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Abstract

Type theory has played an important role in specifying the formal con-
nection between syntactic structure and semantic interpretation within
the history of formal semantics. In recent years rich type theories de-
veloped for the semantics of programming languages have become in-
fluential in the semantics of natural language. The use of probabilistic
reasoning to model human learning and cognition has become an in-
creasingly important part of cognitive science. In this paper we offer
a probabilistic formulation of a rich type theory, Type Theory with
Records (TTR), and we illustrate how this framework can be used to
approach the problem of semantic learning. Our probabilistic version of
TTR is intended to provide an interface between the cognitive process
of classifying situations according to the types that they instantiate,
and the compositional semantics of natural language.
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1 Probabilistic Semantics

In a classical semantic theory meaning is defined in terms of truth con-
ditions. The meaning of a sentence is built up compositionally through
a sequence of functions from the semantic values of constituent ex-
pressions to the value of the expression formed from these syntactic
elements (Montague, 1974). Underspecified semantic theories weaken
the connection between the meaning of a phrase and its constituents
from a function to a relation (see Fox and Lappin, 2010 for discus-
sion and references). Dynamic semantic accounts incorporate update
procedures for incrementally computing the effect of new information
on the interpretation of sentences in discourse and dialogue (see, for
example, Kamp and Reyle, 1993). In all of these frameworks the type
system is categorical. A type T identifies a set of possible denotations
for expressions in T , and the system specifies combinatorial operations
for deriving the denotation of an expression from the values of its con-
stituents.

There are at least two problems with these frameworks. First, they
cannot represent the gradience of semantic properties that is pervasive
in speakers’ judgements concerning truth, predication, and meaning
relations. In general, predicates do not have determinate extensions
(or intensions), and so, in many cases, speakers do not make categor-
ical judgements about the interpretation of an expression. One might
seek to attribute such gradience effects to performance factors, such as
memory limitations and attentional focus, on the realization of seman-
tic competence. Unless one can provide a precise explanation of per-
formance mechanisms and how they produce the observed gradience
phenomena, then such an account will have little if any explanatory
content.

A second problem with the semantic theories that apply categorical
type theories is that they offer no account of semantic learning. There
is a fair amount of evidence indicating that language acquisition in gen-
eral crucially relies on probabilistic learning (see, for example, Chater
and Manning, 2006, Chater and Vitányi, 2007, Clark, 2007, Perfors
et al., 2011, Clark and Lappin, 2011). It is not clear how a reasonable
account of semantic learning could be constructed on the basis of the
categorical type systems that either classical or revised semantic the-
ories assume. Such systems do not appear to be efficiently learnable
from the primary linguistic data (with weak learning biases), nor is
there much psychological data to suggest that they are, themselves,
biologically determined constraints on semantic learning.

A semantic theory that assigns probability rather than truth condi-
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tions to sentences is in a better position to deal with both of these issues.
Gradience is intrinsic to the theory by virtue of the fact that speakers
assign values to declarative sentences in the continuum of real numbers
[0,1], rather than Boolean values in {0,1}. Moreover, a probabilistic
account of semantic learning is facilitated if the target of learning is a
probabilistic representation of meaning.

We consider two strategies for constructing a probabilistic semantics.
One is a top-down approach where one sustains classical (categorical)
type and model theories, and then specifies a function that assigns
probability values to the possible worlds that the model provides. The
probability value of a sentence relative to a model M is the sum of the
probabilities of the worlds in which it is true. The other is a bottom-up
approach where one defines a probabilistic type theory and character-
izes the probability value of an Austinian proposition relative to a set
of situation types (Cooper, 2005a). This proposition is the output of
the function that applies to the probabilistic semantic type judgements
associated with the syntactic constituents of the proposition.

1.1 Probability Distributions over Worlds

The top-down strategy is adopted by van Eijck and Lappin (2012).
They retain a classical type theory and the specification of intensions
for each type as functions from worlds to extensions. They define a
probabilistic model M as a tuple hD,W,P i with D a domain, W a set
of worlds for that domain (predicate interpretations in that domain),
and P a probability function over W , i.e., for all w 2 W , P (w) 2 [0, 1],
and

P
w2W

P (w) = 1.1
An interpretation of a language L in an L-model M = hD,W,P i is

given in terms of the standard notion w |= �, as follows:

[[�]]

M

:=

X
{P (w) | w 2 W ^ w |= �}

This definition of a model entails that [[¬�]]M = 1 � [[�]]

M . Also, if
� |= ¬ , i.e., if W

�

\ W

 

= ;, then [[� _  ]]

M

=

P
w2W

�_ 
P (w) =

P
w2W

�

P (w)+

P
w2W

 

P (w) = [[�]]

M

+[[ ]]

M . These equations satisfy
the axioms of Kolmogorov’s (1950) probability calculus.

This theory has several attractive properties. It retains a classical
type system and model theory to compute the value of a sentence in
a world, and it is specified in such a way as to satisfy the axioms of a
standard probability calculus for computing the probability of a sen-
tence. Therefore, it uses well understood formal systems at both levels

1See(Gaifman and Snir, 1982) on the assignment of probabilities to worlds, un-
derstood as models.



4 / LiLT volume 10, issue (4) November 2015

of representation. It also proposes the outline of a theory of semantic
learning for simple one-place predicate classifiers, where this could be
generalised to a richer representation language.

However, it also suffers from the disadvantage that it requires prob-
abilities to be assigned to entire worlds in the model. Complete worlds
are not tractably representable. Assume that worlds are maximal con-
sistent sets of propositions (Carnap, 1947).2 If the logic of propositions
is higher-order, then the problem of determining membership in such
a set is not complete by virtue of the fact that the theorems of higher-
order logic are not enumerable. But then it is not possible to identify
all of the valid sentences, which hold across all worlds.

If the logic is classically first-order, then the membership problem is
complete, but it is undecidable. It is possible, at least in principle, to
list the set of valid sentences, which hold in all worlds, but not the set
of invalid ones, which do not.

Alternatively, we could limit ourselves to propositional logic, which
is both complete and decidable. We might try to generate a maximally
consistent set of propositions by starting with a single finite proposition
P that encodes a finite set of propositions that are true in a world w,
where we formulate P in Conjunctive Normal Form (CNF). A formula
in CNF is a conjunction of disjunctions of literals, and a literal is either
an elementary proposition or the negation of one. We could then extend
our coverage of the facts of w by simply adding true conjuncts to P . But
it is not clear what (finite) set of rules or procedures we could use to
decide which propositions to add in order to generate a full description
of a world in a systematic way. Nor is it obvious at what point the
conjunction will constitute a complete description of the world. By
contrast, we can characterise a language L through a formal grammar
that generates all and only the infinite set of sentences in L, from a finite
set of rules. But with a world we do not have a comparable procedure for
producing the infinite CNF required to provide a complete description
of w.

Moreover, all the propositions that P entails must be added to it,
and all the propositions with which P is inconsistent must be excluded,
in order to obtain the maximal consistent set of propositions that de-
scribe a world. But then testing the satisfiability of P is an instance
of the kSAT problem, which, in the general case, is NP-complete.3

2Fox and Lappin (2005), Pollard (2008), generalizing on the characterizations of
possible worlds in Carnap (1947), Jonsson and Tarski (1951), Kripke (1959), define
worlds as ultrafilters in a prelattice of propositions, where the preorder specifies
entailment among equivalence classes of propositions.

3The kSAT problem is to determine whether a formula in propositional logic has
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Why should the fact that constructing a description of a world is NP-
complete be a problem? Isn’t it sufficient that we can, in principle,
encode all of the propositions that are true in w in a CNF formula, and
exclude all the propositions that do not hold in w from this formula?
Unfortunately this will not do if we are interested in sustaining the
cognitive plausibility of our semantic theory. If this theory requires the
representation of a set of worlds, and computing such a representation
is not efficiently possible in real time, then we cannot regard this device
as part of the mechanism through which humans construct interpreta-
tions of the sentences and other expressions in natural language.

Notice that the problem is not avoided by using a Kripke frame se-
mantics (as in Montague, 1974) in which worlds are simple elements
of a set W . In a system of this kind a model is an ordered k-tuple
hD,W,F,Ri, where D is the domain of objects, F is an interpretation
function that assigns intensions to the constants of a language, and R

is an accessibility relation on W . Intensions are functions from worlds
to denotations of the appropriate type. Propositions are functions from
worlds to truth-values, and so every w

i

2 W is in a one-to-one corre-
spondence with the maximal set Prop

w

i

of propositions that are true
at w

i

. But then each w

i

is identified by its corresponding set of max-
imal propositions, and the problem of representing w

i

reduces to that
of determining membership in Prop

w

i

.
In addition to the problems involved in representing individual

worlds, enumerating the set of worlds raises difficulties of its own. The
set of worlds is at least countably infinite. But Lewis (1973), as noted
by Partee (1977), suggests that a reasonable cardinality for the set of
possible worlds is transfinite: i

2

. Rescher (1999) argues that possible
worlds are inherently non-denumerable because they cannot be individ-
uated. Given a specified world, there are an infinite number of variants
that can be generated for that world by varying any of its property
sets.

Some formal semanticists characterise intensions and modal concepts
in terms of the set of possible situations rather than the set of possi-
ble worlds. Heim (1990), Lappin and Francez (1994), Lappin (2000),
Kratzer (2014), among others, adopt this approach. As possible sit-
uations are parts of worlds it might appear, at first glance, that the
representation problem which we encounter for worlds does not arise
for possible situations.

In fact, positing the set of possible situations as the basis for an

a satisfying set of truth-value assignments. For the complexity results of different
types of kSAT problem see Papadimitriou (1995).
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intensional semantics makes the representation problem significantly
worse. As a world is a maximal consistent set of propositions, each
situation in that world is a subset of this maximal set. But then each
world w

i

yields a power set P(Prop

w

i

) of possible situations. The max-
imal set of propositions that specify w

i

is (at least countably) infinite,
and the cardinality of P(Prop

w

i

) is higher than the cardinallity of
Prop

w

i

(by Cantor’s theorem for the cardinality of power sets). The
set of possible situations is the union of P(Prop

w

i

) (more accurately,
of P(Prop

w

i

)� ;) for all w
i

. This set is not recursively enumerable.
Computing the representation of an infinite set of worlds, or of pos-

sible situations, and constructing a probability distribution over them
would seem to be an insuperable task. While assigning probabilities to
elements of the set of worlds (or possible situations) may be formally
viable, it is entirely unclear how we could estimate such a distribution
computationally to derive interpretations of the sentences of a natural
language.

The representation problem does not arise for individual situations,
or for situation types (Barwise and Perry, 1983). Situations can be as
large or as small as we need them to be. A situation type abstracts over
situations through the use of parameters to represent possible elements
of a situation.

1.2 Probability Distributions over Situation Types

Probability theorists working in AI often describe probability judge-
ments as involving distributions over worlds. In fact, they tend to limit
such judgements to a restricted set of outcomes or events, each of which
corresponds to a partial world which is, effectively, a type of situation.
A classic example of the reduction of worlds to situation types in prob-
ability theory is the estimation of the likelihood of heads vs tails in a
series of coin tosses. Here the world is held constant except along the
dimension of a binary choice between a particular set of possible out-
comes. A slightly more complex case is the probability distribution for
possible results of throwing a single die, which allows for six possibilities
corresponding to each of its numbered faces.

