
The BIUTEE Research Platform

for Transformation-based Textual

Entailment Recognition

Asher Stern and Ido Dagan1

Recent progress in research of the Recognizing Textual Entailment
(RTE) task shows a constantly-increasing level of complexity in this
research field. A way to avoid having this complexity becoming a bar-
rier for researchers, especially for new-comers in the field, is to provide
a freely available RTE system with a high level of flexibility and ex-
tensibility. In this paper, we introduce our RTE system, BiuTee2,
and suggest it as an e↵ective research framework for RTE. In partic-
ular, BiuTee follows the prominent transformation-based paradigm
for RTE, and o↵ers an accessible platform for research within this ap-
proach. We describe each of BiuTee’s components and point out the
mechanisms and properties which directly support adaptations and
integration of new components. In addition, we describe BiuTee’s vi-
sual tracing tool, which provides notable assistance for researchers
in refining and “debugging” their knowledge resources and inference
components.

1 Introduction and Background

Textual inference (the ability to automatically find conclusions that
can be inferred from a natural language text) is a capability required
for many tasks at the semantic level of Natural Language Processing
(NLP). For example, a typical Information Extraction (IE) task may
be to extract, from a natural language text, the employer-employee

1Bar-Ilan University, Ramat-Gan, Israel
2BiuTee: Bar Ilan University Textual Entailment Engine. It is freely available

at http://www.cs.biu.ac.il/~nlp/downloads/biutee/

1

LiLT Volume 9
Perspectives on Semantic Representations for Textual Inference.
Copyright c� 2014, CSLI Publications.

2 / Asher Stern and Ido Dagan

relationship. Such a task can be formalized as the task of identifying
text fragments from which it can be concluded that “X is employed by
Y” for some entities X and Y. Similarly, a typical Question Answering
(QA) task might be the task of finding answers to the question “By
whom X is employed”, for some entity X (a person, in this case). Ad-
dressing both these examples requires a mechanism that recognizes that
the text fragment “X is employed by Y” can be inferred from a given
text. Recognizing Textual Entailment (RTE) unifies this concept, and
aims to serve as a common paradigm for textual inference. By adopting
the RTE paradigm, the e↵orts required to solve the problem of textual
inference need not to be duplicated for multiple NLP tasks which re-
quire this capability. Rather, the aim is to develop a generic solver for
the RTE task, which can then be used as an inference component in
task-specific systems.

The formal definition of the Recognizing Textual Entailment task is
as follows. Given two text fragments, one termed text and the other hy-
pothesis, the task is to recognize whether the hypothesis can be inferred
from the text (Dagan et al. 2006a).

Since first introduced, several approaches have been proposed for this
task, ranging from shallow lexical similarity methods (e.g., Clark and
Harrison 2010; MacKinlay and Baldwin 2009), to complex linguistically-
motivated methods, which incorporate extensive linguistic analysis
(syntactic parsing, coreference resolution, semantic role labelling, etc.)
and a rich inventory of linguistic and world-knowledge resources (e.g.,
Iftene 2008; de Salvo Braz et al. 2005; Bar-Haim et al. 2007). The latter
methods convert the text and the hypothesis into rich representation
levels, like syntactic parse-trees, semantic-role graph, or even a logical
representation in which the text is converted into a collection of logical
formulas. The next step is the entailment recognition itself in which
the available knowledge resources are utilized.

Building such complex systems requires substantial development ef-
forts, which might become a barrier for new-comers to RTE research.
Thus, flexible and extensible publicly available RTE systems are ex-
pected to significantly facilitate research in this field. More concretely,
two major research communities would benefit from a publicly available
RTE system:

1. End application developers, who would use an RTE system to
solve inference tasks within their application. RTE systems uti-
lized by this type of researchers should be adaptable for the appli-
cation specific data: they should be configurable, trainable, and
extensible with inference knowledge that captures application-

The BIUTEE Research Platform / 3

specific phenomena.

2. Researchers in the RTE community, who would not need to build
from scratch a complete RTE system for their research, but could
integrate their novel research components into an existing open-
source system. Such research e↵orts might include developing
knowledge resources, developing inference components for specific
phenomena such as temporal inference (see, for example, (Wang
and Zhang 2008)), or extending RTE to di↵erent languages. A
flexible and extensible RTE system is expected to encourage re-
searchers to create and share their textual-inference components.
A good example from another research area is the Moses system
for Statistical Machine Translation (SMT) (Koehn et al. 2007),
which provides the core SMT components while being extended
with new research components by a large scientific community.

Until now rather few and quite limited RTE systems were made
publicly available. These systems are quite restricted in the types of
knowledge resources which they can utilize, and in the scope of their in-
ference algorithms. For example, EDITS 3 (Kouylekov and Negri 2010)
is a distance-based RTE system, which can exploit only lexical knowl-
edge resources. NutCracker4 (Bos and Markert 2005) is a system based
on logical representation and automatic theorem proving, but utilizes
only WordNet (Fellbaum 1998) as a lexical knowledge resource.

To address the above needs, we provide our open-source textual-
entailment system, BiuTee.5 Our system provides state-of-the-art lin-
guistic analysis tools and exploits various types of manually built and
automatically acquired knowledge resources, including lexical, lexical-
syntactic and syntactic rewrite rules. Furthermore, the system compo-
nents, including pre-processing utilities, knowledge resources, and even
the steps of the inference algorithm, are modular, and can be replaced
or extended easily with new components. Extensibility and flexibility
are also supported by a plug-in mechanism, by which new inference
components can be integrated without changing existing code.

Notable support for researchers is provided by a visual tracing tool,
Tracer , which visualizes every step of the inference process as shown
in Figures 5 and 6, in Section 4.

This paper is organized as follows: A review of the main algorithmic
components of BiuTee is given in Section 2, followed by the system
architecture description in Section 3. The visual tracing tool and its

3http://edits.fbk.eu/
4http://svn.ask.it.usyd.edu.au/trac/candc/wiki/nutcracker
5See footnote 2 above.

4 / Asher Stern and Ido Dagan

TABLE 1: A sequence of transformations that transform the text “He
received the letter from the secretary.” into the hypothesis “The secre-
tary delivered the message to the employee.”. The knowledge required
for such transformations is often obtained from available knowledge
resources and NLP tools.

