 67,709 67,863
Serbo-Croatian 55,652 55,778
Mandarin Chinese 50,563 50,513
Japanese 47,940 48,025
Polish 44,377 44,541
Dutch 42,808 42,900
Swedish 40,740 40,814
Hungarian 37,644 37,705
Danish 32,971 32,988
. . . . . .

All 5,934,987 5,133,925

Table 2: Top languages after training, using the Google word2vec and GloVe vectors as input,
respectively.

million words in over 500 languages. Similarly, the GloVe vectors are extended from 2,195,960
word vectors in one language to around 5 million vectors, again in over 500 languages. In
Table 2, we list the languages with the greatest coverage on the extended word2vec dataset.

Remarkably, even the coverage of English increases quite substantially, by over 200,000
entries. Although this number might appear small in comparison with the original vocabulary
size of 3,000,000, there is a marked difference in quality between the two. Apart from the
roughly 2 million multi-word expressions among these 3 million vocabulary items, the original
data also contains vast amounts of tokens that are not genuine lexical items but simply various
sorts of names, codes, misspellings, file names, and so on (e.g. Krakowiak, SBSA, www.flu.gov,
reccomend, WILLOW). In contrast, the added vocabulary items are mostly genuine word forms,
contributed by Wiktionary’s editors.

Table 3 summarizes the total number of languages covered by the vectors trained on Wik-
tionary. A lot of rare minority languages are covered to some extent. While the vocabulary
size for them tends to be small, the coverage often focuses on the most important words, such
as those found in Swadesh lists and of interest in linguistic and anthropological studies. 38
languages are covered with a vocabulary size of at least 10,000. For these languages, the cov-
erage should suffice for certain NLP tasks, including cross-lingual ones. This is what we shall
investigate next.

4.3 Semantic Relatedness
Semantic relatedness studies have a long history in computational lexical semantics. Given a set
of word pairs and corresponding scores quantifying how strongly human assessors deem the two
respective words in a word pair semantically related, the goal is automatically produce similar
assessment scores. The evaluation is normally carried out in terms of correlation coefficients.
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Count (word2vec) Count (GloVe)

No. of languages with ≥ 50000 words 11 11
No. of languages with ≥ 10000 words 38 38
No. of languages with ≥ 5000 words 62 62
No. of languages with ≥ 1000 words 123 123
No. of languages with ≥ 100 words 267 266
No. of languages with ≥ 10 words 360 360

Table 3: Number of languages.

UKP30 Chandar A P et al. (2014) En-De Vectors 0.212 @ 34.5%
Ours (word2vec) 0.752 @ 96.6%
Ours (GloVe) 0.777 @ 96.6%

GUR65 Chandar A P et al. (2014) En-De Vectors −0.319 @ 26.2%
Faruqui et al. (2015) 0.603 @ N/A
Ours (word2vec) 0.717 @ 96.9%
Ours (GloVe) 0.768 @ 96.9%

GUR350 Chandar A P et al. (2014) En-De Vectors 0.558 @ 51.7%
Ours (word2vec) 0.605 @ 68.3%
Ours (GloVe) 0.680 @ 68.0%

ZG222 Chandar A P et al. (2014) En-De Vectors 0.111 @ 38.3%
Ours (word2vec) 0.161 @ 54.1%
Ours (GloVe) 0.306 @ 54.1%

Table 4: German semantic relatedness results, evaluated in terms of Spearman’s rank correlation
coefficient and coverage.

RG65 Chandar A P et al. (2014) En-Es Vectors 0.629 @ 55.4%
Ours (word2vec) 0.805 @ 100.0%
Ours (GloVe) 0.844 @ 100.0%

MC30 Chandar A P et al. (2014) En-Es Vectors 0.430 @ 60.0%
Faruqui et al. (2015) 0.591 @ N/A
Ours (word2vec) 0.830 @ 76.7%
Ours (GloVe) 0.853 @ 76.7%

WS353 Chandar A P et al. (2014) En-Es Vectors 0.256 @ 65.1%
Ours (word2vec) 0.538 @ 65.6%
Ours (GloVe) 0.596 @ 65.6%

Table 5: Spanish semantic relatedness results, evaluated in terms of Spearman’s rank correlation
coefficient and coverage.
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JI65 Chandar A P et al. (2014) En-Fr Vectors 0.586 @ 49.2%
Faruqui et al. (2015) 0.606 @ N/A
Ours (word2vec) 0.822 @ 96.9%
Ours (GloVe) 0.827 @ 96.9%

Table 6: French semantic relatedness results, evaluated in terms of Spearman’s rank correlation
coefficient and coverage.

