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Abstract

Post-editing the output of a statistical machine translation (SMT) system to obtain high-quality
translation has become an increasingly common application of SMT, which henceforth we re-
fer to as post-editing-based SMT (PE-SMT). PE-SMT is often deployed as an incrementally
retrained system that can learn knowledge from human post-editing outputs as early as possible
to augment the SMT models to reduce PE time. In this scenario, the order of input segments
plays a very important role in reducing the overall PE time. Under the active learning-based
(AL) framework, this paper provides an empirical study of several typical segment prioriti-
zation methods, namely the cross entropy difference (CED), n-grams, perplexity (PPL) and
translation confidence, and verifies their performance on different data sets and language pairs.
Experiments in a simulated setting show that the confidence of translations performs best with
decreases of 1.72-4.55 points TER absolute on average compared to the sequential PE-based
incrementally retrained SMT.

1 Introduction

In recent years, SMT systems have been widely deployed into the translator’s workflow in the
localization and translation industry to improve productivity, refereed to as post-editing-based
SMT. However, in most cases, current SMT systems cannot generate high-quality translations,
so human effort is usually required. With the help of incrementally improved SMT systems, the
productivity of translators/post-editors can be significantly increased due to the early learning
of knowledge from the previously post-edited segments (Guerberof, 2009; Plitt and Masselot,
2010; Carl et al., 2011; OBrien, 2011; Zhechev, 2012; Guerberof, 2013). Furthermore, the order
of input segments has been found to have a significant impact on the overall PE-time, i.e., an
optimized sequence of input segments can reduce the overall PE-time compared to the typical
chronological sequence (Dara et al., 2014).

Regarding the PE-SMT, the incremental retraining can be roughly categorized into two dif-
ferent scenarios, namely the segment-level online incremental retraining (segment mode) (Lev-
enberg et al., 2010; Denkowski et al., 2014) and batch-level incremental retraining (batch mod-
e) (Hardt and Elming, 2010; Henriquez Q. et al., 2011; Mathur et al., 2013; Simard and Foster,
2013; Dara et al., 2014; Bertoldi et al., 2014). The former takes one post-edited segment per re-
training cycle to immediately update the models, which requires rapid incremental processing of
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the word alignment, phrase/rule generation, language model and parameters tuning etc., while
the latter firstly accumulates a batch of segments, and then performs the incremental retraining
process to update the system. The batch-level mode can perform the incremental retraining
process in the background while the translators/post-editors continue to work on the next batch
of segments. From the point of view of parameter estimation, the former can promptly adapt its
feature weights to the newly post-edited segment and learn the translator’s knowledge, but the
frequent change of weights might make the system unstable; the latter adapts the parameters
on an average level of segments in a batch, which can relatively keep the system more robust,
however, it cannot learn the knowledge as early as possible and cannot demonstrate a quick re-
sponse to translator’s practice and preference. In our task, in order to better show the impact of
the order of the input segments on the PE time, we select the batch-level incremental retraining
SMT as our experimental platform.

The order in which post-editors review and correct machine-translated segments has an
impact on the evaluation score (PE time in our case) of the incrementally retrained PE-SMT
systems. That is, assuming that post-editors work on batches, and after post-editing each batch
the SMT system is dynamically retrained, the order of segments in these batches will have an
impact on how quickly the overall translation performance grows. The expectation is that if
post-editors work first on the segments that are most informative or most difficult to translate
for SMT, the SMT system will learn most from the corrections, and as a consequence, trans-
lation quality will increase more steeply in the following retraining iterations. In doing so, it
is possible to devise a process in which the most experienced and potentially more expensive
post-editors/translators tackle the first few batches of segments, leaving the rest of the segments
to either be worked upon by less experienced and potentially cheaper post-editors/translators,
or to be left completely unedited, depending on the quality vs. cost requirements of the actual
translation project at hand. Therefore, in this paper, we carry out an empirical study on sev-
eral different mainstream segment prioritization strategies, and then investigate the factors that
closely correlate to the effectiveness of the methods.

