The Edinburgh Machine Translation Systems for IWSLT 2015

Matthias Huck, Alexandra Birch

School of Informatics
University of Edinburgh
Scotland, United Kingdom

mhuck@inf.ed.ac.uk

Abstract

This paper describes the University of Edinburgh’s ma-
chine translation (MT) systems for the IWSLT 2015 evalu-
ation campaign. Our submissions are based on preliminary
systems which are under development for the purpose of lec-
ture translation in the TraMOOC project,' funded by the Eu-
ropean Union.

We participated in the English—Chinese and the
English—German translation tasks in the MT track, utilizing
only data supplied by the organizers or listed as permissible.
‘We built phrase-based translation systems for both tasks. For
English—German, we furthermore made use of syntax-based
translation and system combination.

1. Introduction

The University of Edinburgh’s translation engines are based
on the open source Moses toolkit [1]. We set up
phrase-based systems [2, 3] for the English—Chinese and
English—German translation tasks, and additionally a string-
to-tree syntax-based system [4, 5] for English—German.
Our primary submission translations for English—Chinese
are the output of a single phrase-based system, whereas our
primary submission translations for English—German are
the output of a system combination [6] of two phrase-based
systems and one syntax-based system.

The setups for our phrase-based systems have evolved
from the configurations of the engines we built for Edin-
burgh’s participation in last year’s IWNSLT evaluation [7] and
in this year’s Workshop on Statistical Machine Translation
(WMT) shared translation task [8].

Edinburgh’s syntax-based systems have recently yielded
state-of-the-art performance on English—+German news
translation tasks [9, 10] and have been applied in an IWSLT-
style setting for the first time for our last year’s contrastive
submission [7]. This year, a syntax-based system became
part of our primary submission by contributing input to a sys-
tem combination.

For system combination, we employed the implemen-
tation that has been released as part of the Jane machine

"http://tramooc.eu
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translation toolkit [11]. Multiple previous top-ranked sub-
missions to open evaluation campaigns have relied on this
system combination framework [12, 13, 14].

2. System Overview
2.1. Training and Tuning

For both the phrase-based systems and the syntax-based
system, we first preprocess the parallel training data
and then create word alignments by aligning the data
in both directions with MGIZA++ [15]. We use a se-
quence of IBM word alignment models [16] with five it-
erations of EM training [17] of Model 1, three itera-
tions of Model 3, and three iterations of Model 4. Af-
ter EM, we obtain a symmetrized alignment by applying
the grow-diag-final-and heuristic [18, 3] to the two
trained alignments. We extract bilingual phrases that are con-
sistent with the symmetrized word alignment from the paral-
lel training data. In the case of the syntax-based system, we
also need syntactic parses of the target-language side of the
parallel training data in order to extract synchronous context-
free grammar rules.

We train n-gram language models (LMs) with modified
Kneser-Ney smoothing [19, 20]. KenLLM [21] is employed
for LM training and scoring, and SRILM [22] for linear LM
interpolation.

Our translation model incorporates a number of differ-
ent features in a log-linear combination [23]. We tune the
feature weights with batch k-best MIRA [24] to maximize
BLEU [25] on a development set. We run MIRA for 25 it-
erations on 200-best lists (phrase-based) or 1000-best lists
(syntax-based).

In our experiments (cf. Section 3) with the phrase-based
system, we commence with a plain baseline which comprises
a small amount of vital features only. We then incrementally
extend the system with further features and more advanced
techniques. Each setup is re-tuned individually to obtain op-
timal feature weights for the respective configuration.
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2.2. Phrase-based System

The features of our plain phrase-based baseline are:

» Phrase translation log-probabilities in both target-to-
source and source-to-target direction.

 Lexical translation log-probabilities in both target-to-
source and source-to-target direction.

* Word penalty.

» Phrase penalty.

» A distance-based distortion cost.

* A 5-gram language model over words. Singleton n-
grams of order three and higher are discarded.

