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Abstract

We describe experiments on quality esti-
mation to select the best translation among
multiple options for a given source sen-
tence. We consider a realistic and chal-
lenging setting where the translation sys-
tems used are unknown, and no relative
quality assessments are available for the
training of prediction models. Our findings
indicate that prediction errors are higher in
this blind setting. However, these errors do
not have a negative impact in performance
when the predictions are used to select
the best translation, compared to non-blind
settings. This holds even when test condi-
tions (text domains, MT systems) are dif-
ferent from model building conditions. In
addition, we experiment with quality pre-
diction for translations produced by both
translation systems and human translators.
Although the latter are on average of much
higher quality, we show that automatically
distinguishing the two types of translation
is not a trivial problem.

1 Introduction

Quality Estimation (QE) [Blatz et al., 2004, Specia
et al., 2009] has several applications in the context
of Machine Translation (MT), considering the use
of translations for both inbound (e.g. gisting) and
outbound (e.g. post-editing) purposes. To date,
research on quality estimation has been focus-
ing mostly on predicting absolute single-sentence
quality scores. However, for certain applications
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an absolute score may not be necessary. Our goal
is to model quality estimation by contrasting the
output of several translation sources for the same
input sentence against each other. The outcome
of this process is a ranking of alternative transla-
tions based on their predicted quality. For our ap-
plication, we are only interested in the top-ranked
translation, which could for example be provided
to a human post-editor for revision.

Previous research on this task has focused on
ranking translations from multiple MT systems
where system identifiers are known beforehand.
Based on such identifiers, individual quality pre-
diction models can be trained for each MT system
[Specia et al., 2010], and the predicted (absolute)
scores for translations of a given source sentence
across multiple MT systems used to rank them. Al-
ternatively, quality prediction models can be built
to directly output a ranking of alternative transla-
tions based on training data annotated with relative
quality scores, using for example pairwise rank-
ing algorithms [Avramidis, 2013, Avramidis and
Popovié, 2013].

In this paper we model translation selection con-
sidering a scenario where translations are produced
by multiple MT systems, but the identifiers of the
MT systems are not given, i.e., we assume a blind
setting where the sources of the translations are
not known. While ranking approaches to system
selection could also be used in this blind setting,
they require training data labelled with compara-
tive assessments of translations produced by mul-
tiple sources. In our experiments, we assume a
more general scenario where the labelling of train-
ing data is produced for individual translation seg-
ments in absolute terms, independently and regard-
less of their origin. In addition, we also experi-
ment with predicting the quality for human trans-



lations. Although human translations are on aver-
age of much higher quality than machine transla-
tions, we show that this is not always the case and
that automatically distinguishing the two types of
translation is not a trivial problem.

We present experiments with four language
pairs and various prediction models in blind and
non-blind settings, as well as with the use of the
resulting predictions for translation selection. We
show that while prediction errors are higher in
blind settings, this does not have a negative im-
pact in performance when using predictions in the
task of translation selection. Our best result in
terms of the quality scores of the selected trans-
lation sets are obtained with prediction models
where all available translations are polled together
in a system-agnostic way. Finally, we show that
these system-agnostic models have good perfor-
mance when predicting quality for out-of-domain
translations, produced by other MT systems.

2 Related work

A handful of system ranking and selection tech-
niques have been proposed in recent years. For
an overview of various related approaches we refer
the reader to the WMT13 shared task on QE [Bo-
jaretal., 2013]. This shared task included a system
ranking track aimed at predicting 5-way rankings
for translations produced by five MT systems and
ranked by humans for model bulding. All related
work relies on either knowing the system identi-
fiers or having access to relative rankings of trans-
lations at training time.

MT system selection was first proposed by Spe-
cia et al. [2010]. QE models are trained indepen-
dently for each MT system, and the translation op-
tion with highest prediction score is used. 77% of
the sentences with the highest QE score also have
the highest score according to humans. In contrast,
54% of accuracy was found when selecting trans-
lations from the best MT system on average.

