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Abstract
In this paper we explore segmentation strategies for the
stream decoder - a method for decoding from a continuous
stream of input tokens, rather than the traditional method of
decoding from sentence segmented text. The behavior of the
decoder is analyzed and modifications to the decoding algo-
rithm are proposed to improve its performance. The exper-
imental results show our proposed decoding strategies to be
effective, and add support to the original findings that this
approach is capable of approaching the performance of the
underlying phrase-based machine translation decoder, at use-
ful levels of latency. Our experiments evaluated the stream
decoder on a broader set of language pairs than in previous
work. We found most European language pairs were sim-
ilar in character, and report results on English-Chinese and
English-German pairs which are of interest due to the re-
ordering required.

1. Introduction
Statistical machine translation (SMT) technology has ad-
vanced to the point where it is becoming capable enough to
be useful for many applications. The process of automatic si-
multaneous interpretation however is another matter entirely.
The interpretation process is difficult, even for skilled human
interpreters, and presents a major challenge to a machine the
since in addition to the translation process, decisions need to
be made about when to commit to outputting a partial trans-
lation. Such decisions are critical since once such an output
is made it can be difficult and highly undesirable to correct it
later if it is in error.

In simultaneous interpretation, the input to the automatic
interpretation system is often a continuous stream of tokens.
Since the output from the system occurs periodically, the out-
put of the system is segmented. In order to produce this
output segmentation two strategies can be employed. In the
first, the stream is segmented before the machine translation
process begins, and the machine translation system is con-
strained to translate using the given segmentation. In order

to distinguish the methods that segment the input prior to the
decoding in a pre-processing step, we will refer to them as
“pre-segmentation” in this paper. In the second, the segmen-
tation process is performed during the decoding of the input
stream. The work presented here is primarily concerned with
the latter, but proposes and evaluates a method to integrate
them.

2. Related Work

The work in this paper is based upon the stream decoder [1],
an extension to a phrase-based statistical machine transla-
tion decoder that allows it to decode directly from continuous
stream of tokens. We describe this methodology in more de-
tail in Section 3.

In [2] the prosody information in the speech signal was
used to segment a continuous stream of speech input for
translation. In their experiments, a silence duration of ap-
proximately 100ms was found to be suitable for segmenta-
tion.

A number of diverse strategies for pre-segmentation were
studied in [3]. They studied both non-linguistic techniques,
that included fixed-length segments, and a “hold-output”
method. The hold-output method method is relevant to the
research in this paper because it relies the same principle
used by the stream decoder. It identifies contiguous blocks
of text that do not contain alignments to words outside them.
An SVM was used to predict these blocks prior to the de-
coding process; the stream decoder operates by identifying
similar structures during decoding. Their experimental re-
sults showed this method to be ineffective. Linguistically-
motivated segmentation techniques were also considered.
Conjunctions, sentence boundaries and commas were inves-
tigated, with commas being the most effective segmentation
cue in their investigation.

In [4] a strategy for pre-segmentation based on searching
for segmentation points while optimizing the BLEU score
was presented. An attractive characteristic of this approach
is that the granularity of the segmentation can be controlled
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by choosing the number of segmentation boundaries to be
inserted, prior to the segmentation process.

The automatic interpretation from English into Japanese
has been studied in [5]. Their approach used heuristics to
identify predicates that are likely to be invertible from a de-
pendency structure derived from a phrase-structure parse of
the English. They exploit the somewhat free word order of
Japanese to re-order the Japanese tokens into an order that is
appropriate for interpretation. The resulting word order may
be a little dis-fluent, but is nonetheless grammatically valid
and is typical of the kind of compromise that needs to be
made during interpretation.

There are also some related studies in translation process
research (for example, [6, 7]) that study in detail the process
of human simultaneous interpretation.

In [8] it was shown that the prediction and use of soft
boundaries in the source language text, when used as re-
ordering constraints can improve the quality of a speech
translation system.

3. Stream Decoding
The stream decoding strategy differs from approaches based
on the pre-segmentation of the stream of input tokens in that
the segmentation decisions are able to exploit information
from the decoding process itself. In [9], it is stated that
long segments of around 10-40 words are required in a pre-
segmentation strategy in order to achieve performance close
to the underlying machine translation system. These long
segments give rise to long latencies, and the penalty for re-
ducing the segment size in order to achieve acceptably la-
tencies is typically severe. These issues have been addressed
recently with more intelligent strategies for choosing the seg-
mentation points [4], but nonetheless we believe the stream
decoding approach deserves more attention in the literature,
and merits further study for the following reasons:

• Stream decoding uses characteristics of the decoding
process for segmentation, and requires no annotation
of the input token stream.