Consider the following discussion from Halpern (2003).
Most representations of uncertainty (certainly all the ones considered
in this book) start with a set of possible worlds, sometimes called states
or elementary outcomes. Intuitively, these are the worlds or outcomes
that an agent considers possible. For example, when tossing a die, it
seems reasonable to consider six possible worlds, one for each of the
ways that the die could land. This could be represented by a set W
consisting of six possible worlds, {w

1

, ..., w
6

}; the world w
i

is the one
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where the die lands i, for i = 1,...,6. (The set W is often called the
sample space in probability texts.)

For the purposes of this book, the objects that are known (or considered
likely or possible or probable) are events (or propositions). Formally,
an event or proposition is just a set of possible worlds. (p. 12)

Clearly what Halpern is describing as a possible world here corre-
sponds to a type of situation in the sense of situation theory (Barwise
and Perry, 1983), rather than to the maximal worlds of possible worlds
semantics. If we model worlds of the latter type algebraically, they are
ultrafilters of propositions in a lattice of entailment. Each proposition
in the language receives a truth-value in such a world. But in prac-
tice probability distributions are estimated over fragments of worlds
specified by a highly constrained set of possible outcomes. The more
fragments of worlds are observed, the better the estimation of the un-
derlying hidden probability distribution that describes all the worlds.

We are making explicit the assumption, common to most probability
theories used in AI, with clearly defined sample spaces, that probabil-
ity is distributed over situation types, rather than over sets of worlds,
understood as maximal consistent sets of propositions, or over the set
of all possible situations.4

An Austinian proposition is a judgement that a situation is of a
particular type, and we treat it as probabilistic. In fact, it expresses
a subjective probability in that it encodes the belief of an agent con-
cerning the likelihood that a situation is of that type. The core of an
Austinian proposition is a type judgement of the form s : T , which
states that a situation s is of type T . On our account this judgement
is expressed probabilistically as p(s : T ) = r, where r 2 [0,1].

In the probabilistic type system that we are proposing situation
types are intensional objects over which probability distributions are
specified. This allows one to reason about the likelihood of alternative
states of affairs without invoking possible worlds or possible situations.

4(Goodman and Lassiter, 2015) also propose a probabilistic account of semantics,
which represents the role of pragmatic factors in determining meaning in a given
context. They treat the interpretation of expressions in a language as a process
of reasoning under uncertainty, and they model this process in Bayesian terms.
They describe a stochastic �-calculus and indicate how it is implemented in the
programming language Church. They show how Church functions can be used to
assign probabilities to situation types, which they call possible worlds, and these
functions provide the basis for their formalisation of the meanings of predicates.

Goodman and Lassiter use a classical type theory of the sort applied in Montague
semantics to the meanings of syntactically complex expressions. By contrast, we
are proposing a rich probabilistic type theory as the mechanism for compositional
semantic interpretation.
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Our theory assumes only actual situations, and an intensional type
system. Types are not sets of situations. They can be as large and
underspecified, or as small and fine-grained as we require them to be. It
is not necessary to represent the full set of situations (actual or possible)
in order to acquire these types. They are classifiers of situations that
can be learned through sampling of actual situations, and probabilistic
reasoning concerning the types to which they belong. Therefore, the
problems of tractable representation that we encountered with worlds,
and with the set of possible situations, do not arise in the semantic
theory that we develop here.

The simplest probability judgements involve the application of a bi-
nary classifier to a situation (state or event) to estimate the likelihood
that it is of type T or of type T

0, the complement of T . These two types
exhaust the probability space, so that p(s : T )+p(s : T

0
) = 1. Estimat-

ing the result of a coin toss is an instance of this sort of binary classi-
fier. In more complex cases, judgements distribute probability among
k alternative situation types, as in the outcome of a die throw. Some
of the complexity involved in estimating probability consists in deter-
mining the range of alternative situations types over which probability
is distributed, i.e. identifying the mutually exclusive and exhaustive
types, T

1

, . . . , T

k

, that form a category (a hypothesis space) such that
p(s : T

1

) + ...+ p(s : T

k

) = 1.
Probability judgements are often conditioned by other judgements.

One estimates the likelihood that a situation s is of type T

1

, given that
it is of type T

2

, where a conditional probability judgement of this kind
is expressed as p(s : T

1

| s : T
2

).
Assume that A and B are events that may not be independent of

each other. In classical probability theory the following equation defines
the probability of A and B co-occurring, in terms of the conditional
probability of A relative to B.

p(A ^B) = p(A)p(B | A)

This equation entails the following equation for conditional proba-
bility.5

p(A | B) =

p(A ^B)

p(B)

Formulating this equation for conditional probability in terms of
judgements concerning situation types we obtain

p(s : T
1

| s : T
2

) =

p(s : T
1

^ T
2

)

p(s : T
2

)

5See, for example, Halpern (2003), Section 3.2 for a discussion of conditional
probability.
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A common procedure for estimating p(A | B) is Maximum Likeli-
hood Estimation (MLE), which divides the number of co-occurrences of
A and B events by the number of occurrences of B events in a sample
of observations

|A ^B|
|B|

For p(s⇤ : T

1

| s⇤ : T

2

), where s

⇤ is a particular situation, this would
involve determining, for a set of observations,

|{s | s : T
1

^ T
2

}|
|{s | s : T

2

}| .

In Section 4 we suggest a modified version of MLE to compute p(s

⇤
:

T

1

| s⇤ : T

2

).
If a simple binary classifier is conditioned, then we are estimating

p(s

⇤
: T

1

| s⇤ : T

2

) and p(s

⇤
: T

0
1

| s⇤ : T

2

). For a conditioned k-ary classi-
fier we are judging p(s

⇤
: T

1

| s⇤ : T ) ... p(s⇤ : T

k

| s⇤ : T ). In both cases
the conditioning judgement can be represented as the mother node in
a tree, and the conditioned judgements as its daughters, as in Bayesian
networks of belief.6 Such networks (which are directed acyclic graphs)
encode systems of probabilistic belief update and reasoning in which in-
formation and inferences are passed in both directions along the paths
of the graph. In future work we will explore the connection between our
proposed type system and Bayesian networks. In this paper we focus
on elementary Bayesian classifiers (which can be modelled as two-layer
Bayesian networks) to illustrate how our type theory serves as an in-
terface between perceptual judgement and semantic interpretation.

The bottom-up view of our probabilistic type theory avoids the rep-
resentation problem of the top-down distribution over worlds approach
by assigning probabilities to individual type judgements as classifier
applications. The probability of a sentence (more accurately, the type
judgement that it expresses) is, then, determined directly by the prob-
abilities of its constituent types. We will specify a bottom-up proba-
bilistic semantics on the basis of the type theory that we propose in
Section 2.

This approach to probabilistic semantics is aligned with the way
probabilities have been used in language technology. For example, a sta-
tistical language model is a probability distribution over a sequences of
words. Importantly, it is a sampling distribution of the underlying dis-
tribution that it is attempting to approximate. The top down approach
described in the previous section would correspond to the underlying
distribution. The reason why language technology uses sample distri-

6See Pearl (1990) and Halpern (2003) on Bayesian networks.
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butions is that the underlying distribution of a language can never be
observed. The number of the utterances that speakers of a language
can make is infinite. But even if the number of utterances of a lan-
guage were finite, it is unclear whether an agent using such a language
would be able to observe all of the utterances in his/her lifetime to
build a global probabilistic model (Fagin et al., 1995). Furthermore,
changes are introduced to language as new objects and events come
into existence and agents interact with each other. This means that
global probability distributions over words would have to be updated
at each such temporal instance when changes are introduced.

Therefore, in practical applications (which include language technol-
ogy) we must deal with sample probability distributions which are par-
tial and incrementally updatable through learning. Inference for knowl-
edge is provided by Bayesian reasoning. An agent not being able to
build such updatable sample distributions would not be able to deal
with any real-world situations. An example of this comes from robotic
localisation map building, where such models are widely used (Dis-
sanayake et al., 2001). Furthermore, there have been proposals in cog-
nitive science (Tenenbaum et al., 2011) that the human mind also works
in the same way. The approach taken in this paper to probabilistic se-
mantics is similar in spirit to both of these lines of work. (Dobnik et al.,
2013) explores a connection between robotic localisation and type the-
oretic semantics.

By relating our theoretical framework for probabilistic semantics
with the way in which probabilistic language modelling is used in lan-
guage technology we allow for the application of insights from linguistics
to achieve improved probabilistic models of natural language. On one
hand the types allow us to encode and compose conceptual knowledge.
On the other, we can employ them to capture how such knowledge
is learned in a data-driven way, through probabilistic modelling, both
from the representation of words in linguistic interaction, and from
the application of words to sensory observations. Previous attempts to
relate language and perception through some form of semantic repre-
sentation often make use of a variant of first-order logic (see for example
the work of Matuszek et al. (2012b) for mapping natural language to a
robotic control language, and Matuszek et al. (2012a) for the relation
between logic and perception).

Our approach diverges from this work in using probabilistic types
and type judgements as the primary elements semantic representation,
rather than first-order formulas with models. Our probabilistic type
system permits us to construct a unified framework for expressing prob-
abilistic reasoning from sensory projections to compositional sentence
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meanings, and to representations of dialogue (Dobnik et al., 2014). In
this paper we describe this framework. The type theory provides the
foundation for an account of semantic composition, which we present
in Section 3. It also grounds our sketch of semantic learning, where
individual classifiers are acquired probabilistically through observation
driven Bayesian inference and update rules. We outline this view of
learning in Section 4.

2 Rich Type Theory as a Theory of Probabilities

By rich type theory we understand something analogous to what Luo
(2010, 2011) calls “modern type theory”. Whereas the type theory that
Montague (1974) used for natural language semantics was based on
Church’s (1940) simple theory of types, containing types for entities,
truth values and all possible functions which can be constructed from
these, rich type theories such as Martin-Löf’s (1984) intuitionistic type
theory, embrace the idea that any intuitive “proposition” should be
represented by a type. In linguistic terms we can think of a type corre-
sponding to a “proposition” as a type of situation or event (as suggested
by Ranta, 1994). Thus the semantic content of Kim saw a dog will be
the type of situations where Kim saw a dog. Rich type theories are
standardly formulated as theories of categorical type judgements. An
object a either is or is not of a type T . However, it seems to us that
such type theories provide the basis for a theory of probabilistic type
judgements. There is a probability p that an object a is of type T , or
that there is some object of type T . Alternatively, and perhaps more
interestingly for us, there is a probability p that an agent A makes a
judgement that an object a is of type T , or that there is some object
of type T .

We will formulate our proposal in terms of a particular adaptation
of rich type theory, Type Theory with Records (TTR, Cooper, 2005a,
2012). We have used this previously for natural language semantics (see,
for example, Cooper, 2005b, 2012), and to analyze semantic coordina-
tion and learning (for example, Larsson and Cooper, 2009, Cooper and
Larsson, 2009). It has also been applied to the analysis of interaction
in dialogue (for example, Ginzburg, 2012), and in modelling robotic
states and spatial cognition (for example, Dobnik et al., 2013). We be-
lieve that a probabilistic version of TTR could be useful in all these
domains.

