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Abstract
Domain adaptation boosts translation quality on in-domain data, but translation quality for
domain adapted systems on out-of-domain data tends to suffer. Users of web-based translation
services expect high quality translation across a wide range of diverse domains, and what makes
the task even more difficult is that no domain label is provided with the translation request.

In this paper we present an approach to domain adaptation which results in large-scale, general
purpose machine translation systems. First, we tune our translation models to multiple individ-
ual domains. Then, by means of source-side domain classification, we are able to predict the
domain of individual input sentences and thereby select the appropriate domain-specific model
parameters. We call this approach multi-domain translation.

We develop state-of-the-art, domain-adapted translation engines for three broadly-defined do-
mains: TED talks, Europarl, and News. Our results suggest that multi-domain translation
performs better than a mixed-domain approach, which deploys a system that has been tuned on
a development set composed of samples from many domains.

1 Introduction

Domain adaptation is a common approach to significantly improve machine translation quality
on input documents from a given domain. Domain adaptation techniques for statistical ma-
chine translation (SMT) have been extensively studied and are well established (Federico and
Bertoldi, 2012). In practice, machine translation systems are often engineered to perform well
on the domain of one specific application. Most research on domain adaptation assumes that
any prospective input data originates from a single domain, and the characteristics of this do-
main are known beforehand, e.g. by means of existing samples from the same domain which
can be employed for training and tuning. The adaptation task is then defined as utilizing a small
amount of in-domain training resources effectively in order to learn system parameters that are
more appropriate for translating in-domain input. The in-domain training resources constitute
a minor fraction of the overall training data only, the majority of which has a domain mismatch
with the designated application.

The downside of systems that have been highly tweaked towards the characteristics of a
single domain is a diminished translation quality on out-of-domain data (Haddow and Koehn,
2012). Online translation systems, on the other hand, are usually designed for open-domain
scenarios where the domain of the input text is not predefined. Being able to take advantage
of the benefits of domain adaptation while not having to compromise quality on out-of-domain
data would be desirable for online systems.
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A viable utilization of domain adaptation approaches in open-domain online translation
systems comes in two components:

• A number of different parameter sets, each tuned to optimize translation quality on texts
from a specific domain.
• A text classifier that predicts the domain of foreign-language input data prior to decoding.

As the input data is not labeled with a domain (and, in an open-domain setting, may even
originate from a new domain), the text classifier first has to assign the most likely class from
a set of multiple known domains. The decoder is then reconfigured with a domain-specific
parameter set (e.g., a weight vector), which should be the most appropriate one for achieving
high translation quality on the current input. We refer to this approach as multi-domain SMT.

In this work we investigate different methods for domain classification:

• Classification based on the scores of language models (LMs) which have been interpolated
with interpolation weights tuned on in-domain development sets.
• Maximum entropy text classifiers trained on medium-sized training corpora.
• Maximum entropy text classifiers trained on the same smaller domain-specific develop-

ment sets which are employed for tuning the machine translation systems.

An obvious alternative method for building an open-domain online translation system is
tuning on a corpus containing samples of texts from all known domains, which collectively
are considered to be representative for the application. We refer to this approach as mixed-
domain SMT. A difficulty here is the choice of the corpus samples in a way that brings about
good performance across all domains. However, a high-quality generic system with a single
parameter set that does not depend on a domain label is appealing.

In the empirical part of this paper, we compare multi-domain and mixed-domain SMT on
the English→German, English→Italian, English→Portuguese, and English→Greek language
pairs using training corpora of diverse origin, totalling tens of millions of parallel sentences.