English–German RG65 Chandar A P et al. (2014) En-De Vectors 0.441 @ 38.4%
Ours (word2vec) 0.812 @ 97.6%
Ours (GloVe) 0.828 @ 97.6%

English–Spanish RG65 Chandar A P et al. (2014) En-Es Vectors 0.588 @ 59.5%
Ours (word2vec) 0.869 @ 100.0%
Ours (GloVe) 0.863 @ 100.0%

English–French RG65 Chandar A P et al. (2014) En-Fr Vectors 0.598 @ 52.0%
Ours (word2vec) 0.864 @ 100.0%
Ours (GloVe) 0.855 @ 100.0%

English–Spanish MC30 Chandar A P et al. (2014) En-Es Vectors 0.351 @ 70.0%
Ours (word2vec) 0.745 @ 90.0%
Ours (GloVe) 0.797 @ 90.0%

Spanish–English MC30 Chandar A P et al. (2014) En-Es Vectors 0.645 @ 56.7%
Ours (word2vec) 0.713 @ 83.3%
Ours (GloVe) 0.721 @ 83.3%

English–Spanish WS353 Chandar A P et al. (2014) En-Es Vectors 0.303 @ 75.9%
Ours (word2vec) 0.582 @ 79.8%
Ours (GloVe) 0.641 @ 79.8%

Spanish–English WS353 Chandar A P et al. (2014) En-Es Vectors 0.299 @ 73.3%
Ours (word2vec) 0.550 @ 78.7%
Ours (GloVe) 0.612 @ 78.7%

Table 7: Cross-lingual semantic relatedness results

These quantify to what degree the word pairs turn out to be in a similar order when sorting
with respect to the two kinds of relatedness scores – ground-truth human-provided ones vs.
automatically generated ones.

Although semantic relatedness assessment is not an end-user task in itself, it is an important
building block in numerous NLP systems. For instance, measures of semantic relatedness can be
used in search query expansion, text classification, and schema and ontology matching, among
many others.

Following Pennington et al. (2014), we use cosine similarity over normalized vectors. The
word vectors we generate are case-sensitive, distinguishing Reading, which often refers to the
city, from reading, which often refers to the process of reading. However, some of the datasets
do not preserve case and so we also consider any possible capitalized version of the input word.
Whenever at least one word has multiple candidate vectors, we take the maximum similarity
over all pairs.

We evaluate this method using Spearman’s rank correlation coefficients over all covered
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word pairs, while reporting the respective coverage percentage. In computing Spearman’s ρ, we
follow the recommended procedure of using average ranks for tied positions.

While most semantic relatedness datasets focus on English, there are a few non-English
ones as well, which we can use to evaluate our system. Unfortunately, their number is rather
small, so we are limited in the number of languages that we can readily consider in this sort
of evaluation. We use several publicly released datasets that were often based on pre-existing
English datasets2. In Table 4 we provide evaluation results on German-language datasets, while
Tables 5 and 6 provide similar results on Spanish and French datasets. For comparison, we list
all published results known to us that are also based on vectors as well as results on all other
non-English word vectors we could obtain and evaluate directly. In all cases, we see that our
vectors fare significantly better than the competitors.

4.4 Cross-Lingual Semantic Relatedness

Semantic relatedness can also be evaluated across languages. We adopt the same methodology
as earlier but rely on the Spanish-English evaluation data from Hassan and Mihalcea (2009),
which we can use to compare our vectors with those of Chandar A P et al. (2014). Further,
we consider the new cross-lingual semantic relatedness evaluation data released by Camacho-
Collados et al. (2015), which is based on the RG65 dataset. Our results on these cross-lingual
datasets are listed in Table 7. Again, our Wiktionary-based representations compare favorably
with other available results.

4.5 Word Choice Problems

Word choice problems consist of a target word and a selection of possible words or phrases
describing it. Consider the following three examples.

gourmet dale brace
a) enjoys cooking a) plain a) to scream
b) has indigestion b) retreat b) prepare for danger
c) has an expert appreciation of food c) shelter c) hold your breath
d) is hungry d) valley d) close your eyes

Here, the correct answers are c) for gourmet, d) for dale, and b) for brace. For English, we
rely on a well-known dataset used by Mohammad et al. (2007). We also use a large German-
language collection of similar quiz questions3. The latter consists of 984 problem instances
collected from 2001 to 2005 editions of the German version of Reader’s Digest Magazine,
where they appear as “Word Power” problems.