Operation Generated text
0 - He received the letter from the secretary.

1 Coreference substitution
The employee received the letter from the
secretary.

2
X received Y from Z ! Y
was sent to X by Z

The letter was sent to the employee by
the secretary.

3
Y [verb-passive] by X ! X
[verb-active] Y

The secretary sent the letter to the em-
ployee.

4 X send Y ! X deliver Y
The secretary delivered the letter to the
employee.

5 letter ! message
The secretary delivered the message to
the employee.

typical use cases are described in Section 4, while in Section 5 we present
experimental results. Conclusions, as well as suggestions for future work
are given in Section 6.

2 Algorithms and Components

In this section we describe BiuTee’s main algorithms and components.
This description is given at a high-level, while more details of individual
components are available in the papers cited along this section.

BiuTee (Stern and Dagan 2011) is a transformation-based inference
system, in the sense that it transforms the text, T, into the hypothesis,
H. Transforming T into H is done by applying a sequence of transfor-
mations, such that after applying the last transformation, the resulting
text is identical to the hypothesis.6 In this paper we use the term proof
to refer to such a sequence of transformations. Table 1 demonstrates
a proof for a typical (T,H) pair. The transformation-based paradigm
requires three main design decisions:

1. How to represent the text and the hypothesis?

2. Which transformations to apply?

3. How to estimate whether a sequence of transformation preserves
entailment?

In the following subsections we discuss each of these aspects. Finally,
we deal with another crucial issue, namely:

6In practice, this goal is heuristically relaxed in the current version of BiuTee
to having the hypothesis embedded in the obtained transformed text.

The BIUTEE Research Platform / 5

4. How to find automatically an “optimal” sequence of transforma-
tions that transforms T into H?

2.1 Representation level

There are several levels on which the text and the hypothesis can be
represented. The simplest level of representation is the lexical level
(e.g. bag of words) (see, for example, (Shnarch et al. 2011; Clark and
Harrison 2010)). While this level has some advantages, for example, it
can be easily implemented for languages that lack linguistic processing
tools, it cannot handle structural di↵erences of T and H. Consider, for
example, the text “The first chapter of the book was written yester-
day” and the hypothesis “The book was written yesterday”. Though
the hypothesis words are embedded in the text in the same order, the
text does not entail the hypothesis. A common representation level of
sentence structure is the syntactic representation, given as parse trees
(See Figure 1). This level of representation was adopted by the vast
majority of RTE systems (e.g., Iftene 2008; Cabrio et al. 2008; Wang
and Neumann 2008). A deeper representation is the logical form level,
which represents T and H as logical clauses, extracted from the syn-
tactic representation. Typical examples are Tatu and Moldovan (2006),
Raina et al. (2005) and Clark and Harrison (2010)

While deep logical representations may capture additional aspects
of the meaning of the text, their much higher complexity makes them
more vulnerable to inaccuracies and errors involved in their generation.
Moreover, most of the structural information required for inference can
be found in the syntactic representation, which was therefore chosen
for BiuTee. However, since syntax does not capture some key semantic
properties (e.g., the truth-value of predicates), we enrich the syntactic
parse trees with additional annotations, as described later (Subsection
2.3).

2.2 Transformations

The second aspect in transformation-based inference is the type of
transformations that can be applied by the system. Our goal is to ap-
ply transformations, such that each of them preserves the meaning of
the text, as follows. When a transformation is applied on a text t, it
transforms it into a new text, t’. The goal is that the meaning of t’ will
be entailed from t.

We apply many types of transformations, that are derived from many
knowledge and linguistic resources. These transformations are relatively
reliable, in most cases. In addition, we allow less reliable transforma-
tions, to be utilized when no prior knowledge of reliable transformations

6 / Asher Stern and Ido Dagan

FIGURE 1: A parse tree, parsed by Easy-First parser (Goldberg and
Elhadad 2010).

is available. Then, we estimate the validity of every transformation, and
consequently of every sequence of transformations, and decide whether
the text entails the hypothesis based on this estimation.

In the rest of this subsection we describe the transformations allowed
by BiuTee, and in the next subsection we describe the model by which
transformation reliability is estimated.

Entailment rules

The main type of transformations, and the most reliable one, is the
application of entailment-rules (Bar-Haim et al. 2007), which are avail-
able from various knowledge resources. An entailment rule is composed
of two sub-trees, termed left-hand-side and right-hand-side. It is applied
on a parse-tree fragment that matches its left-hand-side, by substitut-
ing the left-hand-side with the right-hand-side. Figure 2 demonstrates
a rule and its application. The complete formalism of entailment rules,
adopted by our system, is described in (Bar-Haim et al. 2007; Stern
and Dagan 2011).

The entailment rules formalism is simple yet powerful, and captures
many types of knowledge. The simplest type of rules is lexical rules, like

FIGURE 2: An entailment rule and its application. The rule “X received
Y from Z ! Y was sent to X by Z” is applied on the sentence “The
employee received the letter from the secretary.”, resulting in “The
letter was sent to the employee by the secretary.”

8 / Asher Stern and Ido Dagan

FIGURE 3: A syntactic entailment rule that converts passive form into
active form.

car ! vehicle. More complicated rules capture the entailment rela-
tion between predicate-argument structures, like X receive Y from Z

! Y was sent to X by Z.
Entailment rules can also encode syntactic phenomena like the se-

mantic equivalence of active and passive structures (X Verb[active]

Y $ Y is Verb[passive] by X). See illustration in Figure 3.
BiuTee incorporates a comprehensive set of knowledge resources,

which are represented as entailment-rules. Lexical knowledge resources
within BiuTee include:

. WordNet (Fellbaum 1998) – a large database of English words,
which are interconnected by means of conceptual-semantic and
lexical relations. We used the following WordNet relations: syn-
onym, derivationally-related, hypernym, instance-hypernym, part-
holonym, member-holonym, substance-meronym and verb-entail-
ment.

. Wikipedia – Wikipedia-based entailment-rules (Shnarch et al.
2009) which contain background knowledge about various enti-
ties and concepts, e.g., Einstein is a Scientist.