2 Related Work

A significant amount of research on domain adaptation for SMT has been conducted in recent
years. Some methods which are commonly used are:

• Tuning of the decoder model weights (Och and Ney, 2002) on an in-domain development
set (Pecina et al., 2012).
• Model combination (of language models, translation models, or reordering models) via

interpolation or other schemes, e.g. phrase table fill-up (Foster and Kuhn, 2007; Koehn
and Schroeder, 2007; Nakov, 2008; Bisazza et al., 2011; Niehues and Waibel, 2012; Chen
et al., 2013).
• Data selection (Moore and Lewis, 2010; Axelrod et al., 2011).
• Instance weighting (Matsoukas et al., 2009; Foster et al., 2010; Shah et al., 2012; Mansour

and Ney, 2012).
• Further exploitation of in-domain monolingual data (Ueffing et al., 2007; Bertoldi and

Federico, 2009; Schwenk and Senellart, 2009; Lambert et al., 2011).
• Domain-specific features, e.g. binary features indicating the provenance of phrase pairs as

implemented in the open-source Moses toolkit (Durrani et al., 2013b) or “domain augmen-
tation” (Clark et al., 2012).

However, few authors have tackled the question of how to benefit from domain adaptation
in scenarios where a domain label of the input is not present. An important aspect of our
approach to multi-domain MT is the need for domain classification.
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Xu et al. (2007) perform domain classification for a Chinese→English task. The domains
are newswire and newsgroup. The classifiers operate on whole documents rather than on in-
dividual sentences. The authors propose two techniques for domain classification. Their first
technique is based on interpolated LMs: a general-domain LM is interpolated with LMs which
were trained on in-domain development sets, resulting in a number of domain-specific inter-
polated LMs. The interpolation weight is heuristically chosen. The classifier computes LM
perplexities over input documents and assigns the domain with the lowest perplexity. Their
second technique is based on a metric which measures similarity wrt. vocabulary.

Banerjee et al. (2010) conduct machine translation experiments with classification of two
technical documentation domains, availability and security in the area of computing. Empirical
results on Chinese→English and English→Chinese tasks are presented. The authors build a
Support Vector Machine (SVM) classifier using Term Frequency Inverse Sentence Frequency
features over bigrams of stemmed content words. Classification is carried out on the level of
individual sentences. The SVM is trained on the SMT training corpora (∼226k sentences in
total). Several setups with different domain-adapted and domain-agnostic systems are evalu-
ated. The authors show that a pipeline with the SVM classifier is effective in multi-domain
translation.

Wang et al. (2012) distinguish generic and patent domain data in experiments on 20 lan-
guage pairs. For domain classification, the authors rely on averaged perceptron classifiers with
various phrase-based features. The machine translation development sets serve as training data
for the classifiers. An interesting aspect of their translation experiments is that they utilize a
multi-domain optimization in order to jointly tune weights for all domains in a single run of
lattice MERT (Macherey et al., 2008).

In a related strand of research, source-side text classifiers have recently been employed
in order to detect Arabic dialects and select SMT systems accordingly (Salloum et al., 2014;
Mansour et al., 2014).

3 Text Domains

Our application scenario is an online translation service with the requirement to provide high-
quality translation not only of texts from a single domain, but of a wider range of text types.
We therefore study a use case where the translation system is supposed to perform well on the
following domains: TED talks, Europarl, and News. These three domains are fairly coarse-
grained. Different documents from one of the domains are mostly not consistent regarding the
covered topics. While all three domains comprise heterogeneous topics, the domains are set
apart from each other by means of text style.

TED talks are transcripts of spoken language from short public presentations. The presen-
tations often cover scientific subjects which are expressed in layman’s terms and in an informal
manner. TED talks are not spontaneous speech. They are however designed to be entertaining.
Europarl texts are transcripts of speeches on political matters from parliamentary proceedings.
News texts are written news articles.

TED talks, Europarl, and News could be described as “genres”. We denote them as do-
mains throughout this paper because the term “domain” is well established in related machine
translation research literature and often used in a broad sense.

TED talks, Europarl, and News have been highly relevant domains in recent machine trans-
lation research. The International Workshop on Spoken Language Translation1 (IWSLT) hosts
a yearly open evaluation campaign which focuses on the translation of TED talks since 2011
(Federico et al., 2011). The European Parliament Proceedings Parallel Corpus (Koehn, 2005)
has been an influential resource for machine translation research ever since its first release over

1http://www.iwslt.org
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a decade ago. It is freely available and includes parallel text for 21 European languages. Test
sets and training data that enables research on machine translation of texts from the News do-
main have regularly been released for the shared translation task of the Workshop on Statistical
Machine Translation2 (WMT). The WMT “newstest” corpora have become important test sets
to measure progress in machine translation between English and several European languages.