The main contributions of this paper include:

e Confidence of translation and perplexity methods are proposed to reorder the input seg-
ments in the AL-based dynamically retrained SMT.

e A deep comparison and investigation of different segment prioritization methods for PE-
SMT using different data sets and language pairs.

o A detailed data and results analysis of the correlation between the reordering score and the
factors.

e Our experiments show that the unnormalized confidence of translations performs best in
all tasks and gains around 1.72 to 4.55 TER (Snover et al., 2006) absolute on average.

2 Related Work

The purpose of the input segment prioritization is to reduce the overall PE time to improve
productivity and to reduce the cost. In this scenario, the involvement of human effort implies
that the segment prioritization process can be regarded as AL framework-based PE-SMT. In this
framework, the input segments are ranked based on the information or uncertainty contained
therein. In this section, we will introduce the related work in terms of two aspects: AL-based
framework for PE-SMT, and the incrementally retrained PE-SMT.

The practical active learning framework for SMT was firstly proposed in Haffari et al.
(2009) where a number of high-quality parallel data are acquired from large-scale monolingual
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data. Relatively inexpensive human costs are iteratively used to translate information-rich sen-
tences. Experimental results show that generally the translation unit-based selection strategies,
namely phrases and n-grams, performed best compared to other methods such as random se-
lection, translation confidence, inverse model etc. However, in their work, the AL framework
is used for low-resource SMT rather than the PE-SMT scenario. Furthermore, it is a static re-
training process in which the test set is constant per iteration, and the retraining procedure is
not incremental.

Gonzalez-Rubio et al. (2012) apply AL to the interactive MT in which AL techniques are
used to select the most informative sentences to reduce human effort for a given translation
quality. Experimental results show that applying AL techniques in an interactive MT setting
can prove a better tradeoff between required human effort and final translation quality.

To the best of our knowledge, the most relevant previous work is that of Dara et al. (2014),
which proposes a Cross Entropy Difference (CED) criterion to prioritize input segments in an
AL framework for PE-based incremental MT update applications. The fundamental goal is to
reduce the overall PE time rather than aiming at reducing human effort. The proposed CED
method calculates the rank score by the entropy difference of a sentence s in the untranslated
corpus (or the incremental data) U and the current training corpus L. The higher the score,
the more informative the sentence is and the greater the possibility of the sentence being more
highly ranked. Experimental results on the industrial data in a simulated setting show that the
proposed method significantly reduces the TER score compared to the random and sequential
order. In their work, Dara et al. (2014) used batch mode for the incrementally retrained PE-
SMT with the CED only considering the information of the source side of the data in order
to keep the costs to a minimum for the commercial PE MT applications. However, in the
practical scenario, we can take the information of the target side (e.g. translations) into account
in batch mode without a significant increase in extra time and human costs by pre-translating
the remaining batches in the background while post-editing the current batch. In doing so, we
propose to use the confidence of MT translations to rank the segments.

Regarding the incrementally retrained SMT, the most challenging and time-consuming
steps are the word alignment and the phrase/rule generation. Ortiz-Martinez et al. (2010) incre-
mentally update the feature values of the phrase table by extracting new phrases from the new
sentence pairs based on the pre-stored statistics related to the feature scores. Hardt and Elming
(2010) propose a sentence-level retraining scheme in which a local phrase table is created and
incrementally updated as a file is translated and post-edited. In their work, a modified revision
of GIZA++ (Och and Ney, 2003) is used to approximate word alignments of a newly translated
sentence to reduce the incremental training time, and then an additional phrase table is produced
from the newly aligned sentences with higher priority. The experiments show the efficiency of
the incremental retraining system.