We extract phrases up to a length of five. We prune the
phrase table to a maximum of 100 best translation options
per distinct source side and apply a minimum score thresh-
old 7 on the source-to-target phrase translation probability,
with 7 =0.0001 during tuning and 7 = 0.00001 during test-
ing. We use cube pruning [26] in decoding. Pop limit and
stack limit are set to 1000 for tuning and to 5000 for test-
ing. A distortion limit of six is enforced during decoding,
and we disallow reordering over punctuation. Furthermore,
Minimum Bayes Risk decoding [27] is employed for testing.

Extensions we experimented with for either
English—German or English—Chinese are:

LRM. A hierarchical lexicalized reordering model [28].
This model estimates the probabilities of orientation
classes for each phrase from the training data. We
use four orientation classes: monotone, swap, left-
discontinuous, and right-discontinuous.

TM factors. Translation model (TM) factors beyond word
surface forms [29, 30]. Factors can for instance be
part-of-speech (POS) tag, morphological tag, or auto-
matically learnt word classes, e.g. from mkcls [31].
Factors can be added on either source side or target
side or both. We do not use a generation step but
merely enrich the phrases with factored annotation.
The annotation is obtained by tagging the training data
prior to phrase extraction. Source-side factors such as
POS or morphological tags can be helpful for disam-
biguating phrases: at decoding time, we annotate the
input text in a preprocessing step, and the decoder only
applies phrases with matching annotation. Target-side
factors can be helpful for providing a longer context
window via n-gram models of higher order over repre-
sentations given by the factors (which we mention next
in this list).

7-gram class-based LM. A 7-gram language model over
mkcls word classes.

7-gram POS LM. A 7-gram language model over part-of-
speech tags.

7-gram morph LM. A 7-gram language model over mor-
phological tags.

Good-Turing smoothing. Good-Turing
phrase translation probabilities [32].

smoothing  of
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Count features. Seven binary features indicating absolute
occurrence count classes of phrase pairs.

Sparse features. Sparse phrase length features, and sparse
lexical features for the top 200 words.

Domain indicators. Binary features indicating the prove-
nance of phrase pairs: if a phrase pair has been seen
in a particular training corpus, a binary indicator asso-
ciated with the respective training corpus fires on ap-
plication of that phrase pair during decoding.

Phrase table fill-up. A foreground phrase table extracted
from in-domain data is filled up with entries from a
background phrase table extracted from all data [33,
34]. An entry from the background table is only added
if the foreground table does not know the respective
phrase identity. A binary feature distinguishes back-
ground phrases from foreground phrases. (The base-
line uses a phrase table extracted from all data.)

5-gram OSM. A 5-gram operation sequence model [35].

5-gram OSM over word classes. A 5-gram operation se-
quence model over mkcls word classes.

5-gram OSMs over factors. Operation sequence models
over various representations given by the factors.

In-domain OSMs. 5-gram operation sequence models over
words and factors, trained on the in-domain portion of
the parallel data only.

Unpruned LM. The baseline 5-gram language model over
words is replaced by a version where singleton n-
grams of order three and higher have not been dis-
carded.

No singleton phrases. Phrase pairs with an occurrence
count of one are removed from the phrase table.
Sparse LR. Sparse lexicalized reordering features [36] with
weights learnt via RPROP with a maximum expected
BLEU objective [37, 38]. The features are added on
top of the standard hierarchical lexicalized reordering
model. We apply features based on all words as well
as word classes with 200 clusters on both source and
target side. Active feature groups are between, phrase,
and stack. We follow a similar training procedure as
suggested by Wuebker et al. [38].2 Maximum ex-
pected BLEU training with RPROP is conducted on
the in-domain fraction of the training data. We train
on 100-best lists. We set the regularization parameter
to 107> and use the weights obtained after 50 iterations
of RPROP. Rather than decoding the training data with
leaving-one-out, we utilize a system with no singleton
phrases. The learnt sparse lexicalized reordering fea-
tures are condensed to a single feature per orientation,
as suggested by Auli et al. [37]. A final MIRA run
tunes weights for those condensed features along with
the other features in the log-linear model of the trans-

lation system.