Previous research has indicated that divergences of domains such as TED talks, Europarl,
and News empirically matter for machine translation. For instance, Ruiz and Federico (2014)
systematically analyze characteristics of TED talk transcripts and News Commentary texts and
point out the differences in detail for English-German.

4 Adaptation Techniques

In order to adapt systems to a domain, we leverage previously proposed techniques. First,
we tune the model weights on in-domain development sets. Secondly, we linearly interpolate
language models: rather than training a single large LM on all the target-side data, we train
separate models on each corpus and interpolate them based on weights that minimize perplexity
over the development set, resulting in a new, domain-adapted large LM that can be used by
the decoder. Finally, we add binary features indicating the provenance of phrase pairs: if a
phrase pair has been seen in a particular training corpus, a binary indicator associated with
the respective training corpus fires on application of that phrase pair during decoding. This
increases the amount of features by a number equal to the number of parallel training corpora.

5 Domain Classification

A domain classifier is required for multi-domain SMT on unlabeled input data. The domain of
the source-side text we receive for translation is unknown and we need to predict it in order to
select appropriate decoder parameters.

We investigate classification based on source-side LMs as well as different variations of a
maximum entropy classifier.

Unlike Xu et al. (2007), who classify documents, we predict the domain label on the level
of single sentences. Sentence-level classification has the advantage that document boundaries
do not need to be present, and we are able to decode an unstructured incoming stream of sen-
tences.

5.1 Source LM Classifier
Classification based on source-side LMs predicts the domain label from LM scores. We train
separate LMs on the source side of each parallel training corpus. Then we create adapted LMs
for each domain by linearly interpolating those source language LMs, where the interpolation
weights are tuned to minimize perplexity on the source side of the respective in-domain devel-
opment set. The classifier computes LM scores with each of the domain-adapted source LMs
and selects the domain label according to maximum score. Note that for the scores to be on a
comparable level, all domain-adapted source LMs should be interpolations of the same set of
individual LMs.

Besides classifying sentences rather than documents, our method differs from the one pro-
posed in (Xu et al., 2007) with respect to another aspect: Xu et al. (2007) interpolate LMs
trained on the respective in-domain development sets with a single huge generic LM. Disadvan-
tages of their method are (1.) the tiny size of the development corpora in terms of LM training,
and (2.) the necessity of setting the interpolation weights heuristically. We overcome these
drawbacks by resorting to a more straightforward framework of reserving the in-domain devel-

2http://www.statmt.org/wmt15/translation-task.html
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opment sets for tuning source LM interpolation weights. Furthermore, we argue that source-side
scores of the interpolated LMs employed in our classifier may to some extent resemble target-
side scores of the interpolated LMs which are applied in the respective domain-adapted SMT
systems.

5.2 Maximum Entropy Classifiers
Maximum entropy text classifiers can utilize a larger number of features in order to predict the
label (Berger et al., 1996). We incorporate features from single words, pairs of adjacent words,
the first word of the sentence, and the last word of the sentence. The model is trained with
L-BFGS (Byrd et al., 1995) and regularized using a Gaussian prior.

We build maximum entropy (ME) classifiers under two different training conditions: using
the MT development sets (which are rather small) as training data, and using selected other
corpora as training data (which might not always exactly match what is defined as in-domain to
the MT systems, as the development sets essentially constitute the domains).

In a further flavor of our ME classifiers, in addition to the previously described features, we
include source LM indicator features in the ME model. To create these features, we score the
sentence with the same domain-adapted source LMs as employed by the source LM classifier.
For each of the domain-adapted LMs, an associated source LM indicator feature fires if the
respective LM yields the maximum LM score.

Overall, we end up with four variations:

MEtrain Classifier trained on medium-sized training corpora with the basic set of features.
MEtrain+lm Classifier trained on medium-sized training corpora with the basic set of features

plus source LM indicator features.
MEdev Classifier trained on the MT development sets with the basic set of features.
MEdev+lm Classifier trained on the MT development sets with the basic set of features plus

source LM indicator features.