In the incrementally retrained PE-SMT system, suffix arrays (Callison-Burch et al., 2005;
Zhang and Vogel, 2005) are a very efficient technique for the incremental retraining process.
Levenberg et al. (2010) introduce a dynamic suffix array to incorporate new training text to the
current training data. Denkowski et al. (2014) propose an online model adaptation for PE-SMT
in which three methods are used for incremental model adaptation: adding new data to a suffix
array-indexed bitext from which grammars are extracted, updating a Bayesian language model
with incremental data, and using an online MIRA (Crammer and Singer, 2003) to update the
parameters. The simulated experiments show that significant improvement in MT quality is
achieved when these methods are used individually and in tandem. Germann (2014) proposes
a dynamic phrase table strategy for an interactive PE-SMT that computes phrase table entries
on demand by sampling a suffix array-indexed bitext. Experiments show that without loss of
translation quality, the sampling phrase table achieves good performance in terms of speed. In
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our task, we use this dynamic phrase table for incremental retraining in Moses (Koehn et al.,
2007).

3 The Incrementally Retrained PE-SMT Paradigm

In the post-editing scenario, humans are involved to continuously edit MT outputs into high-
quality translations. As discussed in Dara et al. (2014), the fundamental goal of input segment
prioritization for PE-SMT is to reduce the overall PE time taken to complete a translation job.
The crucial step is to first select the most uncertain sentences or most informative sentences
for post-editing in order to learn as much knowledge as possible from these sentences. The
workflow of an AL-based incrementally retrained PE-SMT system is as shown in Figure 1.

Translation Job

_ 4
=3

Parallel Corpus Human Review

(e.g. DGT, : and Post-Editing
Europarl)

Figure 1: The workflow of active learning-based incrementally retrained PE-SMT

In Figure 1, the translations of the input segments are post-edited and the corrected trans-
lations are used for incremental update of the models. The process is repeated until the incre-
mental data (or translation job) is finished. In a typical PE scenario, post-editors are presented
with SMT outputs in chronological order (i.e. sequentially) of the input segments. However, an
optimized order of the input segments in a translation job can significantly reduce the overall
PE time.

In our scenario, the PE time is simulated using TER score between the MT output and the
reference translations for the sentences in each batch. The overall performance of the segment
prioritization method is evaluated by the average TER score for all the batches.

4 Methodology

To prioritize the input segments, an importance score or uncertainty score for the sentence s
must be calculated under some metric, which can be formalized as follows:

Given an initial parallel training corpus L := {(f;, e;)} and a monolingual corpus (trans-
lation job) U := {f;}, the goal of the segment prioritization is to rank a sentence s with the
score ¢(s) under a scoring metric F'. This process can be defined as a triple in (1):

¢(s) = F(s,U, L) (1)

Clearly, we can see that the scoring metric F' is most important in a prioritization algorithm.
We use the sequential order of input segments as our baseline.! In the following sections,

'The random and sequential methods have similar performance in Dara et al. (2014), so we only use sequential as
the baseline.
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we carry out an empirical study on different information-driven prioritization methods.

4.1 Confidence of Translations (Confidence)

In the decoding process, a translation output é is produced with the probability p(e|f) that
is calculated by different features, such as bidirectional lexical probabilities, language model
etc. It can be treated as a confidence score for the translation because it reflects the translation
difficulty or uncertainty of the source segment in some sense.

Generally, the probability p(e|f) is influenced by two aspects, namely the out-of-
vocabulary (OOV) words and the sentence length (c.f. Section 6). For human translators, these
two aspects are often more time-consuming. That is, a long sentence with many OOVs will
take much more time to post-edit. Therefore, intuitively, the unnormalized confidence score of
translations can better measure the uncertainty of a sentence.

Based on the confidence of translations, we rank the input segments in an inverted order,
i.e. those segments with the lowest MT confidence scores are at the top and those with higher
confidence scores are at the bottom.