2Qur tool for maximum expected BLEU training has been released as
part of the Moses code base on GitHub.
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2.3. Syntax-based System

The syntactic translation model for our string-to-tree sys-
tem conforms to the GHKM syntax approach as proposed
by Galley, Hopkins, Knight, and Marcu [4] with composed
rules [39, 40]. Decoding is carried out with a procedure
based on bottom-up chart parsing. The parsing algorithm is
extended to handle translation candidates and to incorporate
language model scores via cube pruning [26].

Standard features of Edinburgh’s string-to-tree syntax-
based systems are:

¢ Rule translation log-probabilities in both target-to-
source and source-to-target direction, smoothed with
Good-Turing discounting.

* Lexical translation log-probabilities in both target-to-
source and source-to-target direction.

* Word penalty.

* Rule penalty.

¢ A rule rareness penalty.

e The monolingual PCFG probability of the tree frag-
ment from which the rule was extracted.

e A 5-gram language model over words.

When extracting syntactic rules, we impose several re-
strictions for composed rules, in particular a maximum num-
ber of 100 tree nodes per rule, a maximum depth of seven,
and a maximum size of seven. We discard rules with non-
terminals on their right-hand side if they are singletons in the
training data. Only the 200 best translation options per dis-
tinct rule source side with respect to the weighted rule-level
model scores are loaded by the decoder. Search is carried out
with a maximum chart span of 25, a rule limit of 500, a stack
limit of 200, and a pop limit of 1000 for cube pruning [41].
During tuning, we constrain the translation options per rule
source side to the top 20 candidates for faster optimization,
and we set the cube pruning pop limit to 500. We config-
ure Moses’ n-best-factor parameter at a value of 100
to avoid short n-best lists.

For our IWSLT English—German syntax-based system,
the target side of the parallel training data is parsed with Bit-
Par [42]. We remove grammatical case and function infor-
mation from the annotation obtained with BitPar and apply
right binarization of the German parse trees prior to rule ex-
traction [43, 44, 45].

The system is adapted to the TED domain by extract-
ing two separate rule tables (from in-domain data and from
out-of-domain parallel data) and merging them with a fill-
up technique [33]. We also integrate a second 5-gram LM
trained on the in-domain corpus into the log-linear com-
bination. Additionally we add soft source syntactic con-
straints [46] and augment the system with non-syntactic
phrases [47].
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2.4. System Combination

The Jane machine translation toolkit implements a system
combination approach via confusion network decoding [11].
The hypotheses from individual MT systems are aligned to
each other with METEOR [48]. A confusion network is gen-
erated which represents all combined translations that can
be produced from the set of individual hypotheses. The
optimal combined hypothesis is chosen by finding the best
path through the confusion network. The decision process is
guided by a couple of simple features:

* Binary system voting features.

* A primary system indicator.

¢ Word penalty.

* A small 3-gram language model trained only on the set
of individual hypotheses.

¢ A conventional 5-gram language model.

Feature weights are optimized with MERT [49].
We combine three individual systems with this method
for our English—German primary submission.

3. Experiments
3.1. English—German MT

For the English—German MT task, we submitted outputs of
two different phrase-based systems (contrastive 1 and con-
trastive 2), a syntax-based system (contrastive 3), and a sys-
tem combination (primary) of those three single systems. Ta-
ble 1 shows their respective performance in terms of BLEU
scores, along with the official scores [50] of the best last
year’s submission for comparison.

