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Abstract
Phrase–based machine translation (PBMT) relies upon the phrase-table as the main resource
for bilingual knowledge at decoding time. A phrase table in its basic form includes aligned
phrases along with four probabilities indicating aspects of the co-occurrence statistics for each
phrase pair. In this paper we add a new semantic similarity score as a statistical feature to
enrich the phrase table. The new feature is inferred from a bilingual corpus by a neural net-
work (NN), and estimates the semantic similarity of each source and target phrase pair. We
observe a significant increase in system performance with the addition of the new feature. We
evaluated our model on the English–French (En–Fr) and English–Farsi (En–Fa) language pairs.
Experimental results show improvements for all translation directions of En↔Fr and En↔Fa.

1 Introduction

Phrase–based machine translation begins by segmenting a source sentence into phrases and
looking up candidate translations for the sub-sentential phrases in a phrase table. The goal of
PBMT is to assemble these translation candidates into the optimal target sequence. Finding
the best source segmentation, translation candidates, and phrase ordering is a search problem
which is typically formulated as a log-linear model using both dynamic and static features,
whose weights are optimized via a search heuristic on held-out development data. The inverse
phrase translation probability ϕ(f |e), inverse lexical weighting lex(f |e), direct phrase trans-
lation probability ϕ(e|f) and direct lexical weighting lex(e|f) are four of the standard static
features used in phrase tables. These features are computed directly from the co-occurrence
of aligned phrases in the training corpora. However, co-occurrence information alone cannot
capture semantic information about phrases, especially when they are taken out of context.
Therefore, many techniques have been proposed to enrich the feature list by including features
which contain syntactic and/or semantic information (Banchs and Costa-jussà, 2011).

Most work evaluating the inclusion of semantic information into SMT decoders has fo-
cused upon adding dynamic features (those which must be computed at decoding time). How-
ever, dynamic features require the implementation of a new feature function which depends
upon the hypothesis data structure of the particular decoder. The implementation of dynamic
features typically requires significantly more engineering effort than simply augmenting the
phrase table. In this paper, we add a new static feature and show how a good static feature
alone can significantly boost translation quality. The basic idea behind our work is to use the
vector representation, or semantic embedding of phrases, which is generated by an NN. The
semantic features of the source and target languages are projected into a shared bilingual space,
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which preserves both semantic and syntactic information about the phrases. The supervised
approach to generating embeddings from neural networks optimizes the network to produce
vectors which are good with respect to a specific objective. As an example, if the goal is to do
the sentiment analysis or sentence clustering, a vector should reflect the polarity of a sentence —
whether is positive or negative — or its closeness to a specific distribution (Kalchbrenner et al.,
2014). In tasks like translation, a good vector should reflect semantic and syntactic information
about original constituent (sentence, phrase or word) in addition to contextual knowledge from
its surrounding words, and ideally some information which will make it easier to map into the
target language.

Methods like word2vec1 (Mikolov et al., 2013a) or that of (Le and Mikolov, 2014) produce
general-purpose vector representations which can be leveraged for a variety of downstream
applications. As the word and sentence vectors encode syntactic and semantic information, they
are potentially useful for translation tasks. In pure neural MT engines, the word embeddings
are trained as parameters of the model, which generally attempts to maximize the likelihoods
(Kalchbrenner and Blunsom, 2013; Bahdanau et al., 2014), and then used directly to perform
translation. Another line of work has tried to make use of distributed representations within the
classic MT pipeline (Gao et al., 2013; Devlin et al., 2014).

In this work, we prepare an enhanced bilingual corpus which includes the source and target
phrases extracted by the alignment model, along with the original source and target sentences,
and a set of word pairs which are direct translations of one another. An NN is used to generate
embeddings for the each of the phrases. The generated vectors reflect the similarity of phrases in
the same language as well as their relevancy to the phrases of the other language. In the training
data, monolingual distributional information for each language is contained in the sentences,
while bilingual information is conveyed by the bilingual phrase pairs and word pairs.