4.2 Geometry n-gram (Geom n-gram)

n-grams are often used as an information unit to measure the importance score of a sentence.
Dara et al. (2014) used an “n-gram Overlap method” that computes the unseen score of a sen-
tence s in U by the ratio of n-grams not seen in the training data. Particularly, n-grams that
are seen fewer than V times in the training data are defined as ‘unseen’. However, the “n-
gram Overlap” method does not consider the information in the incremental data U. In our
experiments, we utilize the “Geometry n-gram” method in Haffari et al. (2009) to calculate the
sentence score as in (2):

N
Wn, P(z|U,n)

B(s) =Y = 10g 51— 2)
2] 2o B PGIL )

where X"{n = 1,..., N} denotes n-grams in the sentence s, and P(z|U,n) and P(z|L,n)

are the probability of x occurring in the set of n-grams in U and L, respectively, which can be
computed via maximum likelihood estimation. w,, is the weight that adjusts the importance of
the scores of n-grams with different lengths. The weights for w,, are same as in (Haffari et al.,
2009).

From the equation, we can see that “Geom n-gram” takes into account the training corpus
L and the untranslated corpus U at the same time.

4.3 Perplexity of Sentences (PPL)

In NLP tasks, the perplexity (PPL) is closely related to the concept of entropy, which reflects
the degree of uncertainty of the information in a sentence: the larger the entropy, the greater the
perplexity, and the more informative the sentence. Thus, we use PPL to calculate the importance
score of a sentence s in U as in (3):

log p(s)

¢(s) = 10" " 0oV 3)

where N is the number of words in the sentence s. In our experiments, the language model is
trained by SRILM (Stolcke, 2002) using the source side of the parallel data with trigrams.

4.4 Cross Entropy Difference (CED)

This metric is proposed in Dara et al. (2014) for the sentence reranking in the incrementally
retrained PE-SMT scenario. In this scenario, given the training corpus L and an incremental
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corpus U, language models (3-grams) are built from both, and each sentence s in U is scored
according to the entropy H difference as in (4):

o(s) = Hy(s) — Hr(s) “)

where Hy (s) is the entropy of the sentence s in U and the H,(s) is the entropy of s in L.
The higher the score given to a sentence, the more useful it is to L. That is, CED selects
sentences from U that are different from L and similar to the overall corpus U.

5 Experiments

5.1 Data Settings

In order to have a full and fair study of the prioritization methods, we run our incremental
retraining experiments on two open data sets, namely the Europarl’> and DGT? corpora. For
DGT data, we use four language pairs, namely English-German (En-De), English—Spanish
(En-Es), English—French (En-Fr) and English—Polish (En-Pl), in one direction, i.e. the source
language is English. For Europarl data, we use two language pairs bidirectionally, namely
English-German and English—Spanish.

For each language pair, we extract 50k pairs of sentences as the parallel training data L
for the initial SMT systems, and 10k pairs of sentences as the incremental data U that will
be translated, (quasi-) post-edited* and added into the parallel training data iteratively in the
retraining cycle. For the Europarl data, we use Newswire 2012 set as the development set
(devset) to tune the initial SMT systems. For the DGT data, we extract 2,000 pairs of sentences
as the devset to tune the initial SMT systems.

5.2 PE-SMT System Settings

The work flow of our incrementally retrained PE-SMT is shown in Figure 2.

Inoremental data
{Translation Job)

Parallel Corpus (e.g. DGT, Eurcparl)

Figure 2: The work flow of the incrementally retrained PE-SMT in our experiments

’http://www.statmt.org/wmtl5/translation-task.html
3http://open-data.europa.eu/data/dataset/dgt-translation-memory
4As mentioned before, we use the references of the translated segments as the PEs.
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Figure 2 shows a simulated post-editing workflow in which we use the references of the
translated segments instead of post-edited MT output per se. .S; indicates the batch of sentences
for translation, which is determined by the segment prioritization algorithm. M odel; represents
the initial SMT system and the incrementally updated SMT system by the newly post-edited
data. 7; indicates the MT outputs of the input segment batch \S;, and T, the post-edited MT
translations that return to the SMT system for dynamic retraining. This process is repeated
until the incremental data set or the translation job is finished. At each retraining cycle, the
incremental batch contains 500 segments that are sorted and selected from the incremental data
set according to the prioritization method.