He et al. [2010] focus on the ranking between
translations from either an MT system or a transla-
tion memory for post-editing. Classifiers showed
promising results in selecting the option with the
lowest estimated edit distance.

Hildebrand and Vogel [2013] use an classic n-
best list re-ranking approach based on predicting
BLEU scores. A feature set where all features that
are solely based on the source sentence were re-
moved showed the best results.
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Bicici [2013] uses language and MT system in-
dependent features to predict F1 scores with re-
gression algorithms. A threshold for judging if two
translations are equal over the predicted F1 scores
was learned from data.

Avramidis [2013] and Avramidis and Popovié
[2013] decompose rankings into pairwise deci-
sions, with the best translation for each candidate
pair predicted using logistic regression. A num-
ber of features of the source and target languages,
including pseudo-references, are used. A similar
pairwise ranking approach was used by Formiga
et al. [2013], but with random forest classifiers.

3 Experimental settings

Datasets Our datasets contain news domain texts
in four language pairs (Table 1): English-Spanish
(en-es), Spanish-English (es-en), English-German
(en-de), and German-English (de-en). Each con-
tains a different number of source sentences and
their human translations, as well as 2-3 versions
of machine translations: by a statistical (SMT)
system, a rule-based (RBMT) system and, for en-
es/de only, a hybrid system. Source sentences were
extracted from tests sets of WMT13 and WMT12,
and the translations were produced by top MT sys-
tems of each type (SMT, RBMT and hybrid - here-
after system2, system3, system4) which partici-
pated in the translation shared task, plus the ad-
ditional professional translation given as reference
(system1). These are the official datasets used for
the WMT14 Task 1.1 on QE.!

Languages | # Training Src/Tgt | # Test Src/Tgt
en-es 954/3,816 150/600
en-de 350/1,400 150/600
de-en 350/1,050 150/450
es-en 350/1,050 150/450

Table 1: Number of training and test source (Src)
and target (Tgt) sentences.

Each translation in this dataset has been labelled
by a professional translator with [1-3] scores for
“perceived” post-editing effort, where:

e 1 = perfect translation, no editing needed.

e 2 = near miss translation: maximum of 2-3
errors, and possibly additional errors that can
be easily fixed (capitalisation, punctuation).

e 3 = very low quality translation, cannot be
easily fixed.

"http://www.statmt.org/wmt14/
quality-estimation-task.html



The distribution of true scores in both train-
ing and test sets is given in Figures 1 and 2, for
each language pair, and for each language pair and
translation source, respectively.
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Figure 1: Distribution of true scores by lang.

Out-of-domain test sets For three language
pairs, we also experiment with out-of-domain test
sets (Table 2) provided by translation companies
(also made available by WMT14) and annotated in
the same way as above by a translation company
(i.e., one professional translator). These were gen-
erated using the companies’ own source data (dif-
ferent domains than news), and own MT system
(different from the three used in our main datasets).

ID Languages | # Test
LSP, en-es 233
LSP, en-es 738
LSP; en-de 297
LSP, es-en 388
LSP;s es-en 677

Table 2: Number of out-of-domain test sentences.

Features We use the QuEst toolkit [Specia
et al., 2013, Shah et al., 2013] to extract two fea-
ture sets for each dataset:

e BL: 17 features used as baseline in the WMT
shared tasks on QE.

e AF: 80 common MT system-independent fea-
tures (superset of BL).

The resources used to extract these features (lan-
guage models, etc.) are also available as part of the
WMT14 shared task on QE.

Learning algorithms We use the Support Vec-
tor Machines implementation within QuEst to
perform either regression (SVR) or classification
(SVC) with Radial Basis Function as kernel and
parameters optimised using grid search. For
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SVC, we consider the “one-against-all” approach
for multi-class classification with all classes are
weighted equally.

Evaluation metrics To evaluate our models, we
use standard metrics for regression (MAE: mean
absolute error; RMSE: root mean squared error)
and classification (precision, recall and F1). For
each Table and dataset, bold-faced figures repre-
sent results that are significantly better (paired t-
test with p < 0.05) with respect to the baseline.

