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Abstract

This paper describes our German, Italian and English
Speech-to-Text (STT) systems for the 2014 IWSLT TED
ASR track. Our setup uses ROVER and confusion network
combination from various subsystems to achieve a good
overall performance. The individual subsystems are built
by using different front-ends, (e.g., MVDR-MFCC or lMel),
acoustic models (GMM or modular DNN) and phone sets
and by training on various subsets of the training data. De-
coding is performed in two stages, where the GMM systems
are adapted in an unsupervised manner on the combination
of the first stage outputs using VTLN, MLLR, and cMLLR.

The combination setup produces a final hypothesis that
has a significantly lower WER than any of the individual sub-
systems.

1. Introduction
The 2014 International Workshop on Spoken Language
Translation (IWSLT) offers a comprehensive evaluation
campaign on spoken language translation. The evaluation is
organized in different evaluation tracks covering automatic
speech recognition (ASR), machine translation (MT), and
the full-fledged combination of the two of them into speech
translation systems (SLT). The evaluations in the tracks are
conducted on TED Talks (http://www.ted.com/talks), short
5-25min presentations by people from various fields related
in some way to Technology, Entertainment, and Design
(TED) [1].

The goal of the TED ASR track is the automatic tran-
scription of fully unsegmented TED lectures. The quality of
the resulting transcriptions are measured in word error rate
(WER).

In this paper we describe our Italian, German and English
ASR systems with which we participated in the TED ASR
track of the 2014 IWSLT evaluation campaign. While our
German and English ASR systems are based on our previous
years’ evaluation systems [2] our Italian system is a com-
pletely new system that was developed from scratch. Our
general system setup uses multiple complementary subsys-

tems that employ different phone sets, front ends, acoustic
models or data subsets.

The rest of this paper is structured as follows. Section 2
describes the data that our system was trained and tested on.
This is followed by Section 3 which provides a description
of the acoustic front-ends used in our system and Section 4
which describes our segmentation setup. An overview of the
techniques used to build our acoustic models is given in sec-
tion 5. We describe the language model used for this evalua-
tion in section 6. Our decoding strategy and results are then
presented in sections 7 and 8. The final section, Section 8
contains a short conclusion.

2. Data Resources
2.1. Training Data

The following data sources have been used for acoustic
model training of all our English systems:

• 200 hours of Quaero training data from 2010 to 2012.

• 18 hours of various noise data, such as snippets of ap-
plause, music or noises from microphone movement.

• 158 hours of data downloaded from the TED talks
website that was released before the cut-off date of De-
cember 31st 2010.

The Quaero training data is manually transcribed. The
noise data consists only of noises and is tagged with specific
noise words to enable the training of noise models. The TED
data comes with subtitles provided by TED and the TED
translation project.

For German we used the following data sources:

• 180 hours of Quaero training data from 2009 to 2012.

• 24 hours of broadcast news data

• 160 audio from the archive of parliament of the state
of Baden-Württemberg, Germany

73

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



Set #talks #utt dur dur/utt
dev2010 8 887 1.5h 6.2s
dev2012 10 1144 (545) 1.7h (1.8h) 5.4s (12.2s)
tst2010 11 1664 2.5h 5.3s
tst2013 28 1388 4.2h 10.8s
tst2014 15 718 2.2h 11.0s

Table 1: Statistics of the development sets (“dev2010”,
“tst2010” and “dev2012”) and the evaluation sets
(“tst2013” and “tst2014”), including the total number of
talks (#talks), the total number of utterances (#utt), the over-
all speech duration (dur), and average speech duration per
utterance (dur/utt). “tst2013” and “tst2014” have been seg-
mented automatically. Properties of the automatic segmen-
tation of “dev2012” is described in brackets.

The training database for our Italian system contains a to-
tal of 100 hours of audio. It is based on the data from Quaero
Period 4 (54 hours) and Quaero Period 5 (46 hours). The
audio consists of recordings from radio and TV broadcasts.
The data is manually transcribed and split into segments of
varying length, ranging from one sentence to multiple min-
utes. The textual transcriptions contain annotations for dis-
tinct acoustic events as well. We incorporated them as mark-
ers for noises in general and for noises originating from hu-
mans.

Due to the lack of Italian data, we used additional En-
glish data for the neural network training. This data consisted
of 426 hours, based on a selection of TED talks, stanford
lectures, euronews broadcasts and recordings from videolec-
tures.

For language modeling and vocabulary selection, we
used most of the data admissible for the evaluation, as sum-
marized in Tables 2, 3, and 4.

2.2. Test Data

For this year’s evaluation campaign, two evaluation test sets
(“tst2013” and “tst2014”) were provided, as well as three de-
velopment test sets (“dev2010”, “tst2010” and “dev2012”).
The test set “dev2012” has preferably been used for system
development and parameter optimization. Table 1 lists these
five test sets along with relevant properties.