6 Experimental Setup

We use Moses (Koehn et al., 2007) for machine translation, MGIZA++ (Gao and Vogel, 2008)
to train word alignments, KenLM (Heafield, 2011) for LM training and scoring, SRILM
(Stolcke, 2002) for LM interpolation, and the Stanford Classifier3 for maximum entropy text
classification. We present experimental results on English→German, English→Italian, En-
glish→Portuguese, and English→Greek translation tasks.

6.1 Training Data
Our SMT systems are trained with the following bilingual corpora:

• TED from WIT3 (Cettolo et al., 2012)
• Europarl (Koehn, 2005)
• JRC-Acquis 3.0 (Steinberger et al., 2006)
• DGT’s Translation Memory (Steinberger et al., 2012) as distributed in OPUS (Tiedemann,

2012)
• OPUS European Central Bank (ECB)
• OPUS European Medicines Agency (EMEA)
• OPUS EU Bookshop
• OPUS OpenSubtitles4

3http://nlp.stanford.edu/software/classifier.shtml
4http://www.opensubtitles.org
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Parallel training corpus En→De En→It En→Pt En→El
sentences 23.97 M 29.55 M 32.15 M 30.79 M
source running words 464.82 M 445.97 M 427.53 M 417.45 M
source vocabulary 2.21 M 1.54 M 1.32 M 1.33 M
target running words 421.67 M 444.26 M 424.03 M 367.84 M
target vocabulary 3.81 M 1.62 M 1.39 M 2.19 M

Table 1: Statistics of the overall parallel training data after preprocessing.

Monolingual training corpus De It Pt El
Wikipedia sentences 35.80 M 15.37 M 9.27 M 1.98 M

running words 695.84 M 387.51 M 216.71 M 44.58 M
vocabulary 6.50 M 2.42 M 1.82 M 0.93 M

News sentences 159.66 M — — —
running words 2940.44 M — — —
vocabulary 8.83 M — — —

Table 2: Statistics of additional monolingual training data after preprocessing.

• WMT News Commentary
• WMT CommonCrawl
• SETimes (Tyers and Alperen, 2010)

Statistics of a concatenation of all bilingual training corpora are presented in Table 1.
For language modeling on the target side, we furthermore add monolingual corpora from

recent (April 2015) Wikipedia database dumps5 and—for German—the News Crawl corpora
provided for the WMT 2015 shared translation task. Plain text was obtained from the Wikipedia
XML dumps with the Wikipedia Extractor6 tool. Statistics of the additional monolingual train-
ing corpora are presented in Table 2.

6.2 Machine Translation Systems
Word alignments are created by aligning the data in both directions and symmetrizing the two
trained alignments (Och and Ney, 2003; Koehn et al., 2003). We extract phrases up to a maxi-
mum length of five. The MT systems comprise these features:

• Phrase translation log-probabilities, smoothed with Good-Turing smoothing (Foster et al.,
2006), and lexical translation log-probabilities in both directions.
• Phrase penalty and word penalty.
• Distance-based distortion cost.
• A hierarchical lexicalized reordering model (Galley and Manning, 2008).
• A 5-gram operation sequence model (Durrani et al., 2013a).
• Seven binary features indicating absolute occurrence count classes of phrase pairs.
• Sparse phrase length features.
• Sparse lexical features for the top 200 words.
• A 5-gram LM with modified Kneser-Ney smoothing (Kneser and Ney, 1995; Chen and

Goodman, 1998). We discard singleton n-grams of order three and higher.

Feature weights are optimized to maximize BLEU (Papineni et al., 2002) with batch MIRA
(Cherry and Foster, 2012) on 1000-best lists. We prune the phrase table to a maximum of 100

5http://dumps.wikimedia.org
6https://github.com/bwbaugh/wikipedia-extractor
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best translation options per distinct source side and apply a minimum score threshold of 0.0001
on the source-to-target phrase translation probability. We use cube pruning in decoding. Pop
limit and stack limit are set to 1000 for tuning and to 5000 for testing. We disallow reorder-
ing over punctuation. Furthermore, Minimum Bayes Risk decoding is employed for testing.
Translation quality is measured in truecase with BLEU.