Our contributions in this paper are twofold. a) We extract a novel static feature from a
bilingual corpus which boosts the translation quality. Most previous work has added new dy-
namic features which significantly increase computational overhead — our simple static feature
can achieve comparable improvements with less effort. b) Our network extracts the vectors
from a bilingual corpus. To the best of our knowledge, related research has modeled the source
and target vectors separately in isolated spaces and focused upon finding a means to transform
the source & target representations into comparable forms. We extracted vectors in the joint
space and tried to capture information of the both target and source sides in a single vector.
Inferred feature caused considerable improvements and showed that, a good static feature can
perform as efficiently as a dynamic one. The structure of paper is as follows. Section 2 gives an
overview of related work, and tries to show why word, phrase, and sentence vectors are useful
for MT purposes. Section 3 explains the network architecture in detail. In Section 4, experi-
mental results are reported for two language pairs: En–Fr and En–Fa. Finally, in the last section
we present our conclusions and discuss some avenues for future work.

2 Background

Using vector representations for textual data (word, phrase, sentence, etc. . . ) is not a new
idea. The concept of continuous, distributed representations for text tokens was introduced
by the Vector Space Model of Salton et al. (1975) and expanded by techniques such as like
Latent Semantic Analysis (Deerwester et al., 1990), Latent Dirichlet Allocation (Blei et al.,
2003), and Random Indexing (Sahlgren, 2005). Real valued, continuous representations are
straightforward to use within Machine Learning models, and have contributed to the current
state-of-the-art in many NLP tasks. However, a disadvantage of distributed representations is

1http://code.google.com/p/word2vec/
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that they are typically not decomposable — i.e. columns often do not correspond to intuitive
features, thus models must be evaluated on a task-by-task basis.

The techniques mentioned in the previous paragraph build vectors from bag-of-words
(BOW) representations, discarding structural dependencies and word order, so they cannot not
reflect semantic information which depends upon syntactic structure. To compensate for these
deficiencies, a more recent line-of-work uses neural networks to generate vectors which can
encode local distributional information, as well as syntactic structure and word order in some
cases. Hinton (1986) used NN for text modelling for the first time. Recently, neural networks
have achieved state-of-the-art performance in many areas of NLP due both to the development
of new learning algorithms and to the availability of computational resources such as GPUs.
Word2vec (Mikolov et al., 2013a), and word2vec inspired works (Wolf et al., 2014) have been
successfully applied to a wide variety of NLP tasks. The following paragraph focuses upon
work that leverages these vectors for MT purposes.

A basic but successful application of NN-based word vectors for MT was reported in
(Mikolov et al., 2013b). They project words of the source language into vectors and do the
same with words of target language. Then try to find a transformation function which maps the
source semantic space into the target semantic space using a small set of word pairs known to be
high-quality translations. The model significantly reduces the volume of bilingual data required
to train such systems and this is the main advantage of their approach. The model works on
monolingual data and only needs a small number of parallel words to make the bridge between
languages. The cross-lingual transformation allows an MT system to search for translations
for OOV (out-of-vocabulary) words by consulting a monolingual index which contains words
that were not observed in the parallel training data for the MT system. Garcia and Tiedemann
(2014) and Dinu and Baroni (2014) are other examples of approaches which leverage NN-based
word vectors for translation tasks. They focus upon exploiting similarities at the word level, but
MT encompasses more than just word-level translation. To extend the application of text em-
beddings beyond single words, Gao et al. (2013) proposed learning embeddings for source and
target phrases by training a network to maximize the sentence-level BLEU score. The outcome
is a set of vectors for phrases, and the similarity between each phrase pair vectors is used as a
dynamic feature function in the log–linear model at decoding time. In another work Costa-jussa
et al. (2014) tried to find the similarities among source sentences and incorporate source side
contextual information into the decoding. Some other models try to re-score the phrase table or
infer new phrase pairs to address the OOV word problem in order to improve translation quality
(Alkhouli et al., 2014; Costa-Jussà and Banchs, 2011). Zhao et al. (2015) did the same using
monolingual datasets and extended the phrase table.

3 Learning Embeddings for Phrases

Our model extends the document vectors of Le and Mikolov (2014) to bilingual texts. By
including both monolingual and bilingual ‘documents’ into the training data, we learn a dis-
tributed representation for both languages simultaneously. In the method proposed by Le and
Mikolov (2014), documents are treated as atomic units in order to learn an embedding with the
same dimensionality as the vectors for the individual words in the model. We adapt this idea
to sentences and phrases, where phrases are presented both as monolingual and as bilingual
documents.