• Stream decoding is able to enforce a maximum limit
on the latency.

• The first results on English-Spanish translation ([1])
were very promising.

3.1. Overview of the Stream Decoding Process

The reader is referred to the original paper [1] for a complete
description of the stream decoding process; in this section,
for completeness, we provide a brief summary of the stream
decoding methodology.

Figure 1 depicts a stream decoding process. The input to
the stream decoder is a stream of tokens (it is also possible
to configure the decoder to operate on tuples of confusable
token sequences from a speech recognition decoder, but for

the purposes of this paper we consider streams of tokens). A
typical phrase-based machine translation system will decode
token sequences, where a token (typically word) sequence
usually represents a sentence in the source language. The
decoder will construct a search graph from this sequence of
tokens and output the n-best derivations of target token se-
quences from this graph.

The stream decoder, in contrast, operates on a potentially
infinite sequence of tokens. As new tokens arrive, states in
the search graph are extended with the new possible trans-
lation options arising from the new tokens. Periodically the
stream decoder will commit to outputting a sequence of tar-
get tokens. At this point a state from the search graph is
selected, the search graph leading from this state is kept, and
the remainder discarded. The search then continues using the
pruned search graph. In our implementation of the stream
decoder the language model context is preserved at this state
for use during the subsequence decoding. In this manner the
stream decoder is able to operate on a stream of tokens that
contains no segment boundary information. The segmenta-
tion occurs as a natural by-product of the decoding process.

3.2. Latency Parameters

The stream decoding process is governed by two parameters
Lmax and Lmin. These parameters are illustrated in Figure 1.
The Lmax parameter controls the maximum latency of the
system. That is, the maximum number of tokens the system
is permitted to fall behind the current position. If interpreting
from speech, the parameter represents the number of words
the system is allowed to fall behind the speaker, before being
required to provide an output translation. This parameter is
a hard constraint that guarantees the system will always be
within Lmax tokens of the current last token in the stream of
input tokens. The parameter Lmin represents the minimum
number of words the system will lag behind the last word
spoken. It serves as a means of preventing the decoder from
committing to a translation too early.

3.3. Determining the Segmentation Point

Algorithm 1 shows the algorithm used to select the segmen-
tation point. The decoder maintains a sequence of tokens that
represent the sequence of untranslated tokens from the input
stream (see Figure 1). As new tokens arrive from the input
stream, they are added to the end of the sequence. When the
length of this sequence reaches Lmax, the decoder is forced
to provide an output. A search state is chosen from the se-
quence of states in the search graph representing the best hy-
pothesis that covers the full sequence of untranslated words.
In short, the best hypothesis is rolled back, state by state,
until the remaining state sequence translates a contiguous se-
quence of source words starting from beginning of the se-
quence of untranslated words, and the number of words that
would remain in the sequence of untranslated words after the
translation is made, is at least Lmin. It is possible that no
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Figure 1: The stream decoding process.

Algorithm 1: Selecting a segmentation point.
Input: A sequence of search states s0, . . . , sn

representing the best hypothesis. s0 being the
initial state, and sn being the final state.

Output: A state si ̸= s0 representing the end of the
translation segment, or s0 if the process
failed to find a suitable state.

foreach i = n to 1 do
if the tokens translated by s0 . . . si are a
contiguous sequence starting immediately after
the last translated source token then

if the number tokens translated by the states
following si at least Lmin then

return si
end

end
end
return s0

Language Pair Training Dev Test
English-Spanish 180853 887 1701
English-Chinese 179651 887 1397
English-German 171721 887 1700

Table 1: Statistics on corpora using in the stream decoding
experiments. The numbers given are in segments, represent-
ing individual subtitles, corresponding approximately to sen-
tences.

such state exists, in which case the algorithm returns s0, and
since the stream decoder is required to make an output, it
must use an alternative strategy.

In this alternative strategy, the stream decoder will un-
dertake a new decoding pass in which it is forced to make
a monotonic step as the first step in the decoding process.
Then, a state is selected from the best hypothesis using Al-
gorthim 1. This process may also fail if the monotonic step
would lead to the violation of Lmin. In our implementation,
we allow the decoder to violate Lmin only in this case.

4. Experimental Methodology

4.1. Corpora

For the experiments that explore the operation of and en-
hancements to the stream decoder we use the TED1 talks data
sets from the IWSLT2014 campaign. We studied English to:
Spanish, Italian, French, German and Chinese, and found the
results on the set of European language pairs were mostly
similar in character, and we therefore report results on only
English-Spanish (a typical pair) and English-German (an ex-
ceptional pair) from this set. Statistics on the corpora are
given in Table 1. The European language data was tokenized
by the Stanford PTBTokenizer. The Chinese was segmented
using the Stanford Chinese word segmenter [10] according
to the Chinese Penn Treebank standard.