6.2.1 Development and Test Sets
Wherever possible, we tune and test on common sets as distributed on http://matrix.
statmt.org/test_sets/list/ and https://wit3.fbk.eu/. The domain-
adapted Europarl systems are tuned on the test2006 set. The domain-adapted TED systems
are tuned on a concatenation of TED-dev2010 and TEDX-dev2012 (En→De), on a concate-
nation of TED-dev2010 and TEDX-dev2014 (En→It), and on TED-dev2010 (En→Pt).
An English→Greek translation task was so far never organized as part of any of the IWSLT
evaluation campaigns and for that reason no common TED sets exist for that language pair.
However, the 2012-02 release of the WIT3 corpus contains a parallel corpus of 84 831 English-
Greek sentence pairs. We reserved every fifth sentence of this data for tuning and testing. Of
the tuning and testing part of the corpus, we assign every fourth sentence to the test set and the
rest to the tuning set.7 The domain-adapted News systems are tuned on a concatenation of the
newstest2008-2012 sets (En→De) and on newstest2009 (En→It). We use news-
syscomb2009 as an English→Italian News domain test set for lack of other English-Italian
News test sets. Note that newssyscomb2009 is a small set of only 502 sentences. No News
test data was available to us for the English→Portuguese and English→Greek language pairs,
so we experiment with only two domains (TED and Europarl) on these tasks.

The Portuguese TED development and test sets are Brazilian Portuguese whereas the Eu-
roparl sets are European Portuguese. The two Portuguese dialects have a number of differences
in written language. Marujo et al. (2011) give a brief overview.

6.2.2 Domain-Adapted SMT
For our domain adaptation experiments, we first tune the systems with the features described
above on the respective in-domain development set (TED-tuned, Europarl-tuned, News-tuned).
We next replace the large baseline LM with a domain-specific interpolated LM (+ LM interp.).
We then add binary features indicating the provenance of phrase pairs (+ LM interp. + indicator
feat.).

6.2.3 Mixed-Domain SMT
We build mixed-domain SMT systems by tuning on a development corpus containing samples of
texts from all domains. We include a balanced amount of development data from the different
domains in the mixed-domain development set in order to avoid a bias towards any specific
domain.

The mixed-domain systems (Mixed-domain-tuned) are tuned on a concatenation of
TED-dev2010 and TEDX-dev2012 and Europarl test2006 and newstest2009
(En→De), on a concatenation of TED-dev2010 and TEDX-dev2014 and Europarl
test2006 and newstest2009 (En→It), on a concatenation of TED-dev2010 and ev-
ery second sentence from Europarl test2006 (En→Pt), and on a concatenation of every sixth
sentence from our Greek TED development set and the full Europarl test2006 (En→El).

The LMs for the mixed-domain systems are trained on the full target language monolingual
training data, not interpolated from individual LMs. Binary features indicating the provenance
of phrase pairs are not used.

7We end up with English-Greek TED corpus sizes of 67 865 sentences for training, 12 725 sentences for tuning, and
4 241 for testing.
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Classifier Accuracy [%]
En→De En→It En→Pt En→El

LM 78.1 90.2 96.9 96.5
MEtrain 83.1 92.4 96.6 96.7
MEtrain+lm 84.8 92.5 96.9 96.6
MEdev 78.1 83.1 91.0 93.0
MEdev+lm 81.8 88.4 96.9 96.6

Table 3: Domain classifier accuracies on the English side of a concatenation of all test sets for
the respective language pairs.

6.2.4 Multi-Domain SMT
Multi-domain systems classify the input sentence with a domain classifier. They parameterize
the decoder according to the predicted domain label. We use the parameters of the Domain-
tuned + LM interp. + indicator feat. MT setups. We evaluate five multi-domain system per
language pair, one for each of our domain classifiers.

6.2.5 Oracle-Domain SMT
In an oracle domain setup, we assume that the correct domain label of each input sentence is
given. We can parameterize the decoder according to the gold-standard domain label.