Central to standard formulations of rich type theories is the notion
of a judgement a : T , that object a is of type T . We will represent
the probability of this judgement as p(a : T ). We will now show how
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various kinds of types in TTR can be associated with probabilities.
Basic Types. TTR introduces basic types, that is types which are
not constructed out of other objects introduced in the theory. If T is
a basic type, we assume for the moment that p(a : T ) for any object
a is provided by a probability model, an assignment of probabilities
to judgements involving basic types. We will discuss what such models
might be in Section 4.
PTypes. TTR has types, called ptypes, which are constructed from a
predicate and an appropriate sequence of arguments. The appropriate-
ness of a sequence of arguments for a predicate is determined by the
arity associated with the predicate. The arity is a sequence of types (or,
if we wish to allow polymorphic predicates, a set of sequences of types)
to which the sequence of arguments must belong. An example might be
the predicate ‘man’ with arity hInd ,Timei, where the types Ind and
Time are the type of individuals and of time points respectively. Thus
man(a,t) would be the type of situation (or eventuality) where a is a
man at time t. We will assume for now that a probability model will
provide probabilities p(e : r(a

1

, . . . , a

n

)) for ptypes r(a

1

, . . . , a

n

), and
we will return to this issue in Section 4.

There are two kinds of probabilistic type judgements in TTR. p(a :

T ) is the probability that a is of type T , while p(T ) is the probability
that T is not empty. For any type T it should be the case that p(a :

T )  p(T ). p(T ) is the disjunctive probability of p(a

i

: T ) for all a
i

,
or at least an estimation of this in the limit where there are infinitely
many a

i

’s.7

Meets and Joins. For any types T

1

and T

2

TTR says that there
exists the meet, T

1

^ T

2

and the join T

1

_ T

2

. a : T

1

^ T

2

just in case
a : T

1

and a : T

2

. a : T

1

_T

2

just in case either a : T

1

or a : T

2

(possibly
both).8

Note that TTR is an intensional type theory. The meet and join
operations create many distinct types which are equivalent. So, for
example, for two different types T

1

and T

2

, T
1

^ T

2

and T

2

^ T

1

are
distinct types, although they are equivalent in the sense that no matter
what we assign to the basic types, for any object a, a : T

1

^ T

2

if and
only if a : T

2

^T

1

. Similarly for any type T , T ^T will be a type distinct
from T , although the two types are equivalent. Similar remarks hold

7See our discussion of disjunctive probability and probabilistic disjunctive types
below for a characterization of the estimating such a probability in the limit.

8This use of intersection and union types is not standard in rich type theories,
where product and disjoint union are preferred following the Curry-Howard corre-
spondence for conjunction and disjunction.
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for join types.
The probabilities for meet and joint types are defined by the classical

Kolmogorov (1950) equations for conjunction and disjunction.
p(a : T

1

^ T
2

) = p(a : T
1

)p(a : T
2

| a : T
1

)

9

p(a : T
1

_ T
2

) = p(a : T
1

) + p(a : T
2

)� p(a : T
1

^ T
2

)

These definitions sustain the equivalences:
p(a : T

1

^ T
2

) = p(a : T
2

^ T
1

)

p(a : T
1

_ T
2

) = p(a : T
2

_ T
1

)

p(a : T ^ T ) = p(a : T ) = p(a : T _ T )

We need to consider the fact that the types in a meet or join may
stand in the subtype relation. A type T

1

is a subtype of type T

2

, T
1

v
T

2

, just in case a : T

1

implies a : T

2

no matter what we assign to the
basic types. If T

1

v T

2

then a : T

1

^ T

2

iff a : T

1

, and a : T

1

_ T

2

iff
a : T

2

. Similarly, if T
2

v T

1

then a : T

1

^ T

2

iff a : T

2

, and a : T

1

_ T

2

iff a : T

1

.
It is reasonable to assume that if T

1

v T

2

, then p(a : T

2

| a : T

1

) = 1.
Given this assumption, our definitions of meet and join types support
the following:

If T
1

v T
2

, then p(a : T
1

^ T
2

) = p(a : T
1

), and p(a : T
1

_ T
2

) = p(a : T
2

).

If T
2

v T
1

, then p(a : T
1

^ T
2

) = p(a : T
2

), and p(a : T
1

_ T
2

) = p(a : T
1

).

If T
1

v T
2

, then p(a : T
1

)  p(a : T
2

).

These definitions also entail:
p(a : T

1

^ T
2

)  p(a : T
1

)

p(a : T
1

)  p(a : T
1

_ T
2

)

Conjunctive and Disjunctive Probabilities We generalize proba-
bilistic meet and join types to probabilities for unbounded conjunctive
and disjunctive type judgements, again using the classical Kolmogorov
equations.

Let
^
p
({a

0

: T

0

, . . . , a

n

: T

n

}) be the conjunctive probability of judge-

ments a

0

: T

0

, . . . , a

n

: T

n

.
^
p
({a

0

: T
0

, . . . , a
n

: T
n

}) =

^
p
({a

0

: T
0

, . . . , a
n�1

: T
n�1

})p(a
n

: T
n

| a
0

: T
0

, . . . , a
n�1

: T
n�1

), if

9If T
1

and T
2

are probabilistically independent, we have p(a : T
1

^ T
2

) = p(a :
T
1

)p(a : T
2

).
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n > 0,
p(a

0

: T
0

), if n = 0

^
p
({}) = 1

We interpret universal quantification as an unbounded conjunctive
probability, which is true if it is vacuously satisfied (n = 0).10

The conjunctive probability of an infinite sequence of judgements is
^
p
({a

0

: T

0

, a

1

: T

1

, . . .}) = lim

i!1

^
p
(a

i

: T

i

).

Let
_p

({a
0

: T

0

, a

1

: T

1

, . . . , a

n

: T

n

}) be the disjunctive probability

of judgements a

0

: T

0

, a

1

: T

1

, . . . , a

n

: T

n

. It is computed by
_p

({a
0

: T
0

, . . . , a
n

: T
n

}) =

_p
({a

0

: T
0

, . . . , a
n�1

: T
n�1

}) + p(a
n

: T
n

) �
^
p
({a

0

: T
0

, . . . , a
n�1

:

T
n�1

})p(a
n

: T
n

| a
0

: T
0

, . . . , a
n�1

: T
n�1

), if n > 0,
p(a

0

: T
0

), if n = 0

_p
({}) = 0

We take existential quantification to be an unbounded disjunctive
probability, which is false if it lacks a single non-nil probability instance.

The disjunctive probability of an infinite sequence of judgements is
_p

({a
0

: T

0

, a

1

: T

1

, . . .}) = lim

i!1

_p
(a

i

: T

i

).

Conditional Conjunctive Probabilities. We compute conditional
conjunctive probabilities with the following equation.

^
p
({a

0

: T
0

, . . . , a
n

: T
n

} | a : T ) =

^
p
({a

0

: T
0

, . . . , a
n�1

: T
n�1

} | a : T )p(a
n

: T
n

| a
0

: T
0

, . . . , a
n�1

:

T
n�1

, a : T )), if n > 0,
p(a

0

: T
0

| a : T ), if n = 0

^
p
({} | a : T ) = 1

10See Paris (2010) on computing the probability of a universally quantified state-
ment as the product of the probabilities of its corresponding individual instances in
a conjunction.
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Function Types. For any types T
1

and T

2

TTR gives us a type (T
1

!
T

2

), which is the type of total functions with domain the set of all
objects of type T

1

and range included in objects of type T

2

.
We require that there is at least one function for each function graph,

provided that it is well-typed, such that its domain (left projection) is
the set of objects belonging to some type and its range (right projection)
is a subset of the set of objects belonging to some type.11 This will help
us associate probabilities with judgements concerning function types.
The following formula says that the probability that a function f is of
type (T

1

! T

2

) is the probability that everything in its domain is of
type T

1

and that everything in its range is of type T

2

, and furthermore
that everything not in its domain which has some probability of being
of type T

1

is not in fact of type T

1

.
We can compute the probability that a function belongs to a certain

function type as follows.
p(f : (T

1

! T
2

)) =

^

a2dom(f)

p
(a : T

1

, f(a) : T
2

)(1�
_

p(a:T1)>0, a 62dom(f)

p
(a : T

1

))

Suppose that T
1

is the type of event where there is a flash of lightning
and T

2

is the type of event where there is a clap of thunder. Suppose
that f maps lightning events to thunder events, and that it has as its
domain all events which have been judged to have probability greater
than 0 of being lightning events. Let us consider that all the putative
lightning events were clear examples of lightning (i.e. judged with prob-
ability 1 to be of type T

1

) and are furthermore associated by f with
clear events of thunder (i.e. judged with probability 1 to be of type T

2

).
Suppose there were four such pairs of events. Then the probability of
f being of type (T

1

! T

2

) is (1⇥ 1)

4, that is, 1.
Suppose, alternatively, that for one of the four events f associates

the lightning event with a silent event, that is, one whose probability
of being of T

2

is 0. Then the probability of f being of type (T

1

! T

2

)

is (1⇥ 1)

3⇥ (1⇥ 0) = 0. One clear counterexample is sufficient to show
that the function is definitely not of the type.

In cases where the probabilities of the antecedent and the consequent
type judgements are higher than 0, the probability of the entire judge-
ment on the existence of a functional type f will decline in proportion
to the size of dom(f). Assume, for example that there are k elements
a 2 dom(f), where for each such a p(a : T

1

) = p(f(a) : T

2

) � .5. Every

11Since the complete version of TTR allows both singleton types and join types
it will be possible to construct a function type for any set of ordered pairs, provided
that the objects in the pairs belong to some type.
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a

i

that is added to dom(f) will reduce the value of p(f : (T

1

! T

2

)),
even if it yields higher values for p(a : T

1

) and p(f(a) : T

2

). This is due
to the fact that we are treating the probability of p(f : (T

1

! T

2

)) as
the likelihood of there being a function that is satisfied by all objects in
its domain. The larger the domain, the less probable that all elements
in it fulfill the functional relation.

We are, then, interpreting a functional type judgement of this kind as
a universally quantified assertion over the pairing of objects in dom(f)

and range(f). The probability of such an assertion is given by the con-
junction of assertions corresponding to the co-occurrence of each ele-
ment a in f ’s domain as an instance of T

1

with f(a) as an instance of T
2

.
This probability is the product of the probabilities of these individual
assertions.

This seems reasonable, but it only deals with functions whose domain
is all objects which have been judged to have some probability, however
low, of being of type T

1

. Intuitively, functions which leave out some of
the objects with lower likelihood of being of type T

1

should also have
a probability of being of type (T

1

! T

2

). This factor in the probability
is represented by the second element of the product in the formula.
Function Argument Application. There are additional probabili-
ties associated with a function. Given that f : (T

1

! T

2

) and a : T

1

,
what is the probability that f(a) : T

2

? This should be p(f(a) : T

2

|
a : T

1

, f : (T

1

! T

2

)). Probabilities associated with functions play an
important role in probabilistic reasoning. Suppose that e is an event
where there is a loud bang and T

2

is the type of events where there is
thunder. p(e : T

2

) may be quite low considered independently. There
are many loud bangs that are not thunder. However, suppose that T

1

is the type of lightning events and that event a is a lightning event,
a : T

1

. Suppose furthermore that f(a) = e and the probability that
f : (T

1

! T

2

) is high. Then p(f(a) : T

2

| a : T

1

, f : (T

1

! T

2

))

should be high. Functional types provide us with a way of generating
conditional probabilities that correspond to defeasible inferences.
Negation. The negation, ¬T , of type T , is the function type (T ! ?)

where ? is a necessarily empty type (that is, a type which has no
witnesses regardless of what we assign to basic types). p(?) = 0.