. GEO – a geographical knowledge resource (Mirkin et al. 2009)
which contains information like New-York is in United States.

. CatVar – English derivations (Habash and Dorr 2003). For exam-
ple motivation (noun) is derived from motivate (verb).

. DIRECT – directional distributional similarity (Kotlerman et al.
2010).

. Distributional-similarity-based entailment rules by Lin (1998a),
as well as a reimplementation of the Lin-Similarity algorithm on
the Reuters-corpus.7

7http://trec.nist.gov/data/reuters/reuters.html

The BIUTEE Research Platform / 9

. VerbOcean (Chklovski and Pantel 2004). – A broad-coverage se-
mantic network of verbs. The used VerbOcean relations are con-
figurable in BiuTee’s configuration file. We achieved the best
results when using only the “stronger than” relation.

Lexical-Syntactic knowledge resources, which capture entailment be-
tween predicate-argument structures within BiuTee include:

. DIRT (Lin and Pantel 2001). REVERB (Berant 2012). FrameNet-based entailment-rules (Ben-Aharon et al. 2010)

As for entailment-rules that capture syntactic phenomena, we use
the freely available collection of rules by Lotan (2012).

Discourse phenomena

Other phenomena that must be handled by textual entailment systems
are discourse phenomena, by which the desired information, expressed
within a single sentence hypothesis, can be spread over several sentences
of the text. The importance of this type of phenomena was investigated
in (Mirkin et al. 2010), along with several proposals for ways to handle
it by utilizing coreference information. In BiuTee, we utilize cofer-
ence resolution information by defining two types of transformations:
coreference substitution and Is-A coreference. We obtain the corefer-
ence information from an o↵-the-shelf coreference resolution system,
ArkRef (see Subsection 3.1).

Coreference substitution is implemented as follows: one mention of
an entity is replaced by another mention of the same entity, based on a
coreference relation between them. Consider, for example, the following
text-hypothesis pair:
Text : ... Obasanjo invited him to step down as president ... and accept
political asylum in Nigeria.
Hypothesis: Charles G. Taylor was o↵ered asylum in Nigeria.
In this example it is required to apply such a transformation to sub-
stitute “him” with “Charles G. Taylor” (which is mentioned earlier in
the document).

The Is-A coreference transformation creates a new parse-tree of the
form “X is Y” for each two coreferring mentions X and Y. Consider the
following hypothesis:

The Irish Republican Army is a paramilitary group.

and consider the following text:

Northern Ireland’s peace process would receive a major boost if the Irish Republi-

can Army responds positively to appeals to embrace political methods, a leading

figure in the paramilitary group’s political wing said Friday.

10 / Asher Stern and Ido Dagan

Given that “Irish Republican Army” corefers to “paramilitary group”,
the Is-A coreference transformation can construct the desired hypoth-
esis.

On the fly transformations

Since applications of entailment rules from available knowledge re-
sources and coreference substitutions are, in most cases, insu�cient for
completely transforming T into H, our system allows on-the-fly parse-
tree transformations. These transformations include insertions of miss-
ing nodes, flipping parts-of-speech, moving sub-trees, etc. (see (Stern
and Dagan 2011) for a complete list of these transformations). Since
these transformations are not justified by given knowledge resources,
we use linguistically-motivated features to estimate their validity. For
example, for on-the-fly lexical insertions we consider as features the
named-entity annotation of the inserted word, and its probability esti-
mation according to a unigram language model, which yields lower costs
(higher confidence) for more frequent words (with similar rationale to
that of the Inverse Document Frequency (IDF) heuristic in Information
Retrieval). The usage of such features is described in Subsection 2.4.

Plug-ins

BiuTee is designed as an open system, which can serve as a research
platform for the RTE community. As such, it is not limited to the
aforementioned transformations. Easy integration of additional types
of transformations is supported by BiuTee’s plug-in mechanism, de-
scribed in Subsection 3.2.

2.3 Truth-value annotations

As mentioned above, BiuTee transforms T’s parse tree into H’s parse
tree. This requires a well defined criterion for determining that nodes
and edges in T are identical to corresponding nodes and edges in H.
The natural criterion is that nodes are identical if they contain the
same lemma and the same part-of-speech, while edges are identical if
they have the same relation (edge label). This criterion, however, might
lead to an error when a predicate is negated in T, but not in H, or vice
versa. More generally, such inconsistencies might arise not only due to
negations, but also due to other natural language constructions that
change the truth-value of a predicate. For example, given a text “The
computer failed to calculate the equation.”, the truth-value of
“calculate” is negative, since it can be inferred that the computer did
not calculate the equation (See (Karttunen 1971)). Thus, we should
not treat the predicate “calculate” in a hypothesis “The computer

calculated the equation.” as identical to “calculate” in the text.

The BIUTEE Research Platform / 11

Handling such cases is performed by the integration of Truth-Teller
(Lotan 2012; Lotan et al. 2013), which annotates truth-values of all the
predicates in a given sentence, by utilizing several mechanisms. Given
a sentence, Truth-Teller begins by annotating some of its clauses with
a polarity of positive, negative, or unknown. This is done by identi-
fying pre-suppositions, which are marked as positive-polarity clauses,
as well as the main clause of the sentence, which is always marked
as positive. In addition, it annotates the predicates of the annotated
clauses with a positive, negative or unknown polarity. This annotation
is based on the clause annotation along with identification of negation
and modality expressions (e.g. “not”, “never”). Then, the annotation
process proceeds to annotate all remaining clauses and predicates by
utilizing a recursive algebra which makes use of the implicativity and
factivity signatures of the predicates.

A parse-tree node that corresponds to a predicate in the text is
considered identical to a corresponding node in the hypothesis only
if these two nodes have the same predicate-truth annotation, as well
as the same lemma and part-of-speech. A new transformation, change
predicate-truth value, has been added to BiuTee. This transformation
flips the truth-value annotation of a predicate in the text, such that
it becomes identical to a predicate in the hypothesis. Like all other
transformations (see Subsection 2.4), a cost is learned for this trans-
formation. Following the high reliability of Truth-Teller, the learned
cost is usually high. Hence, proofs which require a flip in a truth-value
annotation are usually considered incorrect proofs.