4 C(lassification experiments

Our main motivation to use classifiers is the need
to distinguish human from machine translations to
isolate the former for the system selection task,
since in most settings they are not available. We
are also interested in measuring the performance
of classification-based QE in system selection.

In the experiments to distinguish human trans-
lations from machine translations, we pool all MT
and human translations together for each language
pair, and build binary classifiers where we label
all human translations as 1, and all system trans-
lations as 0. Results are given in Table 3, where
MC stands for “majority class”. They show a large
variation across language pairs, although MC is
outperformed in all cases in terms of F1. The
lower performance for en-es and en-de may be
because here translations from three MT systems
are put together, while for the remaining datasets,
only two MT systems are available. Neverthe-
less, figures for en-es are substantially better than
those for en-de. This could also be due to the
fact that more high quality human translations
are available for es-en and de-en (see Figure 2).
On the the other hand, for language combination
datasets where more low quality human transla-
tions or more high quality machine translations are
found, distinguishing between these sets becomes
a more difficult task. With similar classifiers (al-
beit different datasets), Gamon et al. [2005] re-
ported as trivial the problem of distinguishing hu-
man translations from machine translations. Over-
all, our results could indicate that this is a harder
problem nowadays than some years ago, possibly
pointing in the direction that MT systems produce
translations that are closer to human translation
nowadays.

Results with SVC in the task of classifying in-
stances with 1-3 labels (including human transla-
tions) are shown in Table 4. The performance of
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Figure 2: Distribution of true scores for each MT system and language pair.
System  #feats Precision Recall F1 System  #feats Precision Recall F1
en-de MC - 0.3041 0.1316 0.1566 en-de MC - 0.1521 0.4231 0.2072
BL 17 0.3272 0.1200 0.1756 BL 17 0.1600 0.4000 0.2285
AF 80 0.3281 0.1193  0.1801 AF 80 0.3401 0.4316 0.3078
de-en MC - 0.5041 0.2416  0.2961 de-en MC - 0.1121 0.3521  0.1672
BL 17 0.5420 0.2321 0.3262 BL 17 0.1248 0.3533  0.1844
AF 80 0.5468 0.2333  0.3271 AF 80 0.1267 0.3512 0.1851
en-es MC - 0.6541 0.1521  0.2312 en-es MC - 0.2911 0.5561 0.4014
’ BL 17 0.7012 0.1524 0.2561 BL 17 0.3080 0.5550 0.3961
AF 80 0.7188 0.1533  0.2527 AF 80 0.3092 0.5542  0.3972
es-en MC - 0.7311 0.3513  0.4625 es-en MC - 0.1941 0.4516  0.2677
BL 17 0.7665 0.3651 0.4942 BL 17 0.2075 0.4555 0.2851
AF 80 0.7639 0.3667 0.4954 AF 80 0.2071 0.4541 0.2855

Table 3: SVC to distinguish between human trans-
lations and machine translations (all MT systems).
MC corresponds to always picking machine trans-
lation (most frequent) as label.

the classifiers is compared to the standard baseline
of the majority class in the training set (MC). The
classifiers perform better than MC for all language
pairs except en-es, particularly in terms of recall
and F1. Since this dataset is significantly larger,
the majority class is likely to be more representa-
tive of the general data distribution. Overall, the
classification results are not very positive, and this
corroborates the findings of previous work con-
trasting classification and regression [Specia et al.,
2010].

Overall, the use of all features (AF) instead
of baseline features (BL) only leads to slight im-
provements in some cases.