6.3 Domain Classifiers

The MEtrain classifiers are trained on the source language side of the TED portion of the training
data and fractions of both the Europarl portion of the training data and the English News Crawl
2014 corpus as provided for the WMT 2015 shared translation task. Again, we include a bal-
anced amount of data from the different domains (e.g. 10% of the Europarl data and 1% of the
News Crawl 2014 data for English→German) in order to not give preference to any of the do-
mains. The MEdev classifiers are trained on the MT development sets as used for mixed-domain
MT tuning.

While building common English domain classifiers would be possible, we decided to train
separate ones for each task and utilize the data resources from the respective language pair.

7 Experimental Results

Domain classifiers. The accuracies of the domain classifiers are presented in Table 3. We re-
port accuracies (micro-averaged F1) on a concatenation of all test sets for each of the language
pairs with the source LM classifier and four variations of the ME classifier (cf. Section 5). Nat-
urally, accuracies are higher for the tasks where only two domains have to be distinguished
(En→Pt, En→El) than on the tasks with three domain classes (En→De, En→It). Accuracies
are generally of a high level, even for the simple source LM classifier. We are going to evalu-
ate in MT experiments whether any of the differences in classification accuracy carry over to
translation quality of multi-domain systems.

Translation quality. Tables 4-7 contain BLEU scores obtained with all MT systems on the test
sets from the various domains for the four language pairs. The TED test sets are the common
IWSLT tests sets, the Europarl test sets have been downloaded from matrix.statmt.org,
and the News test sets are the standard ones from the WMT shared tasks. We test all systems on
the sets from all domains, in particular, domain-adapted systems are tested on out-of-domain
sets as well. We also report BLEU scores on concatenations of all test sets (all) in order to
measure overall performance in open-domain scenarios.
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System (En→De) TED Europarl News all
2010 2011 2012 2013 2007 2008 2013 2014 2015

TED-tuned 24.3 26.7 22.9 25.3 21.9 21.7 20.2 20.8 22.9 22.4
+ LM interp. 24.2 26.8 22.7 24.6 21.2 20.9 19.5 20.1 22.2 21.9
+ LM interp. + indicator feat. 24.4 26.7 23.1 25.0 20.9 20.7 19.5 20.2 22.3 21.9

Europarl-tuned 24.4 26.3 22.8 25.2 22.4 22.1 20.4 21.2 23.0 22.6
+ LM interp. 23.1 24.8 22.0 24.0 22.5 22.2 19.4 19.7 21.8 21.8
+ LM interp. + indicator feat. 22.8 24.7 21.7 24.0 22.6 22.1 19.3 19.5 21.6 21.7

News-tuned 23.7 26.2 22.2 24.5 21.5 21.4 20.6 21.1 22.9 22.2
+ LM interp. 23.3 25.8 22.1 24.2 21.3 21.2 20.4 20.9 22.6 21.9
+ LM interp. + indicator feat. 23.4 25.7 22.2 24.4 21.4 21.0 20.5 20.9 22.6 21.9

Mixed-domain-tuned 24.6 26.9 23.1 25.3 22.2 22.0 20.6 21.2 23.2 22.7
Multi-domain, LM classifier 24.4 26.8 23.1 24.9 22.5 22.1 20.1 20.6 22.5 22.4
Multi-domain, MEtrain classifier 24.3 26.7 22.8 24.7 22.5 22.1 20.3 20.7 22.5 22.4
Multi-domain, MEtrain+lm classifier 24.3 26.7 23.0 24.9 22.5 22.2 20.4 20.8 22.5 22.5
Multi-domain, MEdev classifier 24.2 26.8 22.8 24.7 22.5 22.1 20.3 20.8 22.5 22.4
Multi-domain, MEdev+lm classifier 24.3 26.9 22.9 24.9 22.5 22.1 20.3 20.7 22.5 22.5
Oracle-domain 24.4 26.7 23.1 25.0 22.6 22.1 20.5 20.9 22.6 22.5

Table 4: English→German experimental results (truecase BLEU scores).