2.4 Cost model

Given a (T,H) pair, the system has to find a sequence of transformations
(a proof) that transforms T into H. Next, the system calculates how
likely it is that the proof preserves entailment. This calculation is per-
formed by a cost model, similar to the one defined in (Raina et al. 2005),
as follows. First, we define features which characterize transformations
(see below). A single transformation, o, can then be characterized by a
feature-vector, f(o), which contains values for all of these features. We
use this feature vector to define a cost for each transformation, such
that reliable transformations are assigned low costs, while transforma-
tions that are less likely to be reliable are assigned high costs. This
cost is calculated using a weight vector, w, learned automatically over
a training-data. Formally, the cost of a transformation o is defined as:

(1) c(o) = w · f(o) =
m
X

i=1

wi · fi(o)

12 / Asher Stern and Ido Dagan

where m is the number of features, and fi(o) is the value of of the ith
feature of transformation o.

Next, we define the cost of the proof as the sum of the costs of all
its transformations. Formally, a proof O = (o1, o2 . . . on) is assigned
the cost c(O) =

Pn
j=1 c(oj). By defining f(O) =

Pn
j=1 f(oj), the last

equation can be algebraically manipulated as follows:

(2) c(O) =
n
X

j=1

c(oj) =
n
X

j=1

m
X

i=1

wi · fi(oj) =
m
X

i=1

wi · fi(O) = w · f(O)

The last equation suggests a typical linear learning paradigm, in
which the training data is represented as a collection of feature vec-
tors, and the goal is to find two parameters: a weight vector, w, and a
threshold b, for which w · f(O)  b for positive examples (i.e. T entails
H), while w · f(O) > b for negative ones. The learning scheme details
are described in (Stern and Dagan 2011).

For the transformations described above (Subsection 2.2) we defined
the features as follows. First, a feature has been defined for each knowl-
edge resource. For some knowledge resources, the feature is assigned a
constant value of 1 for each rule-application based on this resources.
For example, let us assume that feature number 10 is the WordNet fea-
ture, and that we are given a transformation which substitutes “dog”
by “pet” based on a WordNet hypernym relation. The feature-vector
for this transformation then has 1 as the value of the 10th feature,
while all other features are assigned 0. Other knowledge resources (e.g.
DIRT) provide a score for each rule. For these knowledge resources we
use the log of that score as the value for the corresponding feature.

For on-the-fly insertion transformations we defined several features
that describe whether the inserted word is a content word, whether it is
a named entity, etc. In all cases, the feature value is the probability of
the inserted word to appear in an English text, according to a Unigram
language model based on the Reuters corpus8.

For on-the-fly move transformations we defined features that quan-
tify how much the move transformation changed the context of the
moved node. The feature-value is the path-length between the original
and the new parents of the moved node.

We also defined features for other on-the-fly transformations, like
flip-part-of-speech, splitting a multi-word-expression, etc.

As for plug-ins, the plug-in mechanism allows every plug-in to define
its own features, which get their values by the plug-in when applied, as
described below (Subsection 3.2).

8http://trec.nist.gov/data/reuters/reuters.html

The BIUTEE Research Platform / 13

2.5 Search challenge

Given a text-hypothesis pair, there might be many proofs by which the
text can be transformed into the hypothesis. For example, a syntactic
manipulation can be performed by applying a syntactic rule. However,
the same manipulation might be achieved by applying several “on-the-
fly move sub-tree” transformations. Another example is when the same
knowledge exists in two di↵erent knowledge-resources, but one of them
is more reliable than the other.

Since the decision whether the text entails the hypothesis is deter-
mined by the cost of the proof, the system has to find the proof with
the lowest cost. Finding that proof is a non-trivial challenge since, in
general, there are many transformations that can be applied to a given
parse-tree, and thus the number of possible sequences of transformation
is exponential in the size of the proof.

BiuTee provides implementations of several search algorithms,
which di↵er from one another in their speed and proof quality (mea-
sured by the cost of the proofs they find). A novel improved search
algorithm that directly utilizes characteristics of the textual-inference
domain was recently developed and integrated into BiuTee. This
algorithm iteratively generates limited-length subsequences of trans-
formations. In each iteration it measures the quality-cost ratio of each
generated subsequence, and chooses the one with the best ratio. The
full details are described in (Stern et al. 2012).

3 System Architecture

The input of BiuTee is a collection of (T,H) pairs, and the output is an
entailment / non-entailment classification for each pair. To determine
these classifications, each (T,H) pair is pipe-lined in several processing
phases which (1) generate the appropriate representations, (2) find a
sequence of transformations (a proof) which transforms the text into
the hypothesis, (3) classify these proofs. During training, the last step,
classification of proofs, is replaced by learning a classification model.

We note that in phase (2) we start with inference-related calcula-
tions that are not part of the proof construction, but add additional
annotations which are required for entailment recognition, and are used
during the proof construction. Currently, the Truth-Teller annotations
(see Subsection 2.3) take place here. In the future we plan to add other
types of annotations, like recognizing temporal relations between T and
H (see, for example, (Wang and Zhang 2008)).

BiuTee’s processing flow is illustrated in Figure 4, and is described
in the reminder of this section.

14 / Asher Stern and Ido Dagan

FIGURE 4: System architecture

3.1 Linguistic analysis processing

The target representation of T and H is a parse-tree representation.
We generate dependency parse trees, in which each node corresponds
to exactly one token of a sentence, and contains its lemma and part-
of-speech. In addition, it contains named-entity annotation, integrated
into parse-tree nodes. In addition, we build a data-structure for coref-
erence information. This data-structure is a collection of coreference
chains of the text’s parse trees nodes.

To build this representation, each text fragment (which may be ei-
ther T or H) is processed through the following steps.

1. Text normalization

2. Sentence splitter

3. Tokenizer

4. Part-of-speech tagger

5. Parser

6. Coreference resolver

Text normalization is done through a collection of text modifications
that are performed over the raw text, prior to any linguistic analysis.
Mainly, we perform number normalization,9 and heuristically add miss-
ing punctuations when necessary.