It is important to make clear the intuition behind this negation which
is derived from the standard approach to negation in intuitionistic logic.
It is a negation that says that there is no witness for the type T . For
example, if T is the type of situation where Kim is asleep, ¬T is a
type that would have a witness just in case there are no situations in
which Kim is asleep, that is, T is empty. There are alternative intuitions
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which could be called “negation” in a type system, for example, where
an object of type ¬T is of a type incompatible with T (Cooper and
Ginzburg, 2011, 2012).

It follows from our rules for function types that
p(f : ¬T ) = 1 if dom(f) = ;, that is T is empty, and 0 otherwise.

If ¬T is non-empty, then there must be a function on the set of objects
of type T whose range is included in the set of objects of type ?, that
is the empty set. The only way that a function can have the empty set
as its range is if its domain is also the empty set. Therefore, if ¬T is
non-empty then T must be empty.
Dependent Types. In TTR dependent types are functions from ob-
jects to types. Given appropriate arguments as functions they will re-
turn a type. Therefore, the discussion of probabilities associated with
functions above under Function Types and Function Argument

Application also applies to dependent types.
Record Types. A record in a type system associated with a set of
labels is a set of ordered pairs (fields) whose first member is a label
and whose second member is an object of some type (possibly a record
type). Records are required to be functional on labels, that is each
label in a record can only occur once in the record’s left projection.
If r is a record containing a field with the label `, then we use r.`

to denote the object contained in that field in r. Since the objects in
the fields may themselves be records we may have a sequence of labels
pointing to an object in a record embedded in r and we will extend the
notation to allow expressions of the form r.`

1

.`

2

. . . . .`

n

. We will refer
to `

1

.`

2

. . . . .`

n

as a path in r.
A dependent record type is a set of fields (ordered pairs) consisting

of a label ` followed either (clause 2) by a type or (clause 3) by a pair
consisting of a dependent type (a function of one or more arguments
which returns a type) and a sequence of paths (indicating where in a
record the arguments to the dependent type are to be found). The set
of record types is defined by:

1. [], that is the empty set or Rec, is a record type. r : Rec just in
case r is a record.

2. If T
1

is a record type, ` is a label not occurring in T

1

, and T

2

is
a type, then T

1

[ {h`, T
2

i} is a record type. r : T

1

[ {h`, T
2

i} just
in case r : T

1

, r.` is defined (` occurs as a label in r) and r.` : T

2

.

3. If T is a record type, ` is a label not occurring in T , T is a
dependent type requiring n arguments, and h⇡

1

, . . . ,⇡

n

i is an n-
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place sequence of paths in T ,12 then T [ {h`, hT , h⇡
1

, . . . ,⇡

n

iii}
is a record type. r : T [ {h`, hT , h⇡

1

, . . . ,⇡

n

iii} just in case r : T ,
r.` is defined and r.` : T (r.⇡

1

, . . . , r.⇡

n

).

We introduce a type, RecType, the type of record types, such that
T :RecType just in case T is a record type as defined above.

We define the probability that an object r is of a record type T with
these clauses:

1. p(r : Rec) = 1 if r is a record, 0 otherwise

2. p(r : T

1

[ {h`, T
2

i}) =

^
p
(r : T

1

, r.` : T

2

) if r.` is defined, 0

otherwise
3. If T : (T

1

! (. . . ! (T

n

! T

0
) . . .)),

then for any record type, T , p(r : T[{h`, hT , h⇡
1

, . . . ,⇡

n

iii}) =
^
p
(r : T, r.` : T (r.⇡

1

, . . . , r.⇡

n

) | r.⇡
1

: T

1

, . . . , r.⇡

n

: T

n

)

We use a tabular format to represent records and record types. A
record {h`

1

, v

1

i, . . . , h`
n

, v

n

i} is displayed as
2

4
`
1

= v
1

. . .
`
n

= v
n

3

5

and a record type {h`
1

, T

1

i, . . . , h`
n

, T

n

i} is displayed as
2

4
`
1

: T
1

. . .
`
n

: T
n

3

5

Probabilities that Types are Non-Empty. We also consider
judgements that a type T is non-empty, that is, that there is some
a such that a : T . This judgement is sometimes represented in type
theory as ‘T true’. When types are considered as “propositions”, then
they are true just in case there is something of the type, and false oth-
erwise. For example, Kim saw a dog is true just in case the type of
situation where Kim saw a dog is non-empty. We represent the prob-
ability of a type T being non-empty as p(T ). For any type T it is the
case that p(a : T )  p(T ).

We define p(T ) to be
1_

i

p
(a

i

: T ) (that is, lim

i!1

_p
(a

i

: T )) for a

i

such

that p(a
i

: T ) > 0. It does not matter which sequence of a’s you choose,

12In the full version of TTR we also allow absolute paths which point to particular
records, but we will not include them here.
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as the disjunction of all the probability sequences will converge on the
same value.

Remark: p(¬T ) = 1� p(T )

Proof By definition of p(¬T ),
p(¬T ) = p(T ! ?)

=

1_

i

p
(f

i

: T ! ?) for p(f

i

: T ! ?) > 0.

For each f

i

,

p(f

i

: T ! ?) =

^

a2dom(f

i

)

p
(a : T, f

i

(a) : ?)(1�
_

a 62dom(f

i

)

p
(a : T ))

Since for any a, p(a : ?) = 0, the only cases where p(f
i

: T ! ?) > 0

will be those in which dom(f

i

) = ;. Therefore
^

a2dom(f

i

)

p
(a : T, f

i

(a) : ?) =

^
p
{}

= 1

This means that for functions f

; with empty domains

p(f

;
: T ! ?) = 1�

_

a

p
(a : T )

which is the probability that nothing is of type T . Given that
_

a

p
(a : T ) =

1_

i

p
(a

i

: T ) = p(T )

we have shown that

p(f

;
: T ! ?) = 1� p(T )

As we are assuming that there is at least one function for each function
graph, p(f;

: T ! ?) for a particular function, f;, will be identical with
p(T ! ?). The argument for this is as follows: assuming we have found
one such function, f;, any other candidate functions will not change
the probability. There are two cases to consider. (i) If the domain of the
new function is empty, then it will have the same probability as the first
function of being of type (T ! ?). The conditional probability of it
being of this type given that the first function is of this type is 1. This
means that the disjunctive probability will not change. (ii) The new
function has a non-empty domain. But this has a 0 possibility (both
absolute and conditional) of being of a function type with ? as the
range. Hence such a function will not be considered among those which
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have greater than 0 probability of being a witness for the function type
in question.

Thus we have shown p(¬T ) = 1� p(T ), as desired.
Corollary: (i) p(T _ ¬T ) = 1, and (ii) p(¬¬T ) = p(T ).

Proof (i) follows from p(T ) =
1_

i

p
(a

i

: T ), our equations for the

probability of disjunctive type judgements, and the Remark.
p(¬T ) = 1� p(T ), and p(T _ ¬T ) = p(T ) + p(¬T ) = 1.
(ii) By the Remark,
p(¬¬T ) = 1� p(¬T ), and 1� p(¬T ) = 1� (1� p(T )) = p(T ).

The classical Kolmogorov equations that we use to specify probabil-
ity judgements for negative and disjunctive types in our system preserve
Boolean negation.

In the case of dependent types there is an additional probability
judgement that we can consider: what is the likelihood that there is
something of the type resulting from the application of the dependent
type to an argument? Suppose that T is the dependent type of thun-
der events caused by a particular lightning event (an event of type T

1

).
Then the relevant probability is p(T (a) | a : T

1

). Some dependent types
are more reliable than others. In the case of thunder and lightning the
probability of there being a thunder event associated with a particular
lightning event is, let us say, 1 (it depends on whether you are includ-
ing inaudible thunder events). In such a case, given a flash of light,
the probability that a clap of thunder will follow is the same as the
probability that the flash of light was lightning. Suppose in contrast
that T

1

is the type of actors and T (a) is the type of situation where
a wins an Oscar. Here p(T (a) | a : T

1

) is much lower than 1, and it is
(perhaps) computed on the basis of the percentage of actors who win
Oscars. The probability of an arbitrary person winning an Oscar is in-
creased if they are an actor, but being an actor by no means guarantees
you an Oscar. Thus an important part of learning to reason effectively
has to do with computing the conditional probabilities associated with
dependent types. We address this issue in Section 4.

3 Semantic Composition

3.1 Interpretation with Categorical Types

We will illustrate our approach by defining a toy fragment. We gener-
ate the fragment with standard context-free phrase structure rules, and
then we define an interpretation function [[ · ]] for this fragment.13 In

13This differs from the standard TTR approach to grammar, which uses signs and
includes syntax in the realm of TTR. Here we concentrate on the TTR treatment
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this subsection, we illustrate how TTR provides the basis for a compo-
sitional semantics by specifying the interpretation of the phrases and
sentences of the fragment in classical terms. Semantic rules apply func-
tions to type theoretically defined arguments to return categorical in-
terpretations, which, in the case of a sentence S, is intuitively a type of
situations. In Section 3.2 we modify this system so that semantic rules
apply to type theoretic arguments to give values defined in terms of
probabilistic type judgements.

We characterize our toy fragment in terms of the following context-
free grammar.

S ! S
⇢

and
or

�
S

S ! Neg S
S ! NP VP
NP ! Det N
NP ! Det N’
NP ! N

prop

N’ ! ADJ N’
N’ ! N
VP ! V

t

NP
VP ! V

i

Neg ! “it’s not true that”
Det ! “a” | “some” | “every” | "most"
N ! “boy” | “girl”
ADJ ! "green" | "imaginary"
N

prop

! “Kim” | “Sandy”
V

t

! “knows” | “sees”
V

i

! “smiles” | “laughs”
Ppty = (

⇥
x:Ind

⇤
!RecType) – the type of properties of individuals.

Quant = (Ppty!RecType) – the type of quantifiers.

kim, sandy : Ind.
know, see are predicates with arity hInd, Indi.
boy, girl, smile, laugh are predicates with arity hIndi.
some, every, most are predicates with arity hPpty, Pptyi.
green, imaginary are predicates with arity hInd, Pptyi.
Note that we follow Montague’s uniform intensional interpretation of
adjectives (and other modifiers). The relational properties that modi-
fiers express are not extensional on the properties to which they apply.
But we can avoid meaning postulates in identifying the subclass of in-
tersective modifiers. We can characterize the elements of this subclass

of interpretation and the modification of this account to accommodate probabilistic
type judgements.