We compute cosine similarities between the target word and the candidate answers. Some
answers are individual words or expressions already covered in our data, in which case this is
simple. If a candidate answer, however, consists of multiple words that are not covered in our
data as a multi-word expression, we simply use the maximum cosine similarity between any of
the words in the answer phrase and the target word.

We assess the accuracy as the sum of scores over all problem instances divided by the
number of problem instances. Following the convention from previous work (Mohammad et al.,
2007), the score is 1 if the correct answer is ranked highest among the candidates, 0 if it is not

2For more information on these datasets, please refer to https://www.ukp.tu-darmstadt.de/data/

semantic-relatedness/german-relatedness-datasets/ as well as Hassan and Mihalcea (2009) and
Camacho-Collados et al. (2015).

3https://www.ukp.tu-darmstadt.de/data/semantic-relatedness/

german-word-choice-problems/
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Dataset Vectors Accuracy

English Chandar A P et al. (2014) En-De Vectors 27.42%
Original word2vec input vectors 65.31%
Ours (word2vec) 76.49%
Original GloVe input vectors 68.54%
Ours (GloVe) 74.42%

German Chandar A P et al. (2014) En-De Vectors 27.35%
Ours (word2vec) 40.91%
Ours (GloVe) 40.85%

Table 8: Accuracy results on English and German word choice problems

ranked highest, and 1
n if our method’s top ranked answers form a tie of n answers with the same

similarity score.
The results are provided in Table 8. Although our method for handling phrases is very

simplistic, we obtain reasonably good results. Somewhat surprisingly, we quite significantly
improve over the original input vectors for English. The contribution could come from the En-
glish lexical information in Wiktionary as well as from the cross-lingual relationships extracted
from Wiktionary.

For German, the results are not as good as for English, which, however, is mainly due
to the morphological complexity of the phrases in German. Better results could easily be ob-
tained by improving the linguistic analysis of candidate answers, for instance by performing
lemmatization, stop word removal or interpretation, and compound splitting, which, of course,
is particularly helpful for German with its notoriously long compound nouns. After that, one
could then use our vectors to obtain more reliable similarity scores.

4.6 Word and Entity Analogies
Mikolov et al. (2013c) showed that distributed word vectors trained on large corpora using
prediction approaches may exhibit intriguing semantic and linguistic regularities, even if these
are not in any way directly part of their training objective. For instance, in their results, the
vectors for king and queen stand roughly in the same relationship to each other as the vectors
for uncle and aunt, or man and woman. This works to the extent that simple vector arithmetic
often produces a vector whose nearest known word vector is the correct answer.

In order to create a non-English analogy dataset, we took the semantic analogies dataset
of Mikolov et al. (2013c) and filtered out the parts focusing on geography, as these are to a
large extent language-independent names like Portland or Alaska. This left us with the family
and male/female related analogies. From these, we randomly selected 50 examples and created
the corresponding French-language analogies. When multiple different translations appeared
reasonable, we first restricted the choice based on the register (maman for mom but mère for
mother) and then used the most popular form in the few cases where more than one option re-
mained, e.g. belle-mère for stepmother rather than marâtre, which typically has the connotation
of implying an evil stepmother.

For each analogy entry, the first two words demonstrate the analogy, and for the second
pair of words, only the first is given as input to the system. The goal is predict the second
one. We follow Mikolov et al. (2013c) in computing the target vector using simple vector
arithmetic. We then find words near that target vector by choosing the nearest neighbors in
terms of the Euclidean distance, considering only French words so as to obtain an answer in the
correct target language. On our dataset of 50 French analogies, we obtain the results shown in
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Vectors Accuracy
Chandar A P et al. (2014) En-Fr Vectors 2.0%
Ours (word2vec) 30.0%
Ours (GloVe) 35.0%

Table 9: Accuracy results on the French word analogy task

Table 9. Note that the French dataset is somewhat more challenging than the English original,
because some translations are polysemous and no longer retain the sense distinctions of the
English originals. For instance, both girl and daughter correspond to fille in French. While the
approach by Chandar A P et al. (2014) does extremely poorly, our vectors achieve reasonable
results. In those cases where they return the wrong answer, the correct one is often among the
top 3.

5 Background and Related Work

Distributed representations in neural networks go back to at least Rumelhart et al. (1986), who
described, for their well-known family tree case study, how weights distributed across different
input units can be used to describe people. Importantly, their representation allowed two differ-
ent people from separate families to share most weights if their other attributes were similar.