5 Regression experiments

Here we train models to estimate a continuous
score within [1,3], as opposed to discrete 1-3
scores. We compare prediction error for models
trained (and tested) on pooled translations from
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Table 4: SVC to predict 1-3 labels for each lan-
guage pair, with all translations pooled together.
MC corresponds to applying the most frequent
class of the training set to all test instances.

all MT systems (and humans) together (Table 5) —
which would be comparable to the settings used to
generate Table 4 — against models trained on data
from each MT system (or human translation) in-
dividually (i.e., system identifier known). For the
latter, we consider two settings at test time:

e The system (or human) used to produce the
translation is unknown (Table 6 blind setting),
and therefore all models are applied, one by
one, to predict the quality of this translation
and the average prediction is used.

o The system (or human) is known and thus the
model for the same translation system/human
can be used for prediction (Table 6 non blind
setting).

These two variants may be relevant depending on
the application scenario. We consider very realistic
a scenario where system identifiers are known by
developers at model building time, but unknown
at test time, e.g. if QE is provided as a web ser-




System #feats MAE  RMSE

en-de Mean - 0.6831  0.7911
BL 17 0.6416 0.7620

AF 80 0.6303  0.7616

de-en Mean - 0.6705  0.7979
BL 17 0.6524  0.7791

AF 80 0.6518  0.7682

en-es Mean - 0.4585  0.6678
BL 17 0.5240  0.6590

AF 80 0.5092  0.6442

es-en Mean - 0.5825 0.6718
BL 17 0.5736  0.6788

AF 80 0.5662 0.6663

Table 5: SVR to build predictions models for
each language pair combination, with all transla-
tion sources (including human) pooled together.

vice with pre-trained models (Table 6). Users may
request predictions using translations produced by
any sources, and for out-of-domain data (Table 7).
In all tables, Mean represents a strong baseline:
assigning the mean of the training set labels to all
test set instances.

Comparing the two variants of the blind setting
(Tables 5 - blind training and test; and Table 6,
blind test only), we see that pooling the data from
multiple translation systems for blind model train-
ing leads to significantly better results than train-
ing models for individual translation sources but
testing them in blind settings. This is likely to be
due to the larger quantities of data available in the
pooled models. In fact, the best results are ob-
served with en-es, the largest dataset overall.

Comparing scores between blind versus non-
blind test setting in Table 6, we observe a substan-
tial difference in the scores for each of the individ-
ual translation system. This shows that the task
is much more challenging when QE models are
trained independently, but the identifiers of the sys-
tems producing the test instances are not known.

There is also a considerable difference in the
performance of individual models for different
translation systems, which can be explained by
the different distribution of scores (and also indi-
cated by the performance of the Mean baseline).
However, in general the prediction performance of
the individual models seems less stable, and worse
than the baseline in several cases. Interestingly,
the individual models trained on human transla-
tions only (system1) do even worse than individual
models for MT systems. This can be an indication
that the features used for quality prediction are not
sufficient to model human translations.
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In all cases, the use of all features (AF) instead
of baseline features (BL) comparable or better re-
sults.

Table 7 shows the results for SVR models
trained on pooled models for each language pair
(i.e., models in Table 5) when applied to predict
the quality of the out-of-domain datasets. This is
an extremely challenging task, as the only constant
between training and test data is the language pair.
The text domain is different, and so are MT sys-
tems used to produce the translations. In addition,
no human translation is available in the out-of-
domain test sets. Surprisingly, the prediction errors
are low, even lower than those observed for the in-
domain test sets. This is true for all except two out-
of-domain test sets: LSP5, which contains unusual
texts (such as URLs and markup tags), and LSP,.
Manual inspection of these source and translation
segments show many extremely short segments (1-
2 words), which may render most features useless.

WMT14 System #features MAE  RMSE
LSP; (en-es) Mean - 0.2715 04311
1 BL 17 0.2524 0.4116
AF 80 02419  0.4076

T Mean - 08119 09703

LSP; (en-es) | gy 17 0.8094  0.9470
AF 80 0.8062  0.9453

Mean - 04315 05914

LSP; (en-de) | gy 17 04270 0.5500
AF 80 04262 0.5463

Mean - 05012 0.6711

LSPy (es-en) | "y 17 0.4847  0.6412
AF 80 04812 0.6392

Mean - 07112 0.8881

LSPs (esen) | “pp. 17 0.6862  0.8447
AF 80 0.6828  0.8472

Table 7: Results with SVR pooled models tested
on out-of-domain datasets.