22 / LiLT volume 10, issue (4) November 2015

as functions that return a subtype of the argument to which they ap-
ply. So the interpretation of a green car will be based on a subtype of
car, while that of imaginary car will not.
According to the definition of a system of types (Cooper, 2012) based
on these predicates the set of ptypes will be:
{r(a) | r 2 {boy,girl,smile,laugh} ^ a : Ind}
[{r(a, b) | r 2 {know,see} ^ a, b : Ind}
[{q(Q,P ) | q 2 {some,every,most} ^Q,P : Ppty}
[{r(a, P ) | r 2 {green,imaginary} ^ a : Ind ^ P : Ppty}

[[ [S S
1

and S
2

] ]] =

e
1

:[[ S
1

]]

e
2

:[[ S
2

]]

�

(that is, a record type with two fields labelled by ‘e
1

’ and ‘e
2

’;
a record of this type models a situation which has two component
situations labelled by ‘e

1

’ and ‘e
2

’ which are of the types given by [[

S
1

]] and [[ S
2

]] respectively)

[[ [S S
1

or S
2

] ]] =
⇥
e:[[ S

1

]]_[[ S
2

]]

⇤

[[ [S Neg S] ]] = [[ Neg ]]([[ S ]])
[[ [S NP VP] ]] = [[ NP ]]([[ VP ]])
[[ [NP Det N] ]] = [[ Det ]]([[ N ]])
[[ [N0 Adj N0] ]] = [[ Adj ]]([[ N0

]])
[[ [NP N

prop

] ]] = [[ N
prop

]]

[[ [VP V
t

NP] ]] = [[ V
t

]]([[ NP ]])
[[ [VP V

i

] ]] = [[ V
i

]]

[[ [Neg “it’s not true that”] ]] = �T :RecType(
⇥
e:¬T

⇤
)

[[ [Det “a”] ]] = �Q:Ppty(�P :Ppty(

2

4
x:Ind
restr:Q(

⇥
x=*x

⇤
)

e:P (
⇥
x=*x

⇤
)

3

5)

[[ [Det “some”] ]] = �Q:Ppty(�P :Ppty(
⇥
e:some(Q, P )

⇤
))

[[ [Det “every”] ]] = �Q:Ppty(�P :Ppty(
⇥
e:every(Q, P )

⇤
))

[[ [Det “most”] ]] = �Q:Ppty(�P :Ppty(
⇥
e:most(Q, P )

⇤
))

[[ [N “boy”] ]] = �r:
⇥
x:Ind

⇤
(
⇥
e:boy(r.x)

⇤
)

[[ [N “girl”] ]] = �r:
⇥
x:Ind

⇤
(
⇥
e:girl(r.x)

⇤
)

[[ [Adj “green”] ]] = �P :Ppty(�r:
⇥
x:Ind

⇤
(
⇥
e:green(r.x,P )

⇤
))

[[ [Adj “imaginary”] ]] = �P :Ppty(�r:
⇥
x:Ind

⇤
(
⇥
e:imaginary(r.x,P )

⇤
))

[[ [N
prop

“Kim”] ]] = �P :Ppty(P (
⇥
x=kim

⇤
))

[[ [N
prop

“Sandy”] ]] = �P :Ppty(P (
⇥
x=sandy

⇤
))

[[ [V
t

“knows”] ]] = �P:Quant(�r
1

:
⇥
x:Ind

⇤
(P(�r

2

:(
⇥
e:know(r

1

.x,r
2

.x)
⇤
))))

[[ [V
t

“sees”] ]] = �P:Quant(�r
1

:
⇥
x:Ind

⇤
(P(�r

2

:(
⇥
e:see(r

1

.x,r
2

.x)
⇤
))))

[[ [V
i

“smiles”] ]] = �r:
⇥
x:Ind

⇤
(
⇥
e:smile(r.x)

⇤
)

[[ [V
i

“laughs”] ]] = �r:
⇥
x:Ind

⇤
(
⇥
e:laugh(r.x)

⇤
)

We have presented two alternative semantics for indefinites here: a
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DRT style analysis (arbitrarily associated with the indefinite article
“a”) and a generalized quantifier analysis (arbitrarily associated with
the determiner “some”). In the semantics for “a” we use a notation
involving ‘*’. Intuitively, the notation ‘*x’ refers to the ‘x’ in the next
higher record. Recall that according to clause 3 of the definition of a
dependent record type on page 17 a field which depends on another
field for its value has in place of a type, an ordered pair consisting of
a dependent type (a function from objects of some type to types) and
a sequence of paths in the record type. The idea is that the dependent
type should be applied to the objects found in the corresponding paths
in the record which is being checked for membership of the record type.
Thus a notation such as

Q(
⇥
x=*x

⇤
)

as in the semantics defined for “a” is an informal abbreviation for the
pair

h�v:Ind(Q(
⇥
x=v

⇤
)), hxii

If P is a property, that is P :Ppty, then let [⌧P ] be the type of objects
which have P , that is a : [

⌧

P ] iff there is some b such that b : P (
⇥
x=a

⇤
).

If T is a type, let [̌T ] be {a | a : T}, the extension (or set of witnesses) of
T . A model hA,F i for this language (that is an assignment A of objects
to basic types, and an assignment F of sets of objects and situations
to ptypes) is one according to which:

{kim, sandy} ✓ A (Ind)
F is defined on the set of ptypes such that

F (some(Q,P ))6= ; iff [̌ [

⌧Q]] \ [̌ [

⌧P ]] 6= ;
F (every(Q,P ))6= ; iff [̌ [

⌧Q]] ✓ [̌ [

⌧P ]]

F (most(Q,P ))6= ; iff |[ˇ[⌧Q]]\[ˇ[

⌧

P ]]|
|[ˇ[⌧Q]]| > ✓

most

, where [̌ [

⌧Q]] is non-
empty, and ✓

most

is a contextually determined parameter whose value
is the threshold proportion of objects of type [ˇ[

⌧Q]] that must be
of type [ˇ[

⌧P ]] in order for it to be the case that most Q are P. If
[̌ [

⌧Q]] is empty, then F (most(Q,P ))6= ; (assuming we want a “logical”
interpretation where most men run is trivially true if there are no
men).

Examples:

[[ [S [NP [N
prop

Kim]] [VP [V
i

smiles]]] ]] =
�P :Ppty(P (

⇥
x=kim

⇤
))(�r:

⇥
x:Ind

⇤
(
⇥
e:smile(r.x)

⇤
)) =

�r:
⇥
x:Ind

⇤
(
⇥
e:smile(r.x)

⇤
)(
⇥
x=kim

⇤
) =⇥

e:smile(kim)
⇤

[[ [S [NP [Det a] [N boy]] [VP [V
i

smiles]]] ]] =
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�Q:Ppty(�P :Ppty(

2

4
x:Ind
restr:Q(

⇥
x=*x

⇤
)

e:P (
⇥
x=*x

⇤
)

3

5))

(�r:
⇥
x:Ind

⇤
(
⇥
e:boy(r.x)

⇤
))

(�r:
⇥
x:Ind

⇤
(
⇥
e:smile(r.x)

⇤
)) =2

4
x:Ind
restr:�r:

⇥
x:Ind

⇤
(
⇥
e:boy(r.x)

⇤
)(
⇥
x=*x

⇤
)

e:�r:
⇥
x:Ind

⇤
(
⇥
e:smile(r.x)

⇤
)(
⇥
x=*x

⇤
)

3

5 =

2

4
x:Ind
restr:

⇥
e:boy(*x)

⇤

e:
⇥
e:smile(*x)

⇤

3

5

(In this example we have used the *-notation introduced on p. 23.)
Note that any record of this last type will be (multiset) extensionally

equivalent (in the sense defined in Cooper, 2012) to a record of the type
2

4
x:Ind
restr:boy(x)
e:smile(x)

3

5

That is, the set (or multiset) of objects constituting the leaves of the
records (i.e. the objects which are at the end of the paths in the records)
will be identical. Although the records themselves are distinct because
of the difference in the labels occurring on the paths, the commitment
to constraints on the way that the world must be (represented by the
objects which are the leaves) is the same. Thus the simplifications called
flattening and relabelling in Cooper (2012) will preserve truth. That is,
if T

0 is the result of flattening and/or relabelling T , then T

0 will be
non-empty (“true”) just in case T is non-empty. We will see below that
these operations also preserve probability.

[[ [NP [Det every] [N boy]] ]] =
�Q:Ppty(�P :Ppty(

⇥
e:every(Q, P )

⇤
))(�r:

⇥
x:Ind

⇤
(
⇥
e:boy(r.x)

⇤
)) =

�P :Ppty(
⇥
e:every(�r:

⇥
x:Ind

⇤
(
⇥
e:boy(r.x)

⇤
), P )

⇤
)

[[ [VP [V
t

knows] [NP [N
prop

Sandy]]] ]] =
�P:Quant(�r

1

:
⇥
x:Ind

⇤
(P(�r

2

:(
⇥
e:know(r

1

.x,r
2

.x)
⇤
))))(�P :Ppty(P (

⇥
x=sandy

⇤
))) =

�r
1

:
⇥
x:Ind

⇤
(�P :Ppty(P (

⇥
x=sandy

⇤
))(�r

2

:(
⇥
e:know(r

1

.x,r
2

.x)
⇤
))) =

�r
1

:
⇥
x:Ind

⇤
(�r

2

:(
⇥
e:know(r

1

.x,r
2

.x)
⇤
)(
⇥
x=sandy

⇤
)) =

�r
1

:
⇥
x:Ind

⇤
(
⇥
e:know(r

1

.x,sandy)
⇤
)

[[ [S [NP [Det every] [N boy]] [VP [V
t

knows] [NP [N
prop

Sandy]]]] ]] =
�P :Ppty(

⇥
e:every(�r:

⇥
x:Ind

⇤
(
⇥
e:boy(r.x)

⇤
), P )

⇤
)(�r

1

:
⇥
x:Ind

⇤
(
⇥
e:know(r

1

.x,sandy)
⇤
))

=⇥
e:every(�r:

⇥
x:Ind

⇤
(
⇥
e:boy(r.x)

⇤
), �r

1

:
⇥
x:Ind

⇤
(
⇥
e:know(r

1

.x,sandy)
⇤
))
⇤
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[[ [S [S [NP [Det every] [N boy]] [VP [V
t

knows] [NP [N
prop

Sandy]]]]
and [S [NP [N

prop

Kim]] [VP [V
i

smiles]]]] ]] =


e
1

:
⇥
e:every(�r:

⇥
x:Ind

⇤
(
⇥
e:boy(r.x)

⇤
), �r

1

:
⇥
x:Ind

⇤
(
⇥
e:know(r

1

.x,sandy)
⇤
))
⇤

e
2

:
⇥
e:smile(kim)

⇤
�

Note that any record of this last type will be (multiset) extensionally equivalent
(in the sense defined in Cooper, 2012) to a record of the type


e
1

: every(�r:
⇥
x:Ind

⇤
(
⇥
e:boy(r.x)

⇤
), �r

1

:
⇥
x:Ind

⇤
(
⇥
e:know(r

1

.x,sandy)
⇤
))

e
2

: smile(kim)

�

We have shown how a compositional semantics can associate a type
with declarative sentences. According to this semantics the type will
always be a record type representing a type of situations. Thus we can
consider a type Sit (“situation”) to be identical with Rec (“record”). An
agent can then judge whether a situation, s, is the type, T , assigned to
a sentence by our semantics. Such a judgement is normally not consid-
ered as a type theoretic object. However, Ginzburg (2012) suggests that
such judgements can correspond to type theoretic objects called Aus-
tinian propositions (which have their origins in the work of Barwise and
Perry (1983) on situation semantics, where Austinian propositions are
introduced on the basis of Austin (1961)). Austin’s idea was that propo-
sitions are not objects that are true or false simpliciter but are true
or false with respect to the part of the world that is being described.
Barwise and Perry took their situations to be part of the world and
what they called Austinian propositions as pairings of a situation and
a situation type.