A practical incremental retrained PE-SMT system requires a quick update for its related
components at each retraining cycle, such as the translation model, language model and param-
eter weights. In our experiments, we use Moses to build up an incrementally retrained PE-SMT
system as:

e the word alignment is performed using incremental GIZA++;

o the translation model is implemented by the dynamic phrase tables based on sampling
word-aligned bitexts (Germann, 2014);

e the language mode is updated by appending the newly post-edited data to the training data;

e in our experiments, the weights for the features are kept unchanged. The update of pa-
rameter weights is time-consuming and is not suitable for real-time incremental retraining.
From the viewpoint of system stability, the parameters can perform robustly in a limit-
ed range when the data changes. Experiments are conducted on DGT data sets to verify
our assumption. The results in terms of BLEU (Papineni et al., 2002) score are shown in

Table 1.
Pair Static (%) | Incremental-Seq. (%) | Incremental-Confidence (%)
En-De 32.72 32.85 32.88
En-Es 47.29 47.18 47.14
En—Fr 44.94 44.68 44.76
En-Pl1 36.15 3591 36.04

Table 1: Robustness test of parameter weights for PE-SMT (BLEU score)

In Table 1, the numbers are BLEU scores evaluated on a constant test set (or progress
set) that contains 2,000 sentence pairs. “Static” indicates that the system is built by adding all
incremental data into the initial training data, tuned on the devset and tested on the progress
set. “Incremental-Seq.” and “Incremental-Confidence” indicate that the parameter weights are
tuned by the initial training data, and kept unchanged during the whole retraining process. The
BLEU scores for these two systems are obtained at the last iteration.

We can see that the differences between the incremental systems and the static system are
not significant in terms of BLEU score, which show that for the same domain data, the weights
are robust in a limited data scale so that it is not necessary for them to be updated per iteration.

5.3 Statistics of Experimental Data

The statistics of entries in two data sets are shown in Table 2 and Table 3. It can be seen that we
have similar and consistent distributions of entries for all language pairs and the data sets.

Shttp://code.google.com/p/inc-giza—pp/
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Pair | Training Data Devset Incremental Data
En-De | 43,475/85,403 | 7,307/10,540 | 17,992/31,131
En-Es | 43,037/50,178 | 7,251/8,619 17,724/21,360
En-Fr | 42,852/46,553 | 7,263/8,372 17,737/20,094
En-Pl | 43,517/75,764 | 7,354/12,001 17,963/31,587

Table 2: Entries of the DGT data sets in our experiments

Pair | Training Data Devset Incremental Data
En-De | 50,893/99,206 | 9,532/14,078 22,383/35,017
En-Es | 53,765/75,117 | 100,98/12,165 | 21,863/29,100

Table 3: Entries of the Europarl data sets in our experiments

5.4 Prioritization Experiments

The prioritization experiments are mainly to simulate PE time by the TER score per iteration.
The test set at each retraining cycle is dynamic, and contains 500 segments selected from the in-
cremental data according to the prioritisation criteria. The average TER score of the incremental
test sets for different language pairs and data sets are shown in Tables 4 and 5.