Then, BiuTee proceeds to linguistic processing, using state-of-the-
art utilities: Tokenization and part-of-speech-tagging are performed by
Stanford utilities (Toutanova et al. 2003), parsing is performed by Easy-
First parser (Goldberg and Elhadad 2010), named-entity recognition
is done by Stanford named-entity-recognizer (Finkel et al. 2005) and
coreference resolution is performed by ArkRef coreference resolver.10

9Available to download as a stand-alone utility at http://www.cs.biu.ac.il/

~nlp/downloads/normalizer.html
10 This tool is a reimplementation of (Haghighi and Klein 2009), and is down-

loadable from http://www.ark.cs.cmu.edu/ARKref/.

The BIUTEE Research Platform / 15

As a flexible system, BiuTee provides simple interfaces for each type
of linguistic analysis utility. This way, replacing the above-mentioned
utilities can be done by merely implementing the relevant interfaces.

3.2 Proof construction

Entailment recognition begins with inference-related calculations. As
mentioned above, the Truth-Teller annotations are added at this phase.

Next, the system constructs a proof comprising of a sequence of
transformations that transform the text into the hypothesis. Finding
such a proof is a sequential process, conducted by the search algorithm
(see Subsection 2.5). In each step of the proof construction the system
examines all possible transformations that can be applied, generates
new trees by applying these transformations, and calculates their ac-
cumulated proof costs by constructing appropriate feature-vectors for
them.

BiuTee provides unified interfaces for all types of transformations,
making the addition of new types of transformations straightforward.
The interfaces are:

1. Finder which gets a parse tree, and finds the transformations that
can be applied on that tree.

2. Operation which gets a parse tree and a transformation (found by
the Finder), and applies this transformation on the given parse
tree. The result is a new parse tree.

3. Feature-Vector Updater which gets a parse-tree, a feature-vector
and a transformation, and updates this feature-vector with new
values that correspond to the given transformation. This updated
feature-vector represents the new parse-tree that was generated
by applying the given transformation.

BiuTee contains a collection of implementation steps for these inter-
faces for each type of transformation and for each knowledge resource.
For example, for the WordNet lexical resource that is used with lexical
entailment rules, the implementation is as follows: the Finder gets a
parse-tree, and finds for each parse-tree node (when applicable) a lex-
ical rule from WordNet which changes its lemma to another lemma,
entailed by the original one.11

The Operation then takes the parse-tree and generates a new parse
tree in which the original lemma is replaced by the entailed lemma. The
Feature-Vector Updater adds 1 to the WordNet feature in the feature
vector.

11This Finder is actually shared among all the lexical resources, as they all share
the same interface for querying lexical entailment rules.

16 / Asher Stern and Ido Dagan

When a (T, H) pair is given to the system, it is first processed in
the inference-related calculations phase. Then, the system iteratively
runs all of the implementation steps of the above mentioned interfaces
(Finder, Operation and Feature-Vector Updater). Thus, in each iter-
ation several new parse-trees, along with their corresponding feature-
vectors, are generated. Since the number of generated trees increases
exponentially, the system must prune the set of the generated trees
after few iterations, and maintain only those which are most likely to
be part of the best (i.e., cheapest) proof. The policy of which trees to
prune is determined by the search algorithm.

Extension mechanism

The goal of BiuTee is not only to apply its own built-in transforma-
tions, but also to be a framework for transformation-based inference,
into which additional types of transformations can be integrated and
applied. This is achieved by the plug-in mechanism. Using plug-ins,
new types of transformations can be integrated and applied, without
the need to change the current system code. For example, imagine a re-
searcher applying BiuTee in the medical domain, say, over prescription
texts. There might be some well-known domain knowledge and some
re-writing rules that every medical person knows. Integrating such new
rules is directly supported by the plug-in mechanism.

Basically, adding a new type of transformation can be done by imple-
menting the above mentioned interfaces. Thus, the plug-in developer
has to implement Finder, Operation and Feature-Vector Updater. A
factory of these implementations, called Plugin, has to be developed as
well, and be integrated into the system. BiuTee has a smart mech-
anism, which safely utilizes Java reflection capabilities, by which this
integration is performed with no changes of existing code.

In addition, BiuTee provides a more advanced type of plug-in that
is able to perform its own calculations in the inference-related calcula-
tions phase, in addition to integrating the new transformations. Such
plug-ins have to implement a method which gets the parsed text and
the hypothesis, as well as other auxiliary parameters, as input. This
method is called by the system for each (T, H) pair right before start-
ing the proof construction phase. The results of a plug-in’s global cal-
culation can be stored in the plug-in’s internal data-structures, and
be forwarded to the actual instances of its corresponding Finder, Op-
eration and Feature-Vector Updater. By implementing such a plug-in,
the user can incorporate new types of inference-oriented annotations,
which can then be utilized by new types of transformations.

The BIUTEE Research Platform / 17

3.3 Learning and classification

The final processing phase is to classify the constructed proof as reliable
or not. The proof, represented as a feature vector, is assigned a cost,
as described in Subsection 2.4. The proof is classified as reliable if its
cost is lower than a threshold. The system also provides the result as
a numerical value in the [0, 1] range by using the sigmoid function: the
return value is 1

1+e�z where z is the cost minus the threshold. This
value is interpreted as “positive” (T entails H) if it is higher than 0.5,
and “negative” otherwise.

This final phase has a di↵erent role during training. In training we
are not interested in classifying the proof, but in learning the cost
model parameters: the weight vector, w, and the threshold b. These
parameters can be learned by any linear learning algorithm. The input
for the learning algorithm is a collection of feature-vectors that repre-
sent the proofs of a collection of (T, H) pairs (i.e., an RTE dataset).
We use a Logistic-Regression learning algorithm, but, similar to other
components, alternative learning-algorithms can be integrated easily
by implementing an appropriate interface.

Note that for the last two RTE datasets of 2010 and 2011 (RTE-6
and RTE-7), the goal is to optimize the F1 measure12 of the positive
entailments, while in the older datasets, the goal is to optimize the
accuracy measure. We implemented the logistic regression classifier to
optimize each of these measures. The accuracy-optimized classifier is
the standard logistic-regression classifier, while the F1-optimized clas-
sifier was implemented according to (Jansche 2005). The appropriate
classifier is automatically chosen by the system, based on the given
dataset.