Ginzburg’s proposal is to use Austinian propositions as records of
the type


sit : Sit
sit-type : Type

�

A record of this type, say,


sit = s
sit-type = T

�

is an Austinian proposition which associates the situation s with the
type T . It uses the labels ‘sit’ and ‘sit-type’ to allow us to access the
components of the Austinian proposition. It is a strategy which uses
records in the same way as we use ordered pairs like hs, T i in stan-
dard set theory, except that we have explicit labelling, rather than an
ordering, to recover the components.

We take the type Sit (“situation”) to be identical with the type Rec

(“record”) where r : Rec iff r is a record as defined in the section on
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record types above. The leading idea is that such a proposition � is
true just in case �.sit : �.sit-type.

It is then trivial to recast our grammar so that it maps expressions
of the language and a situation, s, to an Austinian proposition which
may be regarded as the content of the expression for a given described
situation:14

[[ [S S
1

and S
2

] ]]s =

2

4
sit = s

sit-type =

e
1

:[[ S
1

]]
e
2

:[[ S
2

]]

�
3

5

[[ [S S
1

or S
2

] ]]s =


sit = s
sit-type =

⇥
e:[[ S

1

]]_[[ S
2

]]
⇤

�

[[ [S Neg S] ]]s = [[ Neg ]]s([[ S ]])
[[ [S NP VP] ]]s = [[ NP ]]s([[ VP ]])
[[ [NP Det N] ]]s = [[ Det ]]s([[ N ]])
[[ [N0 Adj N0] ]]s = [[ Adj ]]s([[ N0 ]])
[[ [NP N

prop

] ]]s = [[ N
prop

]]s

[[ [VP V
t

NP] ]]s = [[ V
t

]]s([[ NP ]])
[[ [VP V

i

] ]]s = [[ V
i

]]s

[[ [Neg “it’s not true that”] ]]s = �T :RecType(


sit = s
sit-type =

⇥
e:¬T

⇤
�
)

[[ [Det “a”] ]]s = �Q:Ppty(�P :Ppty(

2

664

sit = s

sit-type =

2

4
x:Ind
restr:Q(

⇥
x=*x

⇤
)

e:P (
⇥
x=*x

⇤
)

3

5

3

775)

[[ [Det “some”] ]]s = �Q:Ppty(�P :Ppty(


sit = s
sit-type =

⇥
e:some(Q, P )

⇤
�
))

[[ [Det “every”] ]]s = �Q:Ppty(�P :Ppty(


sit = s
sit-type =

⇥
e:every(Q, P )

⇤
�
))

[[ [Det “most”] ]]s = �Q:Ppty(�P :Ppty(


sit = s
sit-type =

⇥
e:most(Q, P )

⇤
�
))

[[ [N “boy”] ]]s = �r:
⇥
x:Ind

⇤
(


sit = s
sit-type =

⇥
e:boy(r.x)

⇤
�
)

[[ [N “girl”] ]]s = �r:
⇥
x:Ind

⇤
(


sit = s
sit-type =

⇥
e:girl(r.x)

⇤
�
)

[[ [Adj “green”] ]]s = �P :Ppty(�r:
⇥
x:Ind

⇤
(


sit = s
sit-type =

⇥
e:green(r.x,P )

⇤
�
))

[[ [Adj “imaginary”] ]]s = �P :Ppty(�r:
⇥
x:Ind

⇤
(


sit = s
sit-type =

⇥
e:imaginary(r.x,P )

⇤
�
))

[[ [N
prop

“Kim”] ]]s = �P :Ppty(


sit = s
sit-type = P (

⇥
x=kim

⇤
)

�
)

[[ [N
prop

“Sandy”] ]]s = �P :Ppty(


sit = s
sit-type = P (

⇥
x=sandy

⇤
)

�
)

[[ [V
t

“knows”] ]]s = �P:Quant(�r
1

:
⇥
x:Ind

⇤
(P(�r

2

:(


sit = s
sit-type =

⇥
e:know(r

1

.x,r
2

.x)
⇤

�
))))

[[ [V
t

“sees”] ]]s = �P:Quant(�r
1

:
⇥
x:Ind

⇤
(P(�r

2

:(


sit = s
sit-type =

⇥
e:see(r

1

.x,r
2

.x)
⇤

�
))))

[[ [V
i

“smiles”] ]]s = �r:
⇥
x:Ind

⇤
(


sit = s
sit-type =

⇥
e:smile(r.x)

⇤
�
)

14Here we use [[ ↵ ]] to represent the content generated by the previous grammar.
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[[ [V
i

“laughs”] ]]s = �r:
⇥
x:Ind

⇤
(


sit = s
sit-type =

⇥
e:laugh(r.x)

⇤
�
)

3.2 Interpretation with Probabilistic Types

Montague (1974) determines the denotation of a complex expression by
applying a function to an intensional argument (as in [[ NP ]](^[[ VP ]])).
We employ a variant of this general strategy by applying a probabilistic
evaluation function [[ · ]]

p

to a categorical (non-probabilistic) semantic
value. For semantic categories that are interpreted as functions, [[ · ]]

p

returns functions from categorical values to probabilistic functions, or
to probabilities. For sentences it produces probability values.

The probabilistic evaluation function [[ · ]]
p

produces a probabilistic
interpretation based on the compositional semantics given in Section
3.1. For sentences it will return the probability that the sentence is true.
We are not proposing strict compositionality in terms of probabilities.
Probabilities are like truth-values (or rather, truth-values are the limit
cases of probabilities). We would not expect to be able to compute
the probability associated with a complex constituent on the basis of
the probabilities associated with its immediate constituents any more
than we would expect to be able to compute a categorical interpreta-
tion entirely in terms of truth-functions and extensions. However, the
simultaneous computation of categorical and probabilistic interpreta-
tions provides us with a compositional semantic system that is closely
related to the simultaneous computation of intensions and extensions
in classical Montague semantics.

[[ [S S
1

and S
2

] ]]
p

= p(

e
1

:[[ S
1

]]

e
2

:[[ S
2

]]

�
),

that is, the probability that there is something of type

e
1

:[[ S
1

]]

e
2

:[[ S
2

]]

�
.

[[ [S S
1

or S
2

] ]]
p

= p(
⇥
e:[[ S

1

]]_[[ S
2

]]

⇤
)

[[ [S Neg S] ]]
p

= [[ Neg ]]

p

([[ S ]])
[[ [S NP VP] ]]

p

= [[ NP ]]

p

([[ VP ]])
[[ [NP Det N] ]]

p

= [[ Det ]]

p

([[ N ]])
[[ [N0 Adj N0] ]]

p

= [[ Adj ]]
p

([[ N0
]])

[[ [NP N
prop

] ]]
p

= [[ N
prop

]]

p

[[ [VP V
t

NP] ]]
p

= [[ V
t

]]

p

([[ NP ]])
[[ [VP V

i

] ]]
p

= [[ V
i

]]

p

[[ [Neg “it’s not true that”] ]]
p

= �T :RecType(p(
⇥
e:¬T

⇤
))

[[ [Det “some”] ]]
p

= �Q:Ppty(�P :Ppty(p(
⇥
e:some(Q, P )

⇤
)))

[[ [Det “every”] ]]
p

= �Q:Ppty(�P :Ppty(p(
⇥
e:every(Q, P )

⇤
)))

[[ [Det “most”] ]]
p

= �Q:Ppty(�P :Ppty(p(
⇥
e:most(Q, P )

⇤
)))

[[ [N “boy”] ]]
p

= �r:
⇥
x:Ind

⇤
(p(

⇥
e:boy(r.x)

⇤
))
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[[ [N “girl”] ]]
p

= �r:
⇥
x:Ind

⇤
(p(

⇥
e:girl(r.x)

⇤
))

[[ [Adj “green”] ]]
p

= �P :Ppty(�r:
⇥
x:Ind

⇤
(p((

⇥
e:green(r.x,P )

⇤
)))))

[[ [Adj “imaginary”] ]]
p

= �P :Ppty(�r:
⇥
x:Ind

⇤
(p((

⇥
e:imaginary(r.x,P )

⇤
)))))

[[ [N
prop

“Kim”] ]]
p

= �P :Ppty(p(P (
⇥
x=kim

⇤
)))

[[ [N
prop

“Sandy”] ]]
p

= �P :Ppty(p(P (
⇥
x=sandy

⇤
)))

[[ [V
t

“knows”] ]]
p

= �P:Quant(�r
1

:
⇥
x:Ind

⇤
(p(P(�r

2

:(
⇥
e:know(r

1

.x,r
2

.x)
⇤
)))))

[[ [V
t

“sees”] ]]
p

= �P:Quant(�r
1

:
⇥
x:Ind

⇤
(p(P(�r

2

:(
⇥
e:see(r

1

.x,r
2

.x)
⇤
)))))

[[ [V
i

“smiles”] ]]
p

= �r:
⇥
x:Ind

⇤
(p(

⇥
e:smile(r.x)

⇤
))

[[ [V
i

“laughs”] ]]
p

= �r:
⇥
x:Ind

⇤
(p(

⇥
e:laugh(r.x)

⇤
))

A probability distribution d for this language, based on a set of
situations S, is such that:

p
d

(a : Ind) = 1 if a is kim or sandy15

p
d

(s : T ) 2 [0, 1] if s 2 S and T is a ptype
p
d

(s : T ) = 0 if s 62 S and T is a ptype16

p
d

(a : [

⌧P ]) = p
d

(P (
⇥
x=a

⇤
))

p
d

(some(P,Q)) = p
d

([

⌧P ] ^ [

⌧Q])

p
d

(every(P,Q)) = p
d

([

⌧P ] ! [

⌧Q])

p
d

(most(P,Q)) = min(1, p

d

([

⌧

P ]^[

⌧

Q])

✓

most

p

d

([

⌧

P ])

)

The probability that an event e is of the type in which the relation
some holds of the properties P and Q is the probability that e is of
the conjunctive type P ^Q. The probability that e is of the every type
for P and Q is the likelihood that it instantiates the functional type
P ! Q. As we have defined the probabilities associated with functional
types in terms of universal quantification (an unbounded conjunction
of the pairings between the elements of the domain P of the function
and its range Q), this definition sustains the desired reading of every.
The likelihood that e is of the type most for P and Q is the likelihood
that e is of type P ^ Q, factored by the product of the contextually
determined parameter ✓

most

and the likelihood that e is of type P ,
where this fraction is less than 1, and 1 otherwise. This account of most

approximates the categorical interpretation of most given in Section
3.1, with probabilities replacing cardinality values.

Let’s consider a simple example.
Example:

[[ [S [NP [N
prop

Kim]] [VP [V
i

smiles]]] ]]
p

=
�P :Ppty(p(P (

⇥
x=kim

⇤
)))(�r:

⇥
x:Ind

⇤
(
⇥
e:smile(r.x)

⇤
)) =

p(�r:
⇥
x:Ind

⇤
(
⇥
e:smile(r.x)

⇤
)(
⇥
x=kim

⇤
)) =

15This seems an intuitive assumption, though not a necessary one.
16Again this seems an intuitive, though not a necessary assumption.
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p(
⇥
e:smile(kim)

⇤
)

Suppose that
p
d

(s
1

:smile(kim))=.7
p
d

(s
2

:smile(kim))=.3
p
d

(s
3

:smile(kim))=.4

and there are no other situations s
i

such that p
d

(s
i

:smile(kim))>0. Fur-
thermore, let us assume that these probabilities are independent of each
other, that is, p

d

(s
3

:smile(kim)) = p

d

(s
3

:smile(kim) | s

1

:smile(kim),
s

2

:smile(kim)) and so on. Then
p
d

(smile(kim))=
_p

d

(s
1

: smile(kim), s
2

: smile(kim), s
3

: smile(kim))=

_p
d

(s
1

: smile(kim), s
2

: smile(kim)) + .4 � .4
_p

d

(s
1

: smile(kim), s
2

:

smile(kim))=
(.7 + .3� .7⇥ .3) + .4� .4(.7 + .3� .7⇥ .3)=
.874

This means that p

d

(
⇥
e:smile(kim)

⇤
) = .874.