4.2. Decoder

Our stream decoder was implemented within the framework
of the OCTAVIAN decoder, a phrase-based statistical ma-
chine translation decoder that operates in a similar manner
to the MOSES decoder [11]. The training procedure was
quite typical: 5-gram language models were used, trained
with modified Kneser-Ney smoothing; MERT [12] was used
to train the log-linear weights of the models; the decoding
was performed with no limit on the distortion.

4.3. Evaluation

The BLEU score [13] was used to evaluate the machine
translation quality in all our experiments. Where sentence
segmentation was known we used both talk and sentence-
level BLEU, and for the experiments where true stream de-
coding was performed on a stream of tokens with no seg-
mentation information, talk-level BLEU was used. In talk
level BLEU each talk is considered to be a single sentence in
the BLEU computation. For consistency only the talk level
BLEU results are reported in this paper, but the results from
the sentence-level BLEU experiments were similar in char-
acter.

1http://www.ted.com
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5. Alternative Stream Decoding Strategies
5.1. Increasing the Output Frequency

5.1.1. Methodology

As explained in the previous section, in the originally pro-
posed stream decoder, the best hypothesis is unrolled back-
wards until a suitable point is found for output. The prin-
ciple here is to find the longest subsequence of states in the
best hypothesis that satisfies the constraints that determine
whether the segmentation point is permissible. However,
other strategies are possible. One plausible strategy is instead
of committing to the longest permissible output, commit to
the shortest. The algorithm is identical to that shown of Al-
gorithm 1 except that the “foreach” loop that ranges from
i = n . . . 1, ranges from i = 1 . . . n. The approach takes less
of a risk, since it will commit to shorter translations. On the
downside, it will lag behind the original strategy given the
same values for its latency parameters.

For this reason, it is unfair to compare these approaches
under the constraint that their Lmax and Lmin parameters
are the same, since there may be a bias in favor of the strat-
egy that commits to the shortest output, and this strategy will
gain its advantage by increasing the latency of the tokens in
the output stream. To remove this potential bias, we there-
fore compare these two methods in the experiment below by
measuring the trade-off between machine translation quality
(measured using the BLEU score) and average latency per
token Lavg . That is the average number of tokens each token
is behind the input stream, given by:

Lavg =

∑
i=1,N L(i)

N
(1)

where N is the total number of words in the input stream,
and L(i) is the latency after word i has been processed.

5.1.2. Experiment

Figure 2 shows the results on English-to-Spanish translation
task. Experiments were run for values of Lmax in the range
1 to 10, and the points are annotated with these values. The
oracle values of Lmin, that is the value of Lmin that gave
rise to the highest BLEU score, were used. The graph plots
Lavg against BLEU score for each experiment. For high and
low values of Lmax the two strategies are similar in perfor-
mance, but for 3 ≤ Lmax ≤ 6 the strategy that makes more
frequent, but shorter output is the better strategy. Of course
there may be human factors to consider, but in terms of the
machine translation evaluation scores at least, the shorter out-
put strategy would seem to be the more effective approach,
especially when lower latencies are required. This approach
varied in its effectiveness across language pairs however,
with some European language pairs (for example English-to-
French) showing almost no difference in performance. The
proposed strategy was always at least as good as the baseline,
and therefore it was adopted in the remainder of the experi-
ments reported here.
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Figure 2: The trade-off between BLEU score and average
latency for two different strategies for selecting the segmen-
tation point.

5.2. Minimizing the Number of Forced Monotonic Steps

5.2.1. Motivation

In Section 3.3 it was explained that during stream decoding
the best hypothesis is rolled back until a satisfactory segmen-
tation point is found. In some cases, no such segmentation
point exists and the decoder resorts to an alternative decoding
strategy that forces the first step of the decoding process to
be monotonic. This section is motivated by the concern that
constraining the decoder in this manner will lead to transla-
tion hypotheses that diverge from the optimal path, impact-
ing the overall translation performance. We therefore seek
a method that can reduce the number of forced monotonic
steps.

5.2.2. Methodology

One plausible method to alleviate the issue is to extend the
stream decoding approach to allow it to select a segmentation
point from the whole search graph, rather than from the 1-
best hypothesis. We proposed a straightforward extension of
the existing approach: to select a state from the n-best list.
The proposed method applies Algorithm 1 iteratively over
an n-best list of derivations, from rank 1 to n, terminating on
the first rank in which a suitable segmentation point is found.
Only if no segmentation point is found in the n-best list, does
the decoder resort to a forced monotonic decoding step.