Le and Mikolov (2014) create a new vector for each document, which in our case may be
a monolingual sentence, a monolingual phrase, a bilingual phrase pair, or a bilingual word pair.
During training, the document vector is concatenated with the vectors for individual words to
predict the surrounding words in the given unit of text. Intuitively, we expect document vectors
to be representative of the semantic content of the entire unit of text, while word vectors are
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                  “ the cat sat on …”                          “ the“               “ cat“                “ sat“

                     “ on ”

Figure 1: Network architecture for jointly learning sentence and word vectors

representative of all of the contexts where the word occurs. During training, word vectors and
sentence/phrase vectors are updated until the cost is minimized. The model learns a semantic
space where constituents with similar distributional tendencies tend to have similar vectors.
More formally, given a sequence of tokens c1, c2, ..., cn the objective is to maximize the average
log probability of a word given its context:

1

n

n−l∑
i=l

log p(ci|ci−l, ..., ci+l)

Using the standard terminology for NN models, the training objective can be explained as
follows. The cost function is defined according to the average log probability. Values for the
probabilities can be calculated using a multiclass classifier such as softmax:

p(ci|ci−l, ..., ci+l) =
eywt∑
j e

yj

where yj is the output for the input word wj in which:

y = b+Wh(ci−l, ..., ci+l)

W and b are parameters for the Softmax function, and h represents the output of one or more
hidden layers. The network is trained by stochastic gradient decent and back-propagation
(Rumelhart et al., 1988) to obtain the set of constituent vectors C, and network parameters,
W and b.

In our case, the network includes one hidden layer with 100 nodes which is fed by a
bilingual corpus. The Corpus includes a) source and target sentences which are those we used
to train our SMT engine, b) phrase pairs and c) bilingual lexicon. Both the phrase and lexicon
sets are extracted by Moses (Koehn et al., 2007). Specifically, each line of corpus contains a
sentence in one of the languages, a phrase pair, or a tuple of words.

As it has been shown in (Huang et al., 2012), word vectors can be affected by the word’s
surroundings as well as by the global structure of a text. Accordingly, by using a training cor-
pus with some bilingual examples we expect to learn a semantic space which contains both
languages. Each unique word has a specific vector representation. Clearly similar words in the
same language would have similar vectors (Mikolov et al., 2013a). Words that are direct trans-
lations of each other (same meaning with different languages) should also have similar vectors.
As the corpus contains the tuples of < wordL1, wordL2 >, equal words are connected together.
By the same logic, phrasal units are also connected together. During decoding, the sentences
in a good translation pair should be built from similar sub-units, indicating the semantic com-
patibility of the constituent phrases. Table 1 shows the most similar phrases and words for two
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examples. The items that were originally in Farsi have been translated into English, and are
indicated with italics.

Query we can’t let them win
1 you could ever
2 what the bloody hell is that .
3 as you know it .
4 let her go .
5 he is lying . no i am not .
6 to be
7 he won
8 you !?
9 you got that .
10 they are ahead

Query sadness
1 <apprehension, nervous>
2 emotion
3 <ill , sick>
4 pain
5 <money , money>
6 benignity
7 <may he was punished , punished harshly>
8 is really gonna hurt
9 i know toms dying
10 <bitter , angry >

Table 1: The top 10 most similar vectors for two queries: an English phrase, and a Farsi word.
Recall that the index includes vectors for words in both languages, phrases in both languages,
sentences in both languages, bilingual phrase pairs, and bilingual lexical pairs. Farsi words are
indicated in italics.

The pipeline for adding our semantic feature to the phrase table is very straightforward.
We have a set of vectors for the phrases of both languages. Each phrase is modelled with a 100-
dimensional vector. The phrase table is scanned sequentially, and for each phrase pair, related
vectors are fetched, then their similarity is estimated. To measure the similarities we use the
cosine metric, which is:

similarity(v1, v2) =
v1.v2

||v1|| ∗ ||v2||

Values from the cosine similarity are in the range [-1,1].We map the similarity scores to the
range [0,1] before adding them to the phrase table. After including the new feature, the weights
for the log-linear model are learned by using held-out data.