Hence [[ [S [NP [N
prop

Kim]] [VP [V
i

smiles]]] ]]
p

d

= .874 (where [[

↵ ]]

p

d

is the result of computing [[ ↵ ]]

p

with respect to the probability
distribution d).

The probabilistic semantics we have presented above will compute
for a sentence ↵ the probability that there is something of the type (of
situation) which constitutes the content of ↵ in terms of the probabilis-
tic and the categorical interpretations associated with ↵’s constituents.
If the interpretation of ↵, [[ ↵ ]], is a type T , then [[ ↵ ]]

p

is p
d

(T ), where d
is a given probability function which assigns probabilities to basic types
and ptypes. A more explicit notation would be [[ ↵ ]]

d

p

, which makes it
clear that we are computing a probability with respect to a probability
distribution that represents a view of (part of) the world.

This makes our semantics behave like a truth-conditional semantics,
but instead of using truth values in the set {0, 1}, we situate the value
of a sentence in the interval [0, 1]. Saying that [[ ↵ ]]

d

p

= p means that
the probability that there is a situation that makes ↵ true is p, ie. ↵
is true to degree p. This, then, is a probabilistic variant of a classical
semantics based on truth-conditions. For a sentence ↵ it answers the
question: “what is the likelihood that ↵ is true?”.

However, with the tools that we have developed, we could also answer
another question: given a particular situation e and a sentence ↵, “what
is the probability that e is of the type [[ ↵ ]] with respect to a given
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distribution d?”. This is a question about p
d

(e : T ), where T is [[ ↵ ]]. It is
straightforward to define this in a way similar to our previously specified
probabilistic semantics. As before, we suppress the distribution d.

[[ [S S
1

and S
2

] ]]e
p

= p(e :

e
1

:[[ S
1

]]

e
2

:[[ S
2

]]

�
)

[[ [S S
1

or S
2

] ]]e
p

= p(e :
⇥
e:[[ S

1

]]_[[ S
2

]]

⇤
)

[[ [S Neg S] ]]e
p

= [[ Neg ]]

e

p

([[ S ]])
[[ [S NP VP] ]]e

p

= [[ NP ]]

e

p

([[ VP ]])
[[ [NP Det N] ]]e

p

= [[ Det ]]

e

p

([[ N ]])
[[ [N0 Adj N0] ]]e

p

= [[ Adj ]]e
p

([[ N0
]])

[[ [NP N
prop

] ]]e
p

= [[ N
prop

]]

e

p

[[ [VP V
t

NP] ]]e
p

= [[ V
t

]]

e

p

([[ NP ]])
[[ [VP V

i

] ]]e
p

= [[ V
i

]]

e

p

[[ [Neg “it’s not true that”] ]]e
p

= �T :RecType(p(e :
⇥
e:¬T

⇤
))

[[ [Det “some”] ]]e
p

= �Q:Ppty(�P :Ppty(p(e :
⇥
e:some(Q, P )

⇤
)))

[[ [Det “every”] ]]e
p

= �Q:Ppty(�P :Ppty(p(e :
⇥
e:every(Q, P )

⇤
)))

[[ [Det “most”] ]]e
p

= �Q:Ppty(�P :Ppty(p(e :
⇥
e:most(Q, P )

⇤
)))

[[ [N “boy”] ]]e
p

= �r:
⇥
x:Ind

⇤
(p(e :

⇥
e:boy(r.x)

⇤
))

[[ [N “girl”] ]]e
p

= �r:
⇥
x:Ind

⇤
(p(e :

⇥
e:girl(r.x)

⇤
))

[[ [Adj “green”] ]]e
p

= �P :Ppty(�r:
⇥
x:Ind

⇤
(p((e :

⇥
e:green(r.x,P )

⇤
)))))

[[ [Adj “imaginary”] ]]

e

p

= �P :Ppty(�r:
⇥
x:Ind

⇤
(p((e :

⇥
e:imaginary(r.x,P )

⇤
)))))

[[ [N
prop

“Kim”] ]]e
p

= �P :Ppty(p(e : P (
⇥
x=kim

⇤
)))

[[ [N
prop

“Sandy”] ]]e
p

= �P :Ppty(p(e : P (
⇥
x=sandy

⇤
)))

[[ [V
t

“knows”] ]]

e

p

= �P:Quant(�r
1

:
⇥
x:Ind

⇤
(p(e :

P(�r
2

:(
⇥
e:know(r

1

.x,r
2

.x)
⇤
)))))

[[ [V
t

“sees”] ]]e
p

= �P:Quant(�r
1

:
⇥
x:Ind

⇤
(p(e : P(�r

2

:(
⇥
e:see(r

1

.x,r
2

.x)
⇤
)))))

[[ [V
i

“smiles”] ]]e
p

= �r:
⇥
x:Ind

⇤
(p(e :

⇥
e:smile(r.x)

⇤
))

[[ [V
i

“laughs”] ]]e
p

= �r:
⇥
x:Ind

⇤
(p(e :

⇥
e:laugh(r.x)

⇤
))

This version of the semantics will be important for the learning the-
ory that we discuss in section 4. We will be considering an agent who is
confronted with a particular situation and must estimate the probabil-
ity that it belongs to the type represented by a given natural language
expression.

Just as for categorical semantics, we can construct type theoretic
objects corresponding to probabilistic judgements. We will call these
probabilistic Austinian propositions. These are records of type:

2

4
sit : Sit
sit-type : Type
prob : [0,1]

3

5

where [0,1] is used to represent the type of real numbers between 0
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and 1. In our learning theory probabilistic Austinian propositions give
our agents a way of keeping a record of the past judgements which
are important for estimating the probability of a new judgement. The
grammar can be recast so that it returns probabilistic Austinian propo-
sitions in a similar fashion to the way in which we introduced Austinian
propositions before. We give the first rule of the grammar as an exam-
ple.

[[ [S S
1

and S
2

] ]]s
p

=

2

66664

sit = s

sit-type =

e
1

:[[ S
1

]]

e
2

:[[ S
2

]]

�

prob = p(s:

e
1

:[[ S
1

]]

e
2

:[[ S
2

]]

�
)

3

77775

4 Learning through observation

In Section 2 we introduced the basic machinery of probabilistic TTR,
and in Section 3 we showed how a compositional semantics could yield
probabilistic judgements. In this account we relied on the availability
of various conditional probabilities computed from a model consisting
of probabilistic judgements corresponding to probabilistic Austinian
propositions. The task of the learning component of the theory is three-
fold. First, it explains how to compute conditional probabilities based
on a model. Second, it shows how conditional probabilities derived from
a model can be used to make new probabilistic judgements. Third, it
specifies how a model can be learned from observations.

In this section, we will outline a learning theory for the probabilis-
tic type judgements discussed in the earlier sections. The basic idea is
that an agent makes probabilistic observations in the world, based on
perceiving situations, and interacting with the world and other agents.
These judgements can then be used for classifying new situations, thus
yielding new probabilistic observations from which probabilistic judge-
ments can be derived.

The learning theory presented here is limited to learning (an exten-
sion of) the standard Naive Bayes classifier, which of course makes it
quite limited in scope. This is a simplification adopted here for ease of
exposition, and should be regarded as an initial step towards a more
complete learning theory. It is an illustrative fragment of larger project.
This project involves specifying a connection between our probabilistic
type theory and a Bayesian network of beliefs concerning semantically
related classifier applications.



32 / LiLT volume 10, issue (4) November 2015

4.1 Learning and classification

We will assume that agents have a way of perceiving situations in the
world (such situations include individuals and states of affairs). Apart
from perceiving situations (in the sense of obtaining low-level sensory
data from sense organs), agents are also able to detect individuals pre-
sented, and to classify properties of, and relations among individuals.
Larsson (2013) shows how a perceptron classifier of real-valued percep-
tual input can be integrated into TTR. Fernández and Larsson (2014)
gives an account of vagueness using a Bayesian classifier taking real-
valued perceptual information as input.

Observing a situation yields an object of type Sit, the type of situ-
ations. Sit is thus the supertype for more specific types of situations.
We assume that agents keep records of observed situations and their
types, modelled as probabilistic Austinian propositions. For example,
an observation of a situation s

1

involving a boy smiling might yield the
following Austinian proposition:

2

66664

sit = s
1

sit-type =

2

4
x : Ind
c
boy

: boy(x)
c
smile

: smile(x)

3

5

prob = 0.7

3

77775

An agent, A, will make judgements based on a finite string of prob-
abilistic Austinian propositions, J, corresponding to prior judgements
held in memory. For a type, T , we will use J

T

to represent that set of
Austinian propositions j such that j.sit-type v T :

J
T

= {j | j 2 J, j.sit-type = T}
If T is a type and J a finite string of probabilistic Austinian propositions
we use || T ||J to represent the sum of all probabilities associated with
T in J:

|| T ||J=
X

j2J
T

j.prob

We use ⌃(J) to represent the total number of situations classified17,
that is,

⌃(J) =| {s | j 2 J, j.sit = s} |

17This is one of several possible definitions of ⌃(J), and the one that seems to
be closest to the standard Bayesian formulation of priors. Other definitions include
the sum of all probabilities in J, that is,

⌃(J) =
X

j2J

j.prob

We leave the investigation and discussion of these alternatives to future work.
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We will use priorJ(T ) to represent the prior probability that anything
is of type T given J, that is,

priorJ(T ) =
|| T ||J
⌃(J)

if ⌃(J) > 0, and 0 otherwise.
We will use the notation p

A,J(s : T ) (and similarly, p
A,J(s : T

1

|
s : T

2

)) to denote the probability that agent A assigns, with respect to
prior judgements J, to s being of type T (and similarly, the probability
that agent A assigns, with respect to prior judgements J, to s being of
type T

1

, given that A judges s to be of type T

2

).18
Suppose agent A is confronted with a new situation s and considers

whether it is of type T . Observing the situation amounts to using proba-
bilistic reasoning to figure out the probability p

A,J(s : T ). Probabilistic
reasoning crucially depends on conditional probabilities computed by
inference from previous judgements.

Conditional probabilities are computed as follows:

p
A,J(s : T

1

| s : T
2

) =

|| T
1

^ T
2

||J
|| T

2

||J
, if || T

2

||J 6= 0

Otherwise,
p
A,J(s : T

1

| s : T
2

) = 0

This is a TTR variant of the standard Bayesian formula for comput-
ing conditional probabilities:

p(A | B) =

| A&B |
| B |

In Section 1.2 we rendered the TTR variant thus:
|{s | s : T

1

^ T
2

}|
|{s | s : T

2

}| .

Here, however, instead of counting categorical judgements, we are sum-
ming probabilities of judgements. The reason for this is that our “train-
ing data” is not limited to categorical observations. Instead we assume
that it consists of probabilistic observations of situations being of cer-
tain types, with these observations having specified probabilities. By
using an observer’s previous judgements on the probability of an event
being of a particular type, as the prior for the rule that computes the

18We introduce the agent A for intuitive clarity, although here the probabili-
ties associated with judgements depend only on the string of previous judgements
J. Insofar as such strings of judgements are always specific to an agent, indexing
probabilities with both agent and string is in principle superfluous.