The lineage of the distinct idea of distributional semantics can be traced to use theories of
linguistic meaning, which, roughly speaking, hold that language use in context determines the
meaning of a word. This view fits well with the idea of empiricist corpus linguistics and the
computational goals of discerning aspects of meaning using data-driven methods. Thus, distri-
butional methods have received considerable attention in natural language processing (Schütze,
1993). Over time, it became apparent that one of the challenges with many distributional meth-
ods is the sparsity of observed word co-occurrences in a corpus in comparison with the overall
distribution of likely word co-occurrences. Since many distributional approaches use numer-
ical vectors to represent the contexts, this sparsity often is manifested in the form of sparse
vectors with many zeros. Smoothing techniques and algorithms such as Latent Semantic Anal-
ysis (Deerwester et al., 1990) were proposed to alleviate some of these problems.

More recently, distributed and distributional methods have grown together in the form of
neural network-inspired architectures that learn distributed representations from large corpora
by accounting for word co-occurrences (Collobert et al., 2011; Turian et al., 2010). The re-
sulting representations are still vectorial and based on corpus co-occurrences, but much lower-
dimensional than in traditional distributional approaches and thus significantly less sparse. The
massive attention on deep learning in recent years, paired with fast training methods as in the
word2vec method by Mikolov et al. (2013a), which actually forgoes deep learning, has pro-
pelled these methods to the forefront of NLP, to the point that they are known well beyond the
core natural language processing community.

Subsequently, a number of improvements to the learning algorithms have been proposed.
Our objective function is related to those of other models that aim to exploit similarities be-
tween words. Chen et al. (2015) extend the word2vec CBOW objective function in order to pay
special attention to contexts that reveal more explicit semantic relationships, rather than treat-
ing all contexts as equal. The semantic relationships are obtained using information extraction
methods, e.g. from lists and definitions. Yu and Dredze (2014) and Faruqui et al. (2015) pro-
pose to optimize monolingual word embeddings so as to match information from pre-existing
lexical resources. Hill et al. (2015) used dictionary glosses from several resources (including
Wiktionary) in order to train neural networks to produce vectors for multi-word phrases.

Proceedings of MT Summit XV, vol.1:  MT Researchers' Track Miami, Oct 30 - Nov 3, 2015   |   p. 355



While most word representation learning research has been monolingual aiming at English,
recently there has been some interest in multilingual aspects of it.

Some works take pre-existing vectors for different languages and connect them. Mikolov
et al. (2013b) develop a method to learn projections between two monolingual word embedding
spaces. Lazaridou et al. (2015) investigate means to improve such projections. Faruqui and
Dyer (2014) propose using canonical correlation analysis (CCA), while Lu et al. (2015) suggest
using Deep CCA instead. Our method, in contrast, does not assume that we have already created
non-English word vectors. We only rely on English word vectors, which are readily available
from numerous sources.

A number of studies have focused on using multilingual corpora, often parallel corpora,
to produce bilingual word vector spaces (Kalchbrenner and Blunsom, 2013; Kočiský et al.,
2014). Utt and Padó (2014) investigate using syntax for bilingual vector space models. Her-
mann and Blunsom (2014) create bilingual word representations without word alignment. Hill
et al. (2014) showed that word embeddings obtained from translations better reflect the ontolog-
ical status of words than regular neural embeddings. One advantage of corpus-based approaches
is the potential to have a substantial coverage, given sufficiently large corpora. However, as the
amount of available parallel text is somewhat limited, in practice, this advantage may only ap-
ply to methods that do not require parallel corpora. Our work is complementary to this line
of research on corpus-driven approaches. We exploit the availability of high-quality word vec-
tors for English trained on very large Web-scale data, leading to word vector spaces that reflect
word analogies well. We further draw on the availability of multilingual lexical resources such
as Wiktionary, covering hundreds of languages, including lesser-resourced ones, for which cor-
pora may be difficult to obtain.

More generally, our work differs from previous work by going beyond bilingual vector
spaces in order to place millions of word forms from different languages into a single shared
vector space.

6 Conclusion

We have presented the first study to produce large amounts of word vectors from Wiktionary
in many languages. Unlike previous work on bilingual word embedding spaces, our approach
produces a single significantly multilingual word vector space rather than just bilingual ones.
Our experiments show that our vectors reflect semantic properties and that they are useful both
in monolingual and in cross-lingual settings.

In the future, we would like to investigate the potential of these multilingual vectors for
machine translation of text. While deep recurrent neural network architectures have recently
achieved state-of-the-art results in several machine translation settings, they still suffer from
significant problems with out-of-vocabulary items (Sutskever et al., 2014; Luong et al., 2015).
Rather than only addressing these with custom ad hoc techniques as in the approach taken by
Luong et al. (2015), it would be helpful to investigate to what extent we can incorporate them
within the same vector space.
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