“tst2013” is last year’s evaluation set and is solely com-
prised of TED talks newer than December 2010. This set
serves as a progress test set to measure the system im-
provements with respect to last year’s IWSLT ASR track.
“tst2014” is a collection of TED talks that have been filmed
between early 2012 and late 2013. All development test sets
were used with the original pre-segmentation provided by the
IWSLT organizers. Additionally, “dev2012” has been seg-
mented automatically, as well this year’s evaluation test set.

For the German and Italian systems only a single test
each set “dev2013” and “dev2014“ was available.

3. Feature Extraction

Our systems are built using several different front ends. The
two main input variants, each using a frame shift of 10ms
and a frame size of 32ms, are the mel frequency ceptral co-
efficient (MFCC) minimum variance distortionless response
(MVDR) (M2) features that have been shown to be very ef-
fective when used in BNFs [3] and standard lMEL features
which generally outperform MFCCs when used as inputs to
deep bottleneck features. These standard features are often
augmented by tonal features (T). In [4] we demonstrate, that
the addition of tonal features not only greatly reduces the
WER on tonal languages like Vietnamese and Cantonese but
also results in small gains on non-tonal languages such as
English.

For bootstrapping our systems we employed log Mel fea-
tures with 13 coefficients and a frame size of 16ms. We
stacked the individual frames using a context of seven frames
to each side.

3.1. Deep Bottleneck Features

The use of bottleneck features greatly improves the perfor-
mance of our GMM acoustic models. Figure 1 shows a
general overview of our deep bottleneck features training
setup. 13 frames (+-6 frames ) are stacked as the DBNF input
which consists of 4-5 hidden layers each containing 1200-
1600 units followed by a 42 unit bottleneck, a further 1200-
1600 unit hidden layer and an output layer of 6000 context
dependent phone states for the German systems and 8000 for
the English systems. Layer-wise pretraining with denoising
autoencoders is used for the all the hidden layers prior to the
bottleneck layer. The network is subsequently finetuned as a
whole [5].

The layers following the bottleneck are discarded after
training and the resulting network can then be used to map a
stream of input features to a stream of 42 dimensional bottle-
neck features. Our experiments show it to be helpful to stack
a context of 13 (+-6 ) bottleneck features and perform LDA
on this 630 dimensional stack to reduce its dimension back
to 42.

For Italian, we used an additional approach by training
a neural network using data from more than one language.
We re-used a neural network that has been trained using En-
glish data. In one setting, we used it directly without any
re-training and in another setting, we re-added the discarded
output layers after the bottleneck and re-trained them using
Italian data.

4. Automatic Segmentation

As was the case for last year’s evaluation, the test set for the
ASR track was provided without manual sentence segmen-
tation, thus automatic segmentation of the target data was
mandatory. We utilized three different approaches to auto-
matic segmentation of audio data, which are:
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Figure 1: Overview of our standard DBNF setup.

a) Decoder based segmentation on hypotheses. A fast
decoding pass with one of our development systems was
done to determine speech and non-speech regions as in [6].
Segmentation is then performed by consecutively splitting
segments at the longest non-speech region with a minimal
duration of at least 0.3 seconds. b) GMM based segmen-
tation using speech, non-speech and silence models. This
method uses a Viterbi decoder and MFCC GMM models for
the three aforementioned categories of sounds. The general
framework is based on the one in [7], which was likewise de-
rived from [8]. In contrast to the previous work, we made use
of additional features such as a zero crossing rate. c) SVM
based segmentation using speech and non-speech models,
using the framework introduced in [7]. The pre-processing
makes use of an LDA transformation on DBNF feature vec-
tors after frame stacking to effectively incorporate temporal
information. The SVM classifier is trained with the help of
LIBSVM [9]. A 2-phased post-processing is applied for final
segment generation.

We generated the segmentation of the English data with
the decoder based approach. Our German data was seg-
mented with the help of the SVM based segmentation. The
data for the Italian track was pre-processed using the GMM
framework. The decisions for the respective segmenters have
been made in accordance to previous experiments and suc-
cessful usages within the frame of various projects.

5. Acoustic Modeling
5.1. Data Preprocessing

For the TED data only subtitles were available so the data
had to be segmented prior to training. In order to split the
data into sentence-like chunks, it was decoded by one of our
development systems to discriminate speech and non-speech
and a forced alignment given the subtitles was performed
where only the relevant speech parts detected by the decod-
ing were used. The procedure is the same as the one that has
been applied in [10].

5.2. GMM AM training Setup

All systems use context-dependent quinphones with three
states per phoneme and a left-to-right HMM topology with-
out skip states. The English and Italian acoustic models use
8000 distributions and codebooks derived from decision-tree
based clustering of the states of all possible quinphones. The
German acoustic models use 6000 distributions and code-
books.