We note that the weight vector, w, has a dual role. One is to assign a
cost to the constructed proof. The other role is to be used by the search
algorithm. As described above, the search algorithm prunes some of the
intermediate trees that are generated during the proof construction,
and it favours trees that are more likely to be part of the best (cheapest)
proof. One of the parameters by which the search algorithm estimates
this likelihood is the current cost of the generated tree. If that cost is
higher than that of other generated trees, it is less likely that it will
be part of the best proof. This dual role raises a new problem: the
only way to learn the weight vector is by considering the proofs that

12F1 measure is a success-rate estimation which takes both the recall (how many
positive instances have been detected by the system) and precision (how many of
the positively classified instances are indeed positive) into consideration. Formally,
it is defined as 2 · Recall·Precision

Recall+Rrecision

18 / Asher Stern and Ido Dagan

have already been constructed for a complete (T, H) pairs dataset.
However, to construct these proofs, a weight vector is needed for the
search algorithm.

We solve this problem by an iterative learning scheme. In this scheme
we initialize w with a reasonable guess vector, and iteratively process
the whole dataset, such that in each iteration w is improved. More
information about the learning scheme can be found in (Stern and
Dagan 2011).

3.4 Configuration, adaptation and extension

BiuTee supports all of the RTE datasets that have been published so
far (Dagan et al. 2006b; Bar-Haim et al. 2006; Giampiccolo et al. 2007,
2008; Bentivogli et al. 2009, 2010, 2011).

Controlling the system behaviour, adapting it to specific needs as
well as extending it, can be done at various levels. First, many of the
system parameters are controlled by a configuration file, as follows:

1. Parser: the user can choose to use either easy-first parser (Gold-
berg and Elhadad 2010) or Minipar parser (Lin 1998b).

2. Coreference resolver: The user can choose the coreference resolver
to be either ArkRef13 or Bart (Versley et al. 2008). A third option
is to configure the system to skip coreference resolution.

3. Knowledge Resources: The user can provide a list of knowledge re-
sources to be used for the proof construction. Using many knowl-
edge resources often increases the system performance, but also
increases its runtime.

4. Multi-threading: The number of concurrent threads used by the
system is a configurable parameter.

5. Plug-ins: If the user writes a plug-in, it can be integrated into the
system through configuration file parameters.

Beyond configuration, the system can be extended by the plug-in
mechanism, described in Subsection 3.2.

More advanced adaptations and extensions can be performed by
changing the system’s source code, as all of BiuTee’s source code is
freely available. The code is modular so that changing one module
does not a↵ect the others. Further support is given by an extensive
documentation, both code-level documentation as well as a developer
guide that describes the details of the system flow and its components.

13See footnote 10.

The BIUTEE Research Platform / 19

FIGURE 5: Entailment Rule application visualized in the tracing tool.
The upper pane displays the parse-tree generated by applying the rule.
The rule description, highlighted in bold, is the first transformation of
the proof, shown in the lower pane. The rule is “X (is) accepted in Y”
! “X (is) o↵ered in Y”, and captures, for example, that if someone
accepted asylum in Nigeria, than it is also known that he was o↵ered
asylum in Nigeria. This rule application is followed by transformations
2 and 3, which are syntactic rewrite rules.

4 Visual Tracing Tool

The final score provided as output, as well as the system’s detailed
logging information, do not expose all the decisions and calculations
performed by the system. In particular, they do not show all the po-
tential transformations that could have been applied, but were rejected
by the search algorithm. However, such information is crucial for re-
searchers, who need to observe the use and the potential impact of each
component of the system.

We address this need by providing an interactive visual tracing tool,
Tracer , which presents detailed information for each proof step, includ-
ing the ability to force potential inference steps that were not included
in the automatically-constructed proof.

20 / Asher Stern and Ido Dagan

4.1 Modes

Tracer provides two modes for tracing proof construction: automatic
mode and manual mode. In the automatic mode, shown in Figure 5,
the tool presents the complete process of inference, as conducted by
the system’s search: the parse trees, the proof steps, the cost of each
step and the final score. For each transformation the tool presents the
parse tree before and after applying the transformation, highlighting
the impact of this transformation.

In manual mode, the user can invoke specific transformations pro-
actively, including transformations rejected by the search algorithm.
As shown in Figure 6, the tool provides a list of transformations that
match the given parse-tree, from which the user can choose to apply
a single transformation at each step. Similar to automatic mode, the
impact on the parse tree is shown visually.

FIGURE 6: List of available transformations, provided by Tracer in the
manual mode. The user can manually choose and apply each of these
transformations, and observe their impact on the parse-tree.

4.2 Typical Use cases

Developers of knowledge resources and other types of transformations
can use Tracer as follows. Applying an entailment rule is a process of
first matching the rule’s left-hand-side to the text parse-tree (or to any
tree along the proof), and then substituting it by the rule’s right-hand-
side. To test a rule, the user can provide a text for which the rule is
supposed to match, examine the list of potential transformations that
can be performed on the text’s parse tree, as shown in Figure 6, and
verify that the examined rule has been matched as expected. Next, the
user can apply the rule, visually examine its impact on the parse-tree,

The BIUTEE Research Platform / 21

TABLE 2: Performance (accuracy) of an earlier version of BiuTee on
RTE challenges, compared to other systems participated in these chal-
lenges. Median and Best indicate the median score and the highest
score of all submissions, respectively.

RTE challenge Median % Best % BiuTee %
RTE-1 55.20 58.60 57.13
RTE-2 58.13 75.30 61.63
RTE-3 61.75 80.00 67.13
RTE-5 61.00 73.50 63.50

as in Figure 5, and validate that it operates as intended and does not
cause undesired side-e↵ects.