34 / LiLT volume 10, issue (4) November 2015

probability of a new event being of that type, we have, in effect, com-
pressed information that properly belongs in a Bayesian network into
our characterisation of a Bayesian classifier. We will here refer to this
“hybrid” as a TTR Bayes classifier. This is a simplification that we
adopt here for clarity of explanation. As we have indicated above, in
future work we will characterise classifier learning through full Bayesian
networks.

To illustrate our approach, assume that we have the following types:

T
boy

=


x : Ind
c
boy

: boy(x)

�
and

T
smile

=


x : Ind
c
smile

: smile(x)

�

Assume also that J
T

boy

^T

smile

has three members (corresponding to
judgements by A that a boy was smiling in three observed situations s

1

,
s

3

and s

4

), and that these Austinian propositions have the probabilities
0.6, 0.6 and 0.5 respectively.

We take J
T

boy

to have five members corresponding to judgements by
A that there was a boy in s

1

, . . . , s

5

, and that the Austinian proposi-
tions assigning T

boy

to s

1

, . . . , s

5

all have probability 0.7. With these
assumptions, the conditional probability that A will assign on the basis
of J to someone smiles, given that he is a boy is

p
A,J(s : T

smile

| s : T
boy

) =

|| T
boy

^ T
smile

||J
|| T

boy

||J
=

0.6 + 0.6 + 0.5
0.7 + 0.7 + 0.7 + 0.7 + 0.7

= .486

Conditional probabilities can be used in a TTR Bayes classifier. Here,
the idea is that A classifies a new situation s based on the prior judge-
ments J, and whatever information A can acquire about s – the ev-

idence. The evidence has the form p
A,J(s : T

e1), . . ., p
A,J(s : T

e

n

),
where T

e1 , . . . , Te

n

are the evidence types. Correspondingly, associated
with a classifier  is a collection of evidence types T

e1
, T



e2
, . . . , T



e

n

and
a collection of possible conclusion types T

c1
, T



c2
, . . . , T



c

m

. The evidence
is acquired by observing and classifying the situation s with respect
to the evidence types. This can be done using another layer of prob-
abilistic classification based on yet another layer of evidence types, or
by probabilistic or non-probabilistic classification of low-level sensory
readings resulting directly from observations (Larsson, 2013, Fernández
and Larsson, 2014).

The TTR Bayes classifier assumes that the evidence is independent,
i.e. that the probability of each piece of evidence is independent of every



Probabilistic Type Theory and Natural Language Semantics / 35

other piece of evidence. This is a severe limitation, but we adopt it here
only as a simplifying assumption. Our Probabilistic TTR framework is
by no means limited to learning based on such independence assump-
tions, and we will discard them when we move into fully articulated
Bayesian networks in future work.

We first formulate Bayes’ rule of conditional probability. This defines
the conditional probability of a conclusion r : T

c

, given evidence r :

T

e1 , r : T

e2 , . . . , r : T

e

n

, in terms of conditional probabilities of the form
p(s

i

: T

e

i

| s
i

: T

c

), 1  i  n, and priors for conclusion and evidence.
p
A,J(r : T

c

| r : T
e1 , . . . , r : T

e

n

) =

priorJ(Tc

)

p
A,J(s : T

e1 | s : T
c

) . . . p
A,J(s : T

e

n

| s : T
c

)

priorJ(Te1) . . . priorJ(Te

n

)

The conditional probabilities, as well as the priors, will be computed
from observations as explained earlier in this section. Part of the point
of the rule of conditional probability is that it allows weighing several
pieces of evidence together without requiring any previous observation
of a situation involving all the evidence types. This allows classifying
situations as being of types not previously encountered.

In cases where situation types are derived from natural language
utterances, this allows us to deal with the compositional generativity
of language, which allows that novel sentences corresponding to new
situation types can easily be constructed. For instance, assume I have
never classified any situation as being of the type where a boy smiles.
In this case, if I have previously classified a situation as involving a
boy, and another situation as involving someone (not a boy) smiling, I
will still be able to assign a probability to a judgement that a situation
is of a type specifying that a boy smiles. This will give me a probabil-
ity that the sentence “A boy smiles” holds of the situation in question.
In future work we will explore alternatives to the simple Bayesian ap-
proach to weighing together evidence from different sources used here,
e.g. Dempster-Schafer theory (Shafer et al., 1976).

We also want the posterior probability of the judgement above (the
probability of the judgement in light of the evidence). We obtain the
posterior probabilities of the different possible conclusions by factoring
in the probabilities of the evidence.

p
A,J(r : T

c

) = p
A,J(s : T

c

| s : T
e1 , . . . , s : T

e

n

)p
A,J(r : T

e1) . . . pA,J(r : T
e

n

)

We now define a TTR Bayes classifier  as a function from a situation
s to a set of probabilistic Austinian propositions, defining a probabil-
ity distribution over the possible conclusion types T



c1
, . . . T



c

m

, given a
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probability distribution over the set of evidence types T



e1
, . . . T



e

n

. If
the classifier is a function

 : Sit ! Set(

2

4
sit : Sit

sit-type : Type

prob : [0,1]

3

5)

such that if r:Sit, then

(r)= {

2

4
sit = r
sit-type = T
prob = p

A,J(r : T )

3

5 | T 2 hT

c1
, . . . ,T

c

m

i}

where

p

A,J(r : T ) = p
A,J(s : T | s : T

e1
, . . . , s : T

e

n

)p
A,J(r : T

e1
) . . .

p
A,J(r : T

e

n

)

A appends this set to J as a result of observing and classifying a sit-
uation. The probabilities are then available for subsequent probabilistic
reasoning.

4.2 Deriving a probabilistic model from Austinian

propositions

One of the desiderata on our theory of learning is that we should be
able to learn a probabilistic model specifying the probabilities of basic
types (such as Ind) and ptypes. So far, we have only explained how an
agent could learn probabilistic Austinian propositions such as2

4
sit = s

sit-type = T
Pred

prob = p

3

5 where Pred is an n-place predicate and

T
Pred

=

2

664

x

1

: Ind

. . .

x

n

: Ind

c

Pred

: Pred(x
1

, . . . , x

n

)

3

775.

There seem to be good reasons for assuming that the probability
that something is of type Ind is always 1. Something being of type
Ind or not is a matter of definition rather than of judgement. It is
only given the assumption that something is an individual that we can
ascribe properties to it with some probability.

If we assume that judgements that something of type Ind are always
1, the probability of a judgement s : T

Pred

is identical to the probability
of the judgement s.c

Pred

: Pred(s.x
1

, . . . , s.x

n

). Hence, we can derive
probabilities of ptype judgements from Austinian propositions of the
T

Pred

kind. For example, given an Austinian proposition
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66664

sit =


x = a
123

c
smile

= e
456

�

sit-type =


x : Ind

c
smile

: smile(x)

�

prob = 0.789

3

77775
,

we can derive the following model:
p(a

123

: Ind) = 1.0
p(e

456

: smile(a
123

)) = 0.789
In the general case, however, the string of observations J may con-

tain several probabilistic Austinian propositions concerning the same
situation s and situation type T :

J = {. . . ,

2

4
sit = s

sit-type = T

prob = p

1

3

5
, . . . ,

2

4
sit = s

sit-type = T

prob = p

2

3

5
, . . . ,

2

4
sit = s

sit-type = T

prob = p

n

3

5
, . . .}

This may happen, for example, if s is classified from several per-
spectives as being of type T , or if information from several different
sensors classify s as being of type T . For such cases, we need a way
of combining several probabilities of s : T , delivered by several sources
of information, into a single probability. One method is to take the
maximum probability, while another is to use the mean probability or
a weighted mean. The theory of probabilistic TTR is not required to
decide this issue.

4.3 Discussion

We have made the simplifying assumption here that agents know what
the relevant evidence is for each classifier. But in general it is not the
case that an agent knows which features are relevant for determining
that an individual is of a certain type. An agent could initially employ
all available sensors with which it can observe a situation, and build
an individual classifier for each kind of constraint. Regression analy-
sis can be used to figure out which features are relevant for a certain
classifier, and a threshold can be applied to rule out those features
whose contribution is negligible to the classification task. Adding mul-
tiple features in classification (especially those that do not contribute
to decisions about the class) increases the complexity of the learning
task. Many more learning instances will be required to avoid acquiring
spurious relations. Knowing which sensory inputs (or features) are use-
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ful contributors to a class is a component of our world knowledge which
can be acquired through linguistic interaction with other agents (see
for example Cooper and Larsson (2009)). In this way, world knowledge
directs and simplifies perceptual classification.

In the current proposal, probabilities are computed from probabilis-
tic judgements when needed – a kind of “lazy evaluation”. Alternatively,
we could pursue an incremental approach where probabilities are up-
dated after each judgement, instead of recomputing them when they
are needed. A further possibility is to combine lazy evaluation with
incrementality, so that all and only the probabilities which have once
been lazily computed are incrementally updated.

5 Conclusions and Future Work

We have presented a probabilistic version of TTR, relying heavily on
classical probability equations for types formed with meet, join, and
negation. This has permitted us to sustain classical equivalences and
Boolean negation for complex types within an intensional type theory.
We have replaced the truth of a type judgement with the probability
of its being the case, and we have applied this approach both to judge-
ments that a situation if of type T , and to the assertion that T is a
non-empty type.

Our probabilistic formulation of TTR provides the basis for a com-
positional semantics in which functions apply to categorical semantic
objects in order to return either functions from categorical interpreta-
tions to probabilistic functions, or, for sentences, to probabilistic Aus-
tinian propositions. One of the interesting ways in which this framework
differs from classical model theoretic semantics is that the basic types
and type judgements at the foundation of the type system correspond
to perceptual judgements concerning objects and events in the world,
rather than to entities in a model and set theoretic constructions de-
fined on them.

We have offered a schematic view of semantic learning. On this ac-
count observations of situations in the world, support the acquisition
of elementary Bayesian classifiers from which the basic probabilistic
types of a TTR semantics are extracted. Our type theory is, then, the
interface between observation-based learning of classifiers for objects
and the situations in which they figure on one hand, and the com-
putation of complex semantic values for the expressions of a natural
language from these simple probabilistic types and type judgements
on the other. Therefore our general model of interpretation achieves
a highly integrated bottom-up treatment of linguistic meaning and
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perceptually-based cognition that situates meaning in learning how to
make observational judgements concerning the likelihood of situations
obtaining in the world.

Our future work will need to address both sides of the TTR interface.
It is necessary to extend the coverage of our compositional fragment
to deal with a fuller range of syntactic structures and their semantic
properties at the high end of this model. At the lower end we must refine
our learning theory to accommodate more complex kinds of classifier
acquisition, and show how these classifiers feed the probabilistic type
system that supports our compositional semantics. We must also extend
the theory to incorporate dialogue and teacher driven learning.

One way of approaching the second of these tasks, which we are cur-
rently exploring, is to construct a robotic agent that learns functional
types which apply to sensory data of a particular kind (records of situ-
ations) to return probabilistic predicate types. To the extent that this
project is successful, it will demonstrate the viability of the model of
learning and interpretation that we are proposing here.
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