The GMM models are trained by using incremental split-
ting of Gaussians training (MAS) [11], followed by optimal
feature space training (OFS) which is a variant of semi-tied
covariance (STC) [12] training using a single global trans-
formation matrix. The model is then refined by one iteration
of Viterbi training. All models further use vocal tract length
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normalization (VTLN).
In order to improve the performance of our acoustic

model Boosted Maximum Mutual Information Estimation
training (BMMIE) [13], a modified form of the Maximum
Mutual Information (MMI) [14], is applied at the end. Lat-
tices for discriminative training use a small unigram lan-
guage model as in [15]. After lattice generation, the BM-
MIE training is applied for three iterations with a boosting
factor of b=0.5. This approach results in about 0.6% WER
improvement for 1st-pass sytems and about 0.4% WER for
2nd-pass systems.

We trained multiple different GMM acoustic models by
combining different front-ends and different phoneme sets.
Section 7 elaborates the details of our system combination.

In contrast to our systems for English and German, we
did not have an existing system for Italian, hence we boot-
strapped our acoustic model using a flatstart training tech-
nique to acquire the initial models.

5.3. Hybrid Acoustic Model

As with the GMM systems we trained our hybrid systems on
variance front-ends and phoneme sets. Our best performing
hybrid systems are based on a modular topology which in-
volves stacking the bottleneck features, described in the pre-
vious section over a window of 13 frames, with 4-5 1600-
2000 unit hidden layers and an output layer containing 6016
context dependent phonestates. The deep bottleneck features
were extracted using an MLP with 5 1600 unit hidden layers
prior to the 42 unit bottleneck layer. Its input was 40 lMel
(or MVDR+MFCC) and 14 tone features stacked over a 13
frame window. Both neural networks were pretrained as de-
noising autoencoders.

5.4. Pronunciation Dictionary

For Italian, we used a pronunciation dictionary which is
based on SAMPA, including consonant geminates and pro-
nunciation variants. It contains 55 phonemes including
noises and consists of the 100k words from the search vo-
cabulary.

For our English systems we used two different phoneme
sets. The first one is based on the CMU dictionary1 and
is the same phoneme set as the one used in last year’s sys-
tem. It consists of 45 phonemes and allophones. The second
phoneme set is derived from the BEEP dictionary2 and con-
tains 44 phonemes and allophones. Both sets use 7 noise tags
and one silence tag each. For the CMU phoneme set we gen-
erated missing pronunciations with the help of FESTIVAL
[16], while for the BEEP dictionary we used Sequitur [17]
instead. Both grapheme to phoneme converters were trained
on subsets of the respective dictionaries.

Our German system uses an initial dictionary based on
the Verbmobil Phoneset [18]. Missing pronunciations are

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz

generated using both Mary [19] and FESTIVAL [16].

5.5. Grapheme System

In addition to systems with a phoneme-based dictionary, we
also built grapheme-based recognition systems for both Ger-
man and Italian. By using a different set of phones, grapheme
based systems are an additional source of information when
doing system combination. Such systems do not require
a pronunciation dictionary, as a 1:1 mapping approach be-
tween letters and sounds is used. Depending on the language,
the resulting system suffers in performance as this naive ap-
proach of letter to sound mapping does not reflect any pro-
nunciation rules.

As the pronunciation of Italian is known to be close to
a 1:1 mapping, the Italian system performed only slightly
worse compared to the phoneme-based system and includ-
ing it into system combination resulted in overall gains. The
German grapheme systems had about a 1% absolute lower
WER than an equivalent phoneme system.

6. Language Models and Search Vocabulary
For language model training and vocabulary selection, we
used the subtitles of TED talks, or translations thereof, and
text data from various sources (see Tables 2, 3, and 4).
Language model training was performed by building sepa-
rate language models for all (sub-)corpora using the SRILM
toolkit [20] with modified Kneser-Ney smoothing. These
were then linearly interpolated, with interpolation weights
tuned using held-out data from the TED corpus. For Italian,
we attempted to compensate for the small amount of data by
using a more elaborate language model with data selected via
Moore’s method [21], but observed no significant improve-
ment in terms of word error rate. For German, we split com-
pounds similarly as in [22].

For the vocabulary selection, we followed an approach
proposed by Venkataraman et al.[23]. We built unigram
language models using Witten-Bell smoothing from all text
sources, and determined unigram probabilities that maxi-
mized the likelihood of a held-out TED data set. As our
vocabulary, we then used the top 150k words for English,
300k words for German, and 100k words for Italian.

7. Decoding Setup
For the evaluation, we built four final systems for Italian.
Three are based on the phoneme dictionary. One is using
a neural network trained entirely on English for feature ex-
traction, one is using a neural network that was pre-trained
on English but fine-tuned on Italian and the last one is using
a feature front-end with just lMEL features. A fourth system
is based on a grapheme dictionary and uses a network that
was trained entirely on English.