Our English—German systems are trained using mono-
lingual and parallel data from the in-domain WIT?® cor-
pus [52], as well as Europarl [53], MultiUN [54], the par-
allel corpus from the Wikipedia [55] as provided for the
evaluation campaign, the German Political Speeches cor-
pus [56], and the permissible corpora from the WMT shared
translation task [57]. For the systems with factors, annota-
tion exploited in addition to word surface forms is: part-of-
speech tags [58] on the English side; morphological tags [59]
and part-of-speech tags [59] on the German side; and word
classes from mkc1s with 50 clusters on both sides.

5-gram LMs over words are estimated over a concate-
nation of all target-language training data, rather than lin-
early interpolating individual LMs over the different corpora.
We found this to perform equally well or better on the given
task. Class-based LMs, POS LMs, and morph LMs, on the
other hand, are linear interpolations of individually trained
LMs.? Feature weights for all single engines are tuned
on a concatenation of TED.dev2010, TED.tst2010,
TEDX.dev2012, and TEDX.tst2013.4

3Individual LMs over factors are trained with KenLM’s
——-discount_fallback —--prune 'O 0 1' parameters.

4Note that TEDX .tst2013 and tst2013 (= TED. tst2013) are two
different sets.
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en—de | tst2011 | tst2012 | tst2013 | tst2014 | tst2015

phrase-based (contrastive 1) 28.3 24.7 26.3 23.3 254
phrase-based w/o singleton phrases + sparse LR (contrastive 2) 279 24.5 26.8 233 25.5
syntax-based (contrastive 3) 26.8 23.6 26.1 22.7 24.3
system combination (primary) 28.4 25.6 27.0 24.0 26.0
best IWSLT 2014 submission (EU-BRIDGE [14]) | - | - ] 262 | 233 | -

Table 1: Edinburgh submission system results for the English—German MT task (case-sensitive BLEU scores), and results of the
best IWSLT 2014 submission as reported by Cettolo et al. [SO]. The Edinburgh primary submission is a system combination of
the three contrastive systems and was tuned on tst2012.

en—zh | tst2012 | (12013 | tst2014 | tst2015
phrase-based (primary) | 213 | 229 | 196 | 254
best IWSLT 2014 submission (USTC [51]) | — | 225 | 216 | -

Table 2: Edinburgh submission system results for the English—Chinese MT task (character-based BLEU scores), and results of
the best IWSLT 2014 submission as reported by Cettolo et al. [50].