We analyzed the effect of the approach on the number of
forced monotonic steps for English-Spanish. The results are
shown in Figure 3, the oracle value of Lmin is used. The fig-
ure shows the percentage of translated segments that were the
result of a decoding hypothesis that contained a forced mono-
tonic step. The results clearly show that the proposed method
can have a substantial impact on the number of forced mono-
tonic steps. We investigate whether or not this leads to an
improvement in machine translation performance in the next
sections.
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(b) Selecting from the 20-best hypotheses.

Figure 4: Using the n-best hypotheses to select the segmentation point for English-Spanish.
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(b) Selecting from the 20-best hypotheses.

Figure 5: Using the n-best hypotheses to select the segmentation point for English-Chinese.
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Figure 3: The proportion of output segments containing
forced monotonic decoding steps for different length n-best
lists.

5.2.3. English-Spanish Translation

Even though the number of forced monotonic decoding steps
can be reduced by using an n-best list, it does not guarantee

an improvement in performance. Selecting a state from a
hypothesis other than the 1-best comes with a price as hy-
potheses further down the n-best list are likely to represent
translations of lower quality.

Figure 4 shows the results of an experiment using the
proposed method in the previous section on the English-to-
Spanish task. The experiments used identical settings apart
from the length of the n-best list used to select the segmen-
tation point. The baseline on both graphs represents the per-
formance of the underlying phrase-based SMT decoder when
decoding the data according to the segmentation provided in
the corpus.

The results show that the stream decoder, which must
provide its own segmentation is able to achieve evaluation
performance comparable to the baseline SMT system. The
stream decoder may have been helped by the fact that the
baseline system was decoding without a distortion limit.
Typically languages such as English and Spanish, having
similar word orders benefit from a constraint on the reorder-
ing, which the stream decoder may be providing as a conse-
quence of more monotonic decoding process. Nonetheless
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we feel its performance is impressive.
The results of this experiment show our proposed method

is very effective in improving the stream decoder. There are
two important differences in the graphs, firstly the curves do
not drop as sharply as Lmin is increased, making the ap-
proach less sensitive to the selection of this parameter. Sec-
ondly, and more importantly, the performance on the experi-
ments with lower latencies (where Lmax is less than 6), is im-
proved overall. We ran a set of experiments on the English-
Spanish task to determine the effect of varying the size of the
n-best list. We found that the approach was not very sensi-
tive to the size of the n-best list for small values of n. The
best results were obtained with 5 ≤ n ≤ 20.

5.2.4. Other Language Pairs

The original stream decoder was evaluated on an English-
Spanish task, and for consistency with the original work, so
far we have shown results on the same language pair (but a
different corpus). We ran experiments on all of the languages
for which data was provided for the IWSLT2014 machine
translation shared tasks. The stream decoder proved robust
to differences in the language pair chosen. The results were
generally similar in character to those presented for English-
Spanish. We have omitted these results for brevity, and in-
stead present results on the English-Chinese and English-
German pairs which are interesting because their word orders
are not similar, and as a consequence a substantial amount of
reordering is necessary in the decoding process. These lan-
guage pairs were expected to present more of a challenge to
the stream decoder.

We conducted the same experiment presented in the pre-
vious section on an English-to-Chinese task, and the results
are shown in Figure 5. As expected, it can be seen in the Fig-
ure 5a that the cost in terms of BLEU score is greater when
lower latencies are required than for English-to-Spanish. The
results have the same general character as before; the use of
the n-best list has improved the performance of the lower la-
tency curves, and also made the decoder far less sensitive to
variations in the Lmin parameter.

Among the European languages, German has some sig-
nificant structural differences that can be expected to create
difficulties for simultaneous interpretation. We show the re-
sults on the English-German pair in Figure 6. The results
appear similar to the English-Chinese results, with a larger
penalty in BLEU for shorter latencies. Moreover, the curves
on the graph fall more sharply than the other languages tested
with increasing Lmin, indicating that the stream decoder is
more sensitive to the value chosen for this parameter.