Our primary submission is a confusion network combi-
nation (CNC) using all three phoneme-based systems. The
first contrastive system uses the phoneme dictionary and the
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Text corpus # Words
TED 3m
News + News-commentary + -crawl 4,478m
Euronews 780k
Commoncrawl 185m
GIGA 2323m
Europarl + UN + multi-UN 829m
Google Books (1b n-grams)

Table 2: English language modeling data after cleaning. The
total number of words was 7.8 billion, not counting Google
Books.

Text corpus # Words
TED 2,685k
News+Newscrawl 1,500M
Euro Language Newspaper 95,783k
Common Crawl 51,156k
Europarl 49,008k
ECI 14,582k
MultiUN 6,964k
German Political Speeches 5,695k
Callhome 159k
HUB5 20k
Google Web (118m n-grams)

Table 3: German language modeling data after cleaning and
compound splitting. In total, we used 1.7 billion words, not
counting Google Ngrams.

network that was trained using only English data. The sec-
ond contrastive system is based on graphemes and is using
the same neural network. Our third contrastive system is a
ROVER of the two phoneme-based systems using a neural
network and the grapheme-based system using the network
trained on English entirely.

For our English submission we trained 5 different DBNF
GMM acoustic models in total by combining different fea-
ture front-ends (M2 and lMEL) and different phoneme sets
(CMU and BEEP). In addition to these systems, we trained
2 DBNF DNN hybrid systems, one for each phoneme set.
For our primary submission, we combined all 7 systems in a

Text corpus # Words
TED 3,050k
ECI 480k
Euronews 725k
Google Books (437m n-grams)

Table 4: Italian language modeling data after cleaning and
data selection. The total number of words was 4.3 million,
not counting Google Books.

System Dev
lMel+FFV+Pitch EN-NN 38.4
lMel+FFV+Pitch EN-NN Grapheme 38.7
lMel+FFV+Pitch EN-NN IT-ft 40.7
lMel 40.8
ROVER 37.4
CNC 37.1

Table 5: Italian language results on development data
(dev2014)

CNC. The 5 DBNF GMM systems were adapted in an unsu-
pervised manner on the combination of the first stage outputs
using VTLN, MLLR, and cMLLR. A second CNC was com-
puted using the adapted systems and the 2 unadapted hybrid
systems. The final submission consists of a ROVER of both
CNCs, the 5 adapted DBNF GMM systems and the 2 hybrid
systems.

The German setup consisted of 9 separate subsystems 5
with discriminativly trained GMM acoustic models (bmmie)
and 4 using DNN acoustic models (hyb). A confusion net-
work combination is performed on the output of these 9 sys-
tems which is then used to adapt the 5 GMM based acoustic
models for which a 2nd pass speaker adaped pass is then per-
formed. In the 2nd confusion network combination the 2nd
pass systems replace the orginal GMM systems. A ROVER
of the hybrid systems, the 2nd pass GMM system and both
CNCs results in the final output.

8. Results
Our German evaluation setup has improved noticeably since
last year from 18.3% to 17.6% (see Table 7). The best first
pass system now has a WER of 19.2%, an improvement of
0.8% abs. over last year’s best first pass system. The best
2nd pass system has improved by 1.0% abs.

We evaluated our Italian system on the 2014 dev set
(dev2014). Tabel 5 shows the results for different single sys-
tems and ROVER and CNC combinations.

The English system has been evaluated on the test sets
“dev2012”. The results are listed in Table6.

9. Conclusions
In this paper we presented our Italian, English and German
LVCSR systems, with which we participated in the 2014
IWSLT evaluation. All systems make use of neural net-
work based front-ends, HMM/GMM and HMM/DNN based
acoustics models. The decoding set-up of all languages
makes extensive use of system combination of single sys-
tems obtained by combing different phoneme sets, feature
extraction front-ends and acoustic models.

In German we were able to considerably improve the sys-
tem over last year’s system. For Italian we created for the
first time a large scale Italian speech recognition system for
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System dev2012
M2+T-CMU 15.7
lMEL+T-CMU 15.5
M2+T-16ms-CMU 15.9
M2+T-BEEP 16.0
lMEL+T-BEEP 16.2
lMEL+T-hyb-CMU 15.9
lMEL+T-hyb-BEEP 16.7
CNC-BEEP-01 13.4
M2+T-CMU 14.3
lMEL+T-CMU 14.4
M2+T-16ms-CMU 14.8
M2+T-BEEP 14.6
lMEL+T-BEEP 14.5
CNC-BEEP-02 13.5
ROVER 13.4

Table 6: Results for English on development test sets.

evaluation purposes.
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