Pair | Sequential | Geom n-gram | PPL | CED | Confidence | Gains
En-De 55.94 56.50 56.58 | 55.23 51.39 4.55
En-Es 41.65 42.40 42.48 | 41.58 38.69 2.96
En-Fr 44.86 46.92 46.75 | 44.62 41.42 3.44
En-PI 51.38 51.53 51.63 | 51.16 48.09 3.29

Table 4: Incremental results on DGT data set (TER Score)

Pair Sequential | Geom n-gram | PPL | CED | Confidence | Gains
De-En 73.73 73.87 72.60 | 72.48 70.56 3.17
En-De 80.12 80.00 79.38 | 79.02 77.83 2.29
Es-En 84.14 84.20 83.75 | 83.25 81.82 2.32
En-Es 64.10 64.10 63.37 | 63.11 62.38 1.72

Table 5: Incremental results on Europarl data set (TER Score)

In Tables 4 and 5, the “Gains” are computed by the best result and the baseline (Sequential).
We can see that the best result is obtained by the “Confidence” criterion for all tasks. The
decrease in TER score for the “Confidence” criterion range from 1.72 to 4.55 absolute points
(2.68~8.13 relative points) compared to the baseline.

It can also be seen that 1) the “CED” criterion beats the baseline in all tasks, and it per-
forms better than other prioritization methods except “Confidence”; 2) the “Geom n-gram”
method performs worst in all experiments; 3) the “PPL” method performs slightly better than
the baseline only in the Europarl “De—En” and “En-De” tasks.

Figures 3 and 4 show the TER scores of the En—De language pair per iteration for each of
the criteria in terms of the DGT and Europarl data sets.®

From the figures we can see that there is no obvious decrease (i.e. improvement) for the
baseline in terms of TER score. However, the other four prioritization criteria have a trend of

The trends are similar for the other langauge pairs.
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Results of En—-De pair on DGT data
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Figure 3: Results of En—De pair on DGT data

Results of En—De pair on Europarl data
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Figure 4: Results of En—De pair on Europarl data

decreasing the TER score, i.e. starting from a higher score and arriving at a lower score for the
last iterations. The decreasing trends show the effectiveness of these methods to prioritize the
input segments. As in Dara et al. (2014), the improvements over the baseline are shown after
the initial 8-9 iterations. In our scenarios, the “Confidence” results in a noticeable decrease of

the overall TER score.

In Figure 3, the “CED” and “Confidence” methods have a fluctuation at Iteration 2 and
Iteration 8, respectively, but the overall trend decreases in the TER score. In Figure 4, we can
see that the TER score at Iteration 1 for the “Confidence” method is over 1 which indicates
the MT translation is quite poor and needs too many edits to transform it into a good output

sentence.
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6 Analysis

The “Confidence” method performs best in our incremental retraining experiments, which mo-
tivates us to investigate the hidden reasons by examining: the sentence length distribution and
OOVs as well as the correlation between them.

6.1 Sentence Length Distribution

As in Section 5.4, we take “En—De” as an illustration of the sentence length distribution shown
in Figures 5 and 6. From both figures, we find that the sentence length distribution of the
“Confidence” criterion strongly fluctuates per iteration, i.e. starting from very long sentence
length and arriving at very short sentence length. Furthermore, the fluctuations of the length
distribution of “Confidence” consistently correspond to the TER score trend in Figures 3 and 4,
i.e., when the length is short, the TER score is low and vice versa.

Sentence Length Dist. of En—-De pair on DGT data
60 T T T T

55 —— Sequential B
= ¢ - Geom N-gram
sor I\ |aa PPL )
a5 ——CED |
Confidence
40 B
3
S 3% . PPN Fe-v
- AL ‘~,
30} BN e b

37:-

L L L L L
6 8 10 12 14 16 18 20
Number of Iterations
Added Sentences (multiple of 500)

Figure 5: Sentence length distribution of En—De pair on DGT data

The length distributions of the “Geom n-gram”, “PPL” and “CED” methods are more
smooth than that of “Confidence”. The “Geom n-gram” always starts from shorter sentences
and then the length increases that indicates this method prefers to select short sentences as most
informative candidates at the beginning. The distributions of the “PPL” and “CED” methods
are quite similar as they both correlate with the entropy.