Researchers of proof construction and classification algorithms can
also make use of Tracer . As described above, the complete inference
process depends on the parameters learned in the training phase, as
well as on the search algorithm which looks for a lowest-cost proof
from T to H. For a given (T,H) pair, the automatic mode provides
the complete proof found by the system. Then, in the manual mode
the researcher can try to construct alternative proofs. If a proof with
a lower cost can be constructed manually it signals a limitation of the
search algorithm. In contrast, if the user can manually construct a
better linguistically motivated proof, but it turns out that this proof
has higher cost than the one found by the system, it signals a limitation
of the learning phase which may be caused either by a limitation of the
learning method, or due to insu�cient training data.

5 Experimental Results

In this section we briefly overview BiuTee’s performance on the RTE
challenges. We omit RTE-4 (2008) since it does not contain training
data. Table 2 shows results of an earlier version of BiuTee on RTE 1,2,3
and 5 (Dagan et al. 2006b; Bar-Haim et al. 2006; Giampiccolo et al.
2007; Bentivogli et al. 2009). This earlier version does not contain many
components that were described in this paper, e.g., it does not contain
the syntactic rules, the Truth-Teller, the logistic-regression classifier,
and uses an older parser, an older coreference resolver and an older
scheme for the search algorithm. It can be seen, however, that even the
earlier version achieved better results than the median of all submitted
results to these challenges.

BiuTee’s performance on the more recent RTE-6 and RTE-7 (Ben-
tivogli et al. 2010, 2011) challenges is presented in Table 3: BiuTee
is better than the median of all submitted results, and in RTE-6 it

22 / Asher Stern and Ido Dagan

TABLE 3: Performance (F1) of BiuTee on RTE challenges, compared
to other systems participated in these challenges. Median and Best
indicate the median score and the highest score of all submissions,
respectively.

RTE challenge Median % Best % BiuTee %
RTE-6 33.72 48.01 49.09
RTE-7 39.89 48.00 42.93

outperforms all other systems.

6 Conclusions and Future Work

In this paper we described BiuTee, an open-source textual-inference
system, and suggested it as a research platform in the RTE field in
general, and within the transformation-based paradigm in particular.
Such a platform is needed in this complex research area, in which a lot
of linguistic analysis utilities, extensive usage of knowledge resources,
and sophisticated entailment recognition components are needed.

From this perspective, we highlighted the following key advantages of
our system: (a) modularity and extensibility, (b) a plug-in mechanism,
(c) utilization of entailment rules that can capture diverse types of
knowledge, and (d) a tracing tool that visualizes every detail of the
inference process.

We suggest several directions for future work. First, as described
above, BiuTee can be extended with additional types of transforma-
tions. One example is arithmetic transformations, as in the following
example:

Text: Two men and three women were wounded in the accident.

Hypothesis: Three people were wounded in the accident.

Such example requires a complex transformation which first identifies
that men, as well as women, entail people, and then makes the arith-
metic calculation of 2 + 3 = 5.

Another suggested extension is temporal entailment, like:

Text: In 2004 the Olympic games took place in Athens, and four years
later in Beijing

Hypothesis: In 2008 the Olympic games took place in Beijing.

This example requires a transformation of “four years later” into
“2008”, followed by the introduction of the implicit sentence “the
Olympic games took place in Beijing” by generic-syntactic rewrite
rules.

The BIUTEE Research Platform / 23

Another direction for future work is in improving the on-the-fly
transformations and their features. For example, the current feature-
values for on-the-fly insertion are based on a Unigram language model.
However, this model is limited, as it does not consider the context of
the given text. A better model would calculate for each inserted word
how likely it is that this word is entailed by the given text, thus im-
proving the overall cost estimation of proofs that contain the insertion
on-the-fly transformation.

More broadly, an appealing property of BiuTee’s inference model
and architecture is the ability to easily integrate various types of
linguistically-motivated inferences. For example, one can easily in-
tegrate additional linguistic processing levels, such as semantic role
labelling,discourse analysis and temporal analysis as additional annota-
tion levels, which can then be leveraged by appropriate transformations
with their reliability being assessed by corresponding features. Thus,
we believe that BiuTee provides a suitable platform for investigating
the incorporation of various advanced annotations and inference types
within textual entailment recognition.

Acknowledgments

We thank Amnon Lotan for contributing and integrating the Truth-
Teller component, and for enhancing the visual tracing tool. This
work was partially supported by the Israel Science Foundation grant
1112/08, the PASCAL-2 Network of Excellence of the European Com-
munity FP7-ICT-2007-1-216886, and the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) under grant agreement
no. 287923 (EXCITEMENT).

References

Bar-Haim, Roy, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo,
Bernardo Magnini, and Idan Szpektor. 2006. The second PASCAL recog-
nising textual entailment challenge. In Proceedings of the Second PASCAL
Challenges Workshop on Recognising Textual Entailment .

Bar-Haim, Roy, Ido Dagan, Iddo Greental, and Eyal Shnarch. 2007. Semantic
inference at the lexical-syntactic level. In Proceedings of AAAI .

Ben-Aharon, Roni, Idan Szpektor, and Ido Dagan. 2010. Generating entail-
ment rules from framenet. In Proceedings of ACL.

Bentivogli, Luisa, Peter Clark, Ido Dagan, Hoa Trang Dang, and Danilo
Giampiccolo. 2010. The sixth PASCAL recognizing textual entailment
challenge. In Proceedings of TAC .

24 / Asher Stern and Ido Dagan

Bentivogli, Luisa, Peter Clark, Ido Dagan, Hoa Trang Dang, and Danilo
Giampiccolo. 2011. The seventh PASCAL recognizing textual entailment
challenge. In Proceedings of TAC .

Bentivogli, Luisa, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and
Bernardo Magnini. 2009. The fifth PASCAL recognizing textual entailment
challenge. In Proceedings of TAC .

Berant, Jonathan. 2012. Global Learning of Textual Entailment Graphs (sub-
mitted). Ph.D. thesis, Tel Aviv University.

Bos, Johan and Katja Markert. 2005. Recognising textual entailment with
logical inference. In Proceedings of EMNLP .

Cabrio, Elena, Milen Kouylekov, and Bernardo Magnini. 2008. Combin-
ing specialized entailment engines for RTE-4. In Proceedings of TAC .
Gaithersburg, Maryland.