System (En→It) TED Europarl News all
2010 2011 2012 2013 2007 2008 syscomb2009

TED-tuned 26.8 26.6 27.3 32.9 24.6 25.3 27.5 26.9
+ LM interp. 27.0 27.3 27.7 33.5 24.3 24.7 27.3 27.0
+ LM interp. + indicator feat. 27.3 27.7 28.0 33.4 24.1 24.6 27.5 27.0

Europarl-tuned 24.6 24.3 25.5 30.5 24.9 25.6 26.5 25.8
+ LM interp. 23.9 24.4 25.6 30.0 24.9 25.4 25.2 25.6
+ LM interp. + indicator feat. 24.2 24.3 25.8 29.9 25.0 25.5 25.2 25.7

News-tuned 26.8 26.5 27.2 32.5 24.6 25.3 27.7 26.9
+ LM interp. 26.8 27.4 28.0 33.3 24.7 25.1 27.8 27.2
+ LM interp. + indicator feat. 26.9 27.5 27.9 33.1 24.6 25.1 27.8 27.1

Mixed-domain-tuned 26.9 26.7 27.0 32.5 25.0 25.6 27.9 27.0
Multi-domain, LM classifier 27.3 27.7 27.9 33.4 24.9 25.5 27.3 27.2
Multi-domain, MEtrain classifier 27.3 27.6 27.8 33.3 25.0 25.5 26.1 27.1
Multi-domain, MEtrain+lm classifier 27.3 27.6 27.9 33.3 25.0 25.5 25.8 27.1
Multi-domain, MEdev classifier 27.3 27.7 27.9 33.1 25.0 25.4 27.4 27.1
Multi-domain, MEdev+lm classifier 27.3 27.8 27.9 33.3 24.9 25.5 27.6 27.2
Oracle-domain 27.3 27.7 28.0 33.4 25.0 25.5 27.8 27.2

Table 5: English→Italian experimental results (truecase BLEU scores).

Domain adaptation. As expected, the domain-adapted systems perform better on in-domain
data than when evaluated in a cross-domain experiment. The in-domain systems outper-
form systems tuned on out-of-domain development sets. More aggressive domain adapta-
tion via LM interpolation and binary provenance indicator features gives mixed results. For
English→German, we basically do not observe gains over in-domain tuning with any of the
two adaptation methods. They just further reduce quality on out-of-domain data. For En-
glish→Italian, we observe gains with both methods on in-domain test sets on top of the
TED-tuned system, but not on top of the Europarl-tuned and News-tuned systems. For En-
glish→Portuguese and English→Greek, we see larger gains mostly due to LM interpolation
and on TED-domain adaptation.
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System (En→Pt) TED Europarl all
2010 2011 2012 2013 2014 2007 2008

TED-tuned 32.1 34.0 34.8 33.9 32.8 27.6 27.7 30.6
+ LM interp. 33.7 35.2 36.1 34.9 34.6 25.5 25.2 30.2
+ LM interp. + indicator feat. 33.7 35.6 36.2 35.4 35.2 24.9 24.5 30.0

Europarl-tuned 29.9 32.0 31.0 31.6 31.2 30.1 30.1 30.7
+ LM interp. 26.7 28.4 27.5 28.6 28.2 30.3 30.1 29.1
+ LM interp. + indicator feat. 26.5 27.7 27.1 28.0 27.6 30.4 30.1 28.8

Mixed-domain-tuned 32.3 34.1 33.4 33.2 33.5 29.4 29.5 31.6
Multi-domain, LM classifier 33.7 35.4 35.9 35.1 35.0 30.4 30.1 32.6
Multi-domain, MEtrain classifier 33.6 35.4 35.9 35.0 34.8 30.4 30.1 32.6
Multi-domain, MEtrain+lm classifier 33.7 35.4 35.9 35.1 34.9 30.4 30.1 32.6
Multi-domain, MEdev classifier 33.3 34.9 35.4 34.6 34.3 30.2 29.9 32.3
Multi-domain, MEdev+lm classifier 33.7 35.4 35.9 35.1 35.0 30.4 30.1 32.6
Oracle-domain 33.7 35.6 36.2 35.4 35.2 30.4 30.1 32.8

Table 6: English→Portuguese experimental results (truecase BLEU scores).