6 System selection results

In what follows we turn to using the predictions
from SVR and SVC models showed before for sys-
tem selection. The task consists in selecting, for
each source segment, the best machine translation
among all available: two or three depending on the
language pair. For this experiments, we eliminated
the human translations — as they do not tend to be
represented in settings for system selection. Given
the low performance of our classifiers in Table 3,
we ruled out human translations based on the meta-
data available, without using these classifiers. An-
other reason to rule out human translations from
the selection is that they are used as references to



System  #feats blind non-blind
MAE RMSE | MAE RMSE
en-de-system Mean - 1.0351  1.2133 | 0.3552  0.4562
) BL 17 1.0487 1.2348 | 0.3350 0.4540
AF 80 1.0510  1.2375 | 0.3325 0.4545
en-de-system?2 Mean - 0.7780  0.9339 | 0.4857 0.5487
BL 17 0.7006 0.9499 | 0.3615 0.4634
AF 80 0.6924 0.9124 | 0.3570 0.4644
en-de-system3 Mean - 0.7369 0.8426 | 0.5577 0.6034
BL 17 0.6354 0.7950 | 0.4535 0.5363
AF 80 0.6572 0.8127 | 0.4482 0.5245
en-de-system4 Mean - 0.7231 0.8215 | 0.5782  0.6433
BL 17 0.6438 0.7842 | 0.4912 0.5834
AF 80 0.6386  0.7905 | 0.4818 0.5741
de-en-system1 Mean - 0.8594  1.0882 | 0.2506  0.3409
BL 17 0.8747 1.1299 | 0.2123 0.3421
AF 80 0.8747 1.1299 | 0.2065 0.3415
de-en-system?2 Mean - 0.7321  0.8484 | 0.5412  0.6678
BL 17 0.6897 0.8330 | 0.4745 0.5931
AF 80 0.7122  0.8509 | 0.4604 0.5850
de-en-systems3 Mean - 0.8137 0.9253 | 0.6000 0.6640
) BL 17 0.7472  0.8903 | 0.4965 0.6011
AF 80 0.7629  0.9300 | 0.4828 0.5901
en-es-system| Mean - 0.8542  0.9923 | 0.3883 0.4353
BL 17 0.8956  1.0480 | 0.3633 0.4390
AF 80 0.8957 1.0480 | 0.3519 0.4381
en-es-system? Mean - 0.5567 0.6952 | 0.4232 0.5314
BL 17 0.5275 0.6827 | 0.3812 0.4951
AF 80 0.5302 0.6884 | 0.3730 0.4893
en-es-system3 Mean - 0.5653  0.6998 | 0.4288 0.5213
BL 17 0.5155 0.6711 | 0.3821 0.4844
AF 80 0.5184 0.6704 | 0.3714 0.4761
en-es-systemd Mean - 0.5573  0.6955 | 0.4300 0.5321
BL 17 0.5103  0.6680 | 0.4022 0.5162
AF 80 0.5206 0.6727 | 0.3902 0.5016
es-en-system Mean - 0.6617 0.8307 | 0.3026 0.3916
) BL 17 0.6617 0.8307 | 03022 0.3917
AF 80 0.6617 0.8308 | 0.3023 0.3915
es-en-system? Mean - 0.5637 0.6931 | 0.4494  0.6027
BL 17 0.5588 0.7023 | 0.4384 0.6061
AF 80 0.5567 0.7026 | 0.4309 0.6053
es-en-system3 Mean - 0.6602 0.8129 | 0.4720 0.6245
BL 17 0.7233  0.8621 | 0.4993 0.6220
AF 80 0.6973 0.8435 | 0.4974 0.6198

Table 6: SVR to build individual predictions models for each language pair and translation source.

compute BLEU scores of the selected sets of sen-
tences, as explained below.