Chklovski, Timothy and Patrick Pantel. 2004. Verbocean: Mining the web
for fine-grained semantic verb relations. In Proceedings of EMNLP .

Clark, Peter and Phil Harrison. 2010. Blue-lite: a knowledge-based lexical
entailment system for rte6. In Proceedings of TAC .

Dagan, Ido, Oren Glickman, and Bernardo Magnini. 2006a. The PASCAL
recognising textual entailment challenge. In Quiñonero-Candela, J.; Da-
gan, I.; Magnini, B.; d’Alché-Buc, F. (Eds.) Machine Learning Challenges.
Lecture Notes in Computer Science.

Dagan, I., O. Glickman, and B. Magnini. 2006b. The pascal recognising
textual entailment challenge. Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification, and Recognising Tec-
tual Entailment .

de Salvo Braz, Rodrigo, Roxana Girju, Vasin Punyakanok, Dan Roth, and
Mark Sammons. 2005. An inference model for semantic entailment in
natural language. In Proceedings of AAAI .

Fellbaum, Christiane, ed. 1998. WordNet An Electronic Lexical Database.
The MIT Press.

Finkel, Jenny Rose, Trond Grenager, and Christopher Manning. 2005. In-
corporating non-local information into information extraction systems by
gibbs sampling. In Proceedings of ACL.

Giampiccolo, Danilo, Hoa Trang Dang, Bernardo Magnini, Ido Dagan, Elena
Cabrio, and Bill Dolan. 2008. The fourth PASCAL recognizing textual
entailment challenge. In Proceedings of TAC .

Giampiccolo, Danilo, Bernardo Magnini, Ido Dagan, and Bill Dolan. 2007.
The third PASCAL recognizing textual entailment challenge. In Proceed-
ings of the ACL-PASCAL Workshop on Textual Entailment and Para-
phrasing .

Goldberg, Yoav and Michael Elhadad. 2010. An e�cient algorithm for easy-
first non-directional dependency parsing. In Proceedings of NAACL.

Habash, Nizar and Bonnie Dorr. 2003. A categorial variation database for
english. In Proceedings of NAACL.

The BIUTEE Research Platform / 25

Haghighi, Aria and Dan Klein. 2009. Simple coreference resolution with rich
syntactic and semantic features. In Proceedings of EMNLP .

Iftene, Adrian. 2008. Uaic participation at RTE4. In Proceedings of TAC .

Jansche, Martin. 2005. Maximum expected f-measure training of logistic
regression models. In Proceedings of EMNLP .

Karttunen, Lauri. 1971. Implicative verbs. Language .

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Mar-
cello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin,
and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine
translation. In Proceedings of ACL.

Kotlerman, Lili, Ido Dagan, Idan Szpektor, and Maayan Zhitomirsky-ge↵et.
2010. Directional distributional similarity for lexical inference. Natural
Language Engineering .

Kouylekov, Milen and Matteo Negri. 2010. An open-source package for rec-
ognizing textual entailment. In Proceedings of ACL Demo.

Lin, Dekang. 1998a. Automatic retrieval and clustering of similar words. In
Proceedings of COLING.

Lin, Dekang. 1998b. Dependency-based evaluation of minipar. In Proceedings
of the Workshop on Evaluation of Parsing Systems at LREC 1998 .

Lin, Dekang and Patrick Pantel. 2001. DIRT - discovery of inference rules
from text. In Proceedings of ACM SIGKDD Conference on Knowledge
Discovery and Data Mining .

Lotan, Amnon. 2012. A Syntax-based Rule-base for Textual Entailment and
a Semantic Truth Value Annotator . Master’s thesis, Bar Ilan University.

Lotan, Amnon, Asher Stern, and Ido Dagan. 2013. Truthteller: Annotating
predicate truth. In Proceedings of NAACL.

MacKinlay, Andrew and Timothy Baldwin. 2009. A baseline approach to the
RTE5 search pilot. In Proceedings of TAC .

Mirkin, Shachar, Roy Bar-Haim, Jonathan Berant, Ido Dagan, Eyal Shnarch,
Asher Stern, and Idan Szpektor. 2009. Addressing discourse and document
structure in the RTE search task. In Proceedings of TAC . Gaithersburg,
Maryland.

Mirkin, Shachar, Ido Dagan, and Sebastian Pado. 2010. Assessing the role
of discourse references in entailment inference. In Proceedings of ACL.

Raina, Rajat, Andrew Y. Ng, and Christopher D. Manning. 2005. Robust
textual inference via learning and abductive reasoning. In Proceedings of
AAAI .

Shnarch, Eyal, Libby Barak, and Ido Dagan. 2009. Extracting lexical refer-
ence rules from Wikipedia. In Proceedings of ACL-IJCNLP .

Shnarch, Eyal, Jacob Goldberger, and Ido Dagan. 2011. A probabilistic mod-
eling framework for lexical entailment. In Proceedings of ACL.

26 / Asher Stern and Ido Dagan

Stern, Asher and Ido Dagan. 2011. A confidence model for syntactically-
motivated entailment proofs. In Proceedings of RANLP .

Stern, Asher, Roni Stern, Ido Dagan, and Ariel Felner. 2012. E�cient search
for transformation-based inference. In Proceedings of ACL.

Tatu, Marta and Dan Moldovan. 2006. A logic-based semantic approach to
recognizing textual entailment. In Proceedings of ACL.

Toutanova, Kristina, Dan Klein, Christopher Manning, and Yoram Singer.
2003. Feature-rich part-of-speech tagging with a cyclic dependency net-
work. In Proceedings of NAACL.

Versley, Yannick, Simone Paolo Ponzetto, Massimo Poesio, Vladimir Eidel-
man, Alan Jern, Jason Smith, Xiaofeng Yang, and Ro Moschitti. 2008.
Bart: A modular toolkit for coreference resolution. In Proceedings of ACL,
Demo Session.

Wang, Rui and Guenter Neumann. 2008. An divide-and-conquer strategy
for recognizing textual entailment. In Proceedings of TAC . Gaithersburg,
Maryland.

Wang, Rui and Yajing Zhang. 2008. Recognizing textual entailment with
temporal expressions in natural language texts. In Proceedings of IEEE .