System (En→El) TED Europarl all
2007 2008

TED-tuned 28.2 25.3 24.6 26.3
+ LM interp. 29.0 24.7 24.3 26.4
+ LM interp. + indicator feat. 28.9 24.6 24.2 26.3

Europarl-tuned 27.0 25.6 25.0 26.0
+ LM interp. 25.7 25.6 25.3 25.7
+ LM interp. + indicator feat. 25.7 25.6 25.1 25.6

Mixed-domain-tuned 27.5 25.6 25.0 26.2
Multi-domain, LM classifier 28.9 25.6 25.1 26.8
Multi-domain, MEtrain classifier 28.9 25.6 25.1 26.8
Multi-domain, MEtrain+lm classifier 28.9 25.6 25.1 26.8
Multi-domain, MEdev classifier 28.8 25.6 25.1 26.7
Multi-domain, MEdev+lm classifier 28.9 25.6 25.1 26.8
Oracle-domain 28.9 25.6 25.1 26.8

Table 7: English→Greek experimental results (truecase BLEU scores).

On TED, our domain-adapted English→Italian and English→Portuguese systems outper-
form the best submissions from recent IWSLT evaluation campaigns by several BLEU points.8

On News, our domain-adapted English→German systems are on par with the best phrase-based
system submissions at the WMT shared translation task.9

Mixed-domain vs. multi-domain SMT. Looking at the performance on the concatentation
of all test sets, mixed-domain SMT yields a higher BLEU score than any of the domain-adapted
systems on two out of four language pairs (En→De: +0.3; En→It: -0.2; En→Pt: +0.9; En→El:
-0.2). Apart from English→Portuguese, the differences are small.

Multi-domain SMT clearly outperforms mixed-domain SMT for English→Portuguese (up
to +1.0 on all) and English→Greek (up to +0.6 on all). The choice of the domain classifier
barely matters wrt. translation quality. Due to its compact model, the MEdev classifier would
for instance be a reasonable choice despite not providing the highest classification accuracy.

8MT English→Italian: +4.3 points BLEU on tst2013 (Cettolo et al., 2013). MT English→Portuguese: +2.8
points BLEU on tst2014 (Cettolo et al., 2014).

9http://matrix.statmt.org
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Figure 1: BLEU scores on a concatenation of all test sets.

Compared to oracle-domain SMT, which is equivalent to choosing the respective in-
domain translation from the Domain-tuned + LM interp. + indicator feat. system, the best
multi-domain results are on the same level of quality across the board, with a maximum drop of
0.2 points BLEU (En→Pt).

We visualized the results in a couple of plots (Figures 1-4). We use Domain-tuned as a
shortcut for Domain-tuned + LM interp. + indicator feat. in all plots, i.e. the in-domain system
results in the plots include LM interpolation and the provenance indicator. Multi-domain in the
plots is the variant based on the MEdev+lm classifier.

BLEU histograms on the concatenation of all test sets are shown in Figure 1. The figure
illustrates the results we just discussed, on the concatentation of all test sets. In Figures 2–4 we
plotted average BLEU differences wrt. the in-domain system on the TED, Europarl, and News
test sets. In terms of averaged BLEU scores over the in-domain test sets, in-domain systems are
up to 7.8 points BLEU better than out-of-domain systems. Multi-domain SMT is up to 1.7 points
BLEU better than mixed-domain SMT but can also perform minimally worse in some cases, for
instance English→German TED and News, where mixed-domain SMT performs better than
in-domain SMT. However, multi-domain SMT is typically on par with in-domain SMT.

8 Conclusion

While mixed-domain tuning worked for half of the language pairs, our results indicate that
multi-domain SMT is the more reliable choice. Multi-domain SMT is always on par with
in-domain SMT translation quality and under some circumstances mixed-domain SMT can per-
form much worse.

Multi-domain SMT can be easily implemented with a domain classifier and by allowing
for run-time reconfiguration of the decoder with domain-specific weight vectors. Satisfactory
domain classification accuracy can be achieved with a simple and compact maximum entropy
text classifier trained on the small MT development sets and applied at the sentence level.

For scenarios where the model is expected to translate a wide variety of input text, the
approach presented in this paper balances ease of implementation with high performance.
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Figure 3: Average BLEU differences on Europarl test sets.
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