5.3. Selecting the Most Productive State

Instead of selecting a state in the set of 1-best or n-best hy-
potheses according to the algorithms described in the previ-
ous section, it is also possible to use other criteria to select
the search state from the full search graph. One plausible

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 0  1  2  3  4  5  6  7  8  9

(T
al

k
 l

ev
el

) 
B

L
E

U
 (

%
)

Minimum Latency

Maximum Latency=10

Maximum Latency=8

Maximum Latency=6

Maximum Latency=4

Maximum Latency=2

Figure 6: Performance on the English-German task (Using a
20-best list).

heuristic is to select the state that is in the greatest number of
search paths leading to the final stack; the “most productive”
state. The intuition behind this idea was that this state might
provide the greatest number of good alternative search paths
for decoding the future tokens. In the event of a tie in which
several states gave rise the same number of hypotheses on the
final stack, the state on the highest probability path was given
precedence. If this failed to break the tie, the state closest to
the initial state on the path was selected.

Unfortunately this strategy proved to be less effective
than the simpler strategies described previously. We believe
the reason may have caused by this strategy selecting states
on sets of paths where the best path in the set had too low
a rank. We would like to pursue similar ideas in the future,
with the overall goal of removing the parameter Lmin en-
tirely from the decoding process, allowing the decoder more
freedom to decode.

5.4. Introducing Segmentation Points into the Stream

5.4.1. Motivation

As mentioned in Section 2, it has been shown that an input
stream can be segmented effectively prior to the decoding
process, using information derived from the input word se-
quence itself (punctuation, part-of-speech tags etc.) and also
information from the speech recognition system (for example
prosody). In this section we explore the idea of introducing
segmentation information into the input stream, to support
the segmentation process during stream decoding.

5.4.2. Methodology

In [3] the most effective segmentation strategy was to place
segmentation boundaries at commas in the input. In addition
segmenting at sentence boundaries also proved to be effec-
tive. Using predicted rather than reference commas did not
seem to have a negative impact on machine translation per-
formance.

We study the effect of introducing special tokens into the
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Figure 7: The effect of introducing segmentation information into the stream for English-to-Spanish.

stream to mark the ends of both sentence internal and sen-
tence final segments. In our experiments we use the positions
of commas in the corpus as the position at which to introduce
sentence internal segment termination tokens (denoted ⟨p⟩),
and the sentence segmentation in the corpus to delimit sen-
tences (using the token ⟨s⟩).

There are a number of plausible strategies for using these
tokens during decoding, and we wish to explore more of
these in future research. In these experiments we study the
case where priority is given to the segmentation indicated
by the tokens in the input stream in the following manner:
when an ⟨s⟩ or a ⟨p⟩ token arrives on the input stream, the
stream decoder translates all untranslated words, and creates
an initial search state from which to continue the decoding
process. In the case of the ⟨p⟩ token, the language model
context is preserved; in the case of ⟨s⟩ it is discarded. In both
cases the decoder can violate the Lmin constraint.

5.4.3. Experiments

The experiments were carried out on data with the punctua-
tion removed from both source and target sides to eliminate
the ambiguity of where to place the segmentation tokens in
the stream. The punctuation was not used in training the ma-
chine translation systems’ models, nor was it used in evalu-
ation, but it was used to place the ⟨s⟩ and ⟨p⟩ tokens. The
results are shown in Figure 7. It is clear from Figure 7a that
sentence boundaries were useful to the stream decoder. The
experiment in Figure 7b shows that adding ⟨p⟩ information
surprisingly did not give any additional benefit.

6. Conclusions

In this paper we have presented a study of several variations
of the stream decoder. The stream decoder is able to decode
from a continuous stream of tokens, and is capable of per-
forming segmentation as it decodes. Previous studies have
shown this technique can achieve respectable levels of per-

formance whilst maintaining a usefully low level of latency.
The experiments in this paper support the original findings
and also broaden the study of this decoder by evaluating it on
new datasets and new language pairs. Of particular interest
were English-Chinese and English-German tasks, which are
challenging due to the differences in word order. Our results
show that the although BLEU score was impacted at shorter
latencies, the behavior of the stream decoder was quite simi-
lar in character to that of the language pairs. We believe the
original claims that stream decoding can achieve low latency
translation with only a small degradation in performance are
valid, and can be extended to a broad range of language pairs.

During the course of the research for this paper, we stud-
ied a number of alternative strategies for increasing the per-
formance of the decoder. We found a simple but highly effec-
tive variant of the stream decoder was one that selected the
segmentation point using the n-best list of hypotheses rather
than the 1-best. In our experiments this technique substan-
tially improved the performance of the decoder at shorter la-
tencies and also made the decoder less sensitive to the value
of the minimum latency constraint.

This paper also proposed a technique for integrating
segmentation information from an external source into the
stream decoding process. Our experiments show that reliable
sentence segmentation information may be used effectively
in stream decoding to guide the segmentation process.

In future research we would like to study the behavior of
the stream decoder on language pairs with longer distance
reordering such as Japanese or Korean to the European lan-
guages.
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