To provide an indication of the average quality
of each MT system, Table 8 presents the BLEU
scores on the test and training sets for individ-
ual MT systems. The bold-face figures for each
language test set indicate the (BLEU) quality that
would be achieved for that test set if the “best”
system were selected on the basis of the average
(BLEU) quality of the training set (i.e., no system
selection). There is a significant variance in terms
of quality scores, as measured by BLEU, among
the outputs of 2-3 MT systems for each language
pair, with training set quality being a good predic-
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tor of test set quality for all but en-es, once again,
the largest dataset.

We measure the performance of the selected sets
in two ways: (i) by computing the BLEU scores
of the entire sets containing the supposedly best
translations, using the human translation available
in the datasets as reference, and (ii) by computing
the accuracy of the selection process against the
human labels, i.e., by computing the proportion
of times both system selection and human agree
(based on the pre-defined 1-3 human labels) that
the sentence selected is the best among the 2-3 op-
tions (2-3 MT systems). We compare the results
obtained from building pooled (all MT systems)



WMT14 system?2 system3 system4
Test  Training | Test Training | Test  Training
en-de 15.39 12.79 13.75 13.83 17.04 16.19
de-en 27.96 24.03 22.66 20.19 - -
en-es 25.89 34.13 32.68 28.42 29.25 31.97
es-en 37.83 40.01 23.55 25.07 - -

Table 8: BLEU scores of individual MT systems, without system selection. Bold-faced figures indicate
scores obtained when selecting best system on average (using BLEU scores for the training set).

against individual prediction models (one per MT
system).

Table 9 and 10 show the selection results with
various models trained on MT translations only:

e Best-SVR(I): Best translation selected with
regression model trained on data from indi-
vidual MT systems, where prediction models
are trained per MT system, and the translation
selected for each source segment is the one
with the highest predicted score among these
independent models. This requires knowing
the source of the translations for training, but
not for testing (blind test).

e Best-SVR(P): Best translation selected with
regression model trained on pooled data from
all MT systems. This assumes a blind set-
ting where the source of the translations for
both training and test sets is unknown, and
thus pooling data is the only option for sys-
tem selection.

e Best-SVC(P): Best translation selected with
the classification model trained on pooled
data from all MT systems as above. For SVC,
only the pooled models were used as pre-
dicting exact 1-3 labels with independently
trained models leads to an excessively num-
ber of ties (i.e., multiple translations with
same score), making the decision between
them virtually arbitrary.

Table 9 shows that the regression models trained
on individual systems — Best-SVR(I) — with AF as
feature set yield the best results, despite the fact
that error scores (MAE and RMSE) for these indi-
vidual systems are worse than for systems trained
on pooled data. This is somewhat expected as
knowing the system that produced the translation
(i.e., training models for each MT system) adds a
strong bias to the prediction problem towards the
average quality of such a system, which is gener-
ally a decent quality predictor. We note however
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that the Best-SVR(P) models are not far behind in
terms of performance, with the Best-SVC(P) fol-
lowing closely. In all cases, the gains with respect
to the MC baseline are substantial. More impor-
tant, we note the gains in BLEU scores as com-
pared to the bold-face test set figures in Table 8,
showing that our system selection approach leads
to best translated test sets than simply picking the
MT system with best average quality (BLEU).

Results in terms of accuracy in selecting the
best translation (Table 10) are similar to those in
terms of BLEU scores, with models trained inde-
pendently performing best.

7 Remarks

We have presented a number of experiments show-
ing the potential of a system selection techniques
in scenarios where translations are given by mul-
tiple MT systems and system identifiers are un-
known. System selection was performed based
on predictions from classification and regression
models. Results in terms of BLEU and accuracy
of selected sets with an MT system-agnostic ap-
proach show improvements for system selection
over strong baselines.

Overall — in bind test settings — although the
prediction error of models trained on individual
MT systems are worse than models trained on
pooled data, when used for system selection, mod-
els trained on individual systems generally per-
form better.
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