From the sentence length distributions, we hypothesize that the prioritization score ¢(s)
of “Confidence” may correlate to the sentence length of the input segment. We then calculate
correlations between the score ¢(s) and the sentence length by the Pearson Correlation,” and
the results for the En-De language pair are shown in Table 6.

Geom n-gram | PPL | CED | Confidence
DGT 0.21 0.009 | 0.02 0.29
Europarl 0.14 0.06 | 0.10 0.48

Table 6: Correlation between the prioritization score and the sentence length of input segments

In Table 6, we can see that the “Confidence” method is more correlated to the sentence

Thttp://en.wikipedia.org/wiki/Pearsoncorrelationcoefficient
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Sentence Length Dist. of En—-De pair on Europarl data
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Figure 6: Sentence length distribution of En—De pair on Europarl data

length of the input segment than the other methods, which shows that the longer the sentence
is, the more difficult it is to be translated.

The relationship between the score ¢(s) and sentence length poses a question: should we
normalize the score by the sentence length or not in the segment prioritization task? In order to
answer this question and verify that the unnormalized “Confidence” method is more effective
to the incremental retrained PE-SMT, we perform a further experiment using the normalized
“Confidence”. The results for En—DE on DGT data between these two “Confidence” methods
are shown in Figure 7. In Figure 7, we can see that the trends of these two “Confidence” criteria
are similar, but the normalized “Confidence” curve is more smooth. The average TER score
for the normalized “Confidence” is 56.09 which is much higher (i.e. worse) than the baseline.
Based on these results, we can say that the unnormalized “Confidence” method is more effective
to reduce the PE time. Some other language pairs in our experiments have similar results.

6.2 OOVs

In SMT, it is known that OOVs are a big problem and significantly influence translation quality.
In the Moses decoding process, when an OOV occurs, the probability p(e|f) will be signifi-
cantly decreased, i.e. the confidence of the translation becomes lower. Thus, the MT output
score ¢(s) is not only correlated with the sentence length, but is more closely correlated with
the number of OOV in the sentence.

We then calculate the correlation between the score ¢(s) of “Confidence” and the OOV's
by the Pearson Correlation. For En—De scenario, p = 0.9993 for the DGT data and p = 0.9997
for the Europarl data. It can be seen that as expected the more OOVs a sentence contains, the
lower the confidence score, and the greater the possibility that it is ranked at the top.

6.3 Pros and Cons

The “Confidence” criterion achieved the best performance in our segment prioritization exper-
iments for the incrementally retrained PE-SMT. However, it has some potential disadvantages
that should be considered from a practical point of view:

e at each iteration, all the incremental segments need to be translated beforehand, which
might be a problem for sentence-level incremental PE-SMT.
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DGT data

e the sentence length at the first several iterations is much longer than that of the last several
iterations, which might significantly increase the amount of post-editing which in turn may
adversely affect the perception of translators/post-editors as to the utility of this approach.

However, based on the analysis in the sections above, we know that the performance of
the “Confidence” is strongly correlated with the sentence length and OOVs, so we can design
a new practical segment prioritization algorithm that only takes into account the training data
rather than the translations according to these two crucial factors.

7 Conclusions and Future Work

In this paper, we conducted an empirical study on four different segment prioritization algo-
rithms, namely the Sequential, Geom n-gram, PPL, CED and Confidence methods for incre-
mentally retrained PE-SMT. Experiments conducted on two data sets and several language pairs
show that the “Confidence” method achieved the best results in all tasks that reduced the TER
score of 1.72-4.55 absolute points. An investigation was carried out to examine the crucial
factors that make the “Confidence” effective. Finally, some suggestions are proposed for the
design of new algorithms going forward.

In future work, we intend to carry out further studies on incrementally retrained PE-SMT
regarding 1) the context problem: the sorted input segments lose the sequential context that is
helpful to the translators; 2) developing a new algorithm which fully considers the influence of
sentence length and OOVs; 3) carrying out actual PE experiments using our different segment
prioritization algorithms.
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