4 Experimental Results

To study the impact of our new feature, we selected two datasets. One is the TEP++ corpus
(Passban et al., 2015) which is a collection of 600K parallel En–Fa sentences. Farsi is a particu-
larly interesting language for new MT research because it is both low resource and morpholog-
ically rich. The state-of-the-art MT quality for Farsi is not advanced relative to languages with
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more training data available. The other dataset is the WMT2 Fr-En corpus. The WMT corpora
are frequently used as the de facto standard test datasets for SMT systems.

In all of the experiments Moses (Koehn et al., 2007) is used to build the SMT engines.
BLEU (Papineni et al., 2002) is the evaluation metric and the feature weights are tuned by
MERT (Och, 2003). All language models are built using SRILM (Stolcke et al., 2002). The
improvements in translation quality are statistically significant according to the results of paired
bootstrap re-sampling (Koehn, 2004).3 The experimental setup is shown in the Table 2 and
results from the baseline and extended systems are in Table 3.

Language pair En–Fr En–Fa
Dataset Europarl corpus (Koehn, 2005) ver-

sion 7 is used as a bilingual train-
ing set. As a dev set 2000 sen-
tences of news-test2014 were used
and the test set is the test set of the
WMT2015 shared translation task.

The training, test and dev
sets are subsets of the
TEP++ corpus consisting
of 575191, 2000 and 1000
sentences respectively. All
the sentences have been
selected randomly.

Language model 5-gram language models trained on the monolingual part of the
training sets.

MT engine statistical phrase based engine with default Moses configuration

Table 2: Experimental setup

As the results show, the new feature leads to improvements in all directions. We anticipated
these improvements, as the positive impact of distributed phrase representation has already been
shown by Gao et al. (2013). However, our work consider two new aspects of the problem. We
train the vectors in a shared bilingual space, and show that proposed model can generate similar
vectors for similar/equivalent constituents, even for languages pairs such as En-Fa, which are
not typologically similar. We also show that a simple but efficient static feature can improve
translation quality.

En–Fr Fr–En Fa–En En–Fa
Baseline 29.91 27.31 29.21 21.03

Extended 30.62 27.95 29.72 21.44
Improvement +0.71 +0.64 +0.51 +0.41

Table 3: Results for base-line and extended systems

The new semantic similarity feature causes, on average, +0.56 enhancement in terms of
BLEU for all of the directions of En↔Fr and En↔Fa, and as the size of training data increases
the method provides even better performance. Improvements for the En–Fr pair demonstrate
that achievements of the model are valid for large datasets, and improvements for the En–
Fa pair show that the model can be used to translate distant language pairs. The word order
and structure of the Farsi and English languages are quite different from each other, and Farsi
is a morphologically rich language, making translation more difficult than for closely related
language pairs such as En-Es.

2http://www.statmt.org/wmt15/translation-task.html
3We used ARK research group codes for statitical significance testing for 1000 samples with parameter of 0.05,

http://www.ark.cs.cmu.edu/MT/
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5 Conclusion and Future work

In this work we presented a new bilingual semantic similarity feature obtained from a neural
network that is trained on a bilingual corpus, and computes the distributed representation of
phrases in a shared semantic space. Each phrase is projected into a vector and the similarity of
the vectors for each phrase pair is estimated. The similarity score for the phrase pair is added
as a new phrase table feature, and the MT engine is tuned according to the default features
in addition to new one. This augmentation of the information in the phrase table provides
improvements in translation quality.

The method is quite straightforward and does not impose any significant overhead to the
baseline SMT pipeline. Distributed vector representations preserve the semantic information of
the constituents as well as their order and structural dependencies. The bilingual examples in the
training data create dependencies between the equivalent constituents from different languages.
As the model connects the phrases of two different languages to each other, it implicitly includes
contextual information about the phrase pair into the MT process. Our next goal is to incorporate
information from the source and target sides at decoding time. Although our model provides a
global measure of the quality of a phrase pair, we cannot use the current framework to do tasks
like disambiguation, because our features are static. We hope to incorporate the knowledge
from paragraphs and text segments that the source and target phrases are extracted from, and
compare this information to the context of the phrase at decoding time in order to provide a
dynamic means of computing cross-lingual similarity.
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