Phrase-based system. Table 3 presents the results

achieved with the plain phrase-based baseline, and the gains en—de | tst2011 | tst2012 | tst2013
when incrementally adding extensions as described in Sec- phrase-based baseline 24.7 22.0 233
tion 2.2 The contrastive 1 submission system outper- +LRM 255 220 241
forms the plain baseline by up to +3.6 BLEU points (on + TM factors 25.3 22.1 23.8
tst2011). If we remove singleton phrases on top of that, + 7-gram class-based LM 25.9 22.5 242
we observe a small gain on tst 2013, but performance de- + 7-gram POS LM 26.1 22.8 24.6
grades slightly on tst2011 and tst2012. The sparse + 7-gram morph LM 26.5 22.9 24.9
lexicalized reordering features trained via RPROP with a + Good-Turing smoothing 26.8 23.6 24.9
maximum expected BLEU objective (contrastive 2) do not + count features 26.8 23.4 24.9
further affect the results too much.® However, the con- *+ sparse fe?,atu_res 269 237 2.1
. .. . . + domain indicators 27.2 23.6 25.3
trastive 2 submission system outperforms the plain baseline
b 358 ) diff + 5-gram OSM 27.6 24.1 26.1
y +3.5 BLEU points on a different test set (on tst2013). + 5-gram OSMs over factors 278 243 26.0
Syntax-based system. In the syntax-based system, we + in-domain OSMs 28.0 243 263
utilize neither the parallel corpus from the Wikipedia nor + unpruned LM (contrastive 1) 283 247 26.3
MultiUN or the German Political Speeches corpus for rule + no singleton phrases 27.9 24.6 26.7
extraction.” We only use the target side of the Wikipedia + sparse LR (contrastive 2) 279 24.5 26.8
corpus as LM training data. The development set is the
same as for the phrase-based systems. Our IWSLT string- Table 3: Incremental improvements over a plain phrase-
to-tree syntax-based system (contrastive 3) is outperformed based baseline for English—German (case-sensitive BLEU
by the phrase-based submission systems by a bit more than scores).
one BLEU point on this year’s evaluation set (t st2015), cf.
Table 1. The average BLEU delta on the other test sets is en—zh | tst2012 | tst2013
lower, though. . phrase-based baseline 19.2 21.0
System combination. The parameters of the system +LRM 19.8 217
combination (primary) are optimized on tst2012. The + Good-Turing smoothing 20.0 21.9
consensus translation produced by the system combination + count features 20.1 21.9
boosts the BLEU score by half a point over the best single + 7-gram class-based LM (in-domain) 20.0 22.0
system on this year’s evaluation set (t st2015), cf. Table 1. + phrase table fill-up 21.0 22.3
Improvements on the other test sets vary between +0.1 and + 5-gram OSM 21.0 22.5
+ 5-gram OSM over word classes 20.9 22.5
3The order in which extensions are added is not motivated by any specific + in-domain OSMs (primary) 213 229
rationale other than our personal preference.
SWe add the sparse LR to the system without singleton phrases. This . X
avoids a mismatch with the system used in n-best generation for maximum Table 4: Incremental improvements over a plain phrase-
expected BLEU training. based baseline for English—Chinese (character-based BLEU
"Due to time constraints, these corpora have been omitted for the benefit scores).

of faster training.
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+0.7 (disregarding t st 2012, since it has been used to tune
the system combination).

Our best single system yields translation quality on the
level of the last year’s best submission, which was a sys-
tem combination [14]. Our primary submission is around
0.7 BLEU points better than last year’s best submission.

3.2. English— Chinese MT

For the English—Chinese MT task, we submitted the output
of a phrase-based single system (primary). Table 2 shows the
performance in terms of BLEU scores, measured on character
level with the aid of the Chinese character tokenization script
provided by the organizers of the evaluation campaign. For
comparison, we also include the official scores [50] of the
best last year’s submission.

Our English—Chinese systems are trained using mono-
lingual and parallel data from the in-domain WIT? cor-
pus [52], as well as MultiUN [54]. For the English-Chinese
MultiUN parallel data, we resorted to the sentence-aligned
version as distributed in OPUS [60]. We perform Chinese
word segmentation with the Stanford Word Segmenter [61]
as a preprocessing step on all target-side data. The character-
based tokenization is conducted for evaluation purposes only,
whereas our models operate on word-segmented data.

Table 4 presents the results achieved with the plain
phrase-based baseline, and the gains when incrementally
adding extensions as described in Section 2.2. The 5-gram
LM over words is a linear interpolation of individual LMs,
the 7-gram class-based LM is trained on in-domain data
only. The only factors we use for English—Chinese are
word classes from mkc1ls with 50 clusters. Feature weights
are tuned on a concatenation of dev2010, tst2010, and
tst2011. The submission system outperforms the plain
baseline by up to +2.1 BLEU points (on tst2012).

The comparison with last year’s best submission [51] is
somewhat surprising: the BLEU score of our system is 4-0.4
points higher on tst 2013, but we significantly lag behind
on tst2014. We are currently unaware of the reason for
this behavior.

4. Summary

We built high-quality machine translation systems for
the IWSLT 2015 English—Chinese and English—German
translation tasks in the MT track. By utilizing advanced fea-
tures and techniques, we have been able to achieve improve-
ments over plain phrase-based basclines of two BLEU points
or more on both language pairs. All methods we employed
are implemented in publicly available software such as the
Moses and the Jane statistical machine translation toolkits.
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