
Proceedings of the Workshop on Interactive and Adaptive Machine Translation, pages 9–19
AMTA Workshop. Vancouver, Canada. September 22, 2014

Towards a Combination of Online and Multitask
Learning for MT Quality Estimation:

a Preliminary Study
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Abstract
Quality estimation (QE) for machine translation has emerged as a promising way to provide
real-world applications with methods to estimate at run-time the reliability of automatic trans-
lations. Real-world applications, however, pose challenges that go beyond those of current QE
evaluation settings. For instance, the heterogeneity and the scarce availability of training data
might contribute to significantly raise the bar. To address these issues we compare two al-
ternative machine learning paradigms, namely online and multi-task learning, measuring their
capability to overcome the limitations of current batch methods. The results of our experiments,
which are carried out in the same experimental setting, demonstrate the effectiveness of the two
methods and suggest their complementarity. This indicates, as a promising research avenue,
the possibility to combine their strengths into an online multi-task approach to the problem.

1 Introduction

Quality estimation (QE) for machine translation (MT) is the task of estimating the quality of a
translated sentence at run-time and without access to reference translations (Specia et al., 2009).

As a quality indicator, in a typical QE setting, automatic systems have to predict either
the time or the number of editing operations (e.g. in terms of HTER1) required by a human
to transform the machine-translated sentence into an adequate and fluent translation. In recent
years, QE gained increasing interest in the MT community as a possible way to: decide whether
a given translation is good enough for publishing as is, inform readers of the target language
only whether or not they can rely on a translation, filter out sentences that are not good enough
for post-editing by professional translators, or select the best translation among options from
multiple MT or translation memory systems.

So far, despite its many possible applications, QE research has been mainly conducted
in controlled laboratory testing scenarios that disregard some of the possible challenges posed
by real working conditions. Indeed, the large body of research resulting from three editions
of the shared QE task organized within the yearly Workshop on Machine Translation (WMT

1The HTER (Snover et al., 2006) measures the minimum edit distance between the MT output and its manually
post-edited version. Edit distance is calculated as the number of edits (word insertions, deletions, substitutions, and
shifts) divided by the number of words in the reference. Lower HTER values indicate better translations.
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(Callison-Burch et al., 2012; Bojar et al., 2013, 2014)) has relied on simplistic assumptions that
do not always hold in real life. These assumptions include the idea that the data available to
train QE models is: (i) large (WMT systems are usually trained over datasets of 800 or more
instances for training) and (ii) training and test are sampled from the same distribution (WMT
training and test sets are drawn from the same domain and are uniformly distributed).

In order to investigate the difficulties of training a QE model in realistic scenarios where
such conditions might not hold, in this paper we approach the task in situations where: (i)
scarce amounts of training data are available and (ii) training instances come from different
domains. In these two particularly challenging contexts from the machine learning perspective,
we investigate the potential of online and multitask learning methods, comparing them with the
batch methods currently used. Our experiments are carried out over datasets of three different
domains with 1,000 tuples of source, machine translated and post-edited sentences each.

To the best of our knowledge, this represents the first attempt to compare the two learning
paradigms in the MT QE field and within the same experimental setting. The analysis of the
results achieved with the two methods yields interesting findings that suggest, as a promising
research avenue, the possibility to exploit their complementarity.

2 Related Work

State-of-the-art in QE explores different supervised linear or non-linear learning methods for
regression or classification such as, among others, support vector machines (SVM), different
types of decision trees, neural networks, elastic-net, gaussian processes, naive bayes (Specia
et al., 2009; Buck, 2012; Beck et al., 2013; C. de Souza et al., 2014a). Another aspect related to
the learning methods that has received attention is the optimal selection of features in order to
overcome issues related with the high-dimensionality of the feature space (Soricut et al., 2012;
C. de Souza et al., 2013; Beck et al., 2013).

Despite constant improvements, such learning methods have limitations. The main one is
that they assume that both training and test data are independently and identically distributed.
As a consequence, when they are applied to data from a different distribution or domain they
show poor performance (C. de Souza et al., 2014b). This limitation harms the performance of
QE systems for several real-world applications, such as computer-assisted translation (CAT) en-
vironments. Advanced CAT systems currently integrate suggestions obtained from MT engines
with those derived from translation memories (TMs). In such framework, the compelling need
to speed up the translation process and reduce its costs by presenting human translators with
good-quality suggestions raises interesting research challenges for the QE community. In such
environments, translation jobs come from different domains that might be translated by differ-
ent MT systems and are routed to professional translators with different idiolect, background
and quality standards (Turchi et al., 2013). Such variability calls for flexible and adaptive QE
solutions by investigating two directions: (i) modeling translator behaviour (Cohn and Specia,
2013; Turchi et al., 2014) and (ii) maximize the learning capabilities from all the available data
(C. de Souza et al., 2014b).

In this study we experiment with the approaches proposed to address directions (i) and (ii)
under the same conditions and evaluate their performance. We use the best learning algorithm
presented by C. de Souza et al. (2014b) and the online learning protocol for QE presented in
Turchi et al. (2014) and compare their results. In our experiments we use more data than both
studies to perform our experiments (1000 data points) for three different domains and compare
both methods with each other as well as with competitive baselines.
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3 Adaptive MT QE

Multitask Learning (MTL). In MTL different tasks (domains in our case) are correlated
via a certain structure. Examples of such structures are the hidden layers in a neural network
(Caruana, 1997), shared feature representations (Argyriou et al., 2007), among others. This
common structure allows for knowledge transfer among tasks and has been demonstrated to
improve model generalization over single task learning (STL) for different problems in different
areas. Under this scenario, several assumptions can be made about the relatedness among the
tasks, leading to different transfer structures.

In MTL there are T tasks and each task t ∈ T has m training samples
{(x(t)1 , y

(t)
1 ), . . . , (x

(t)
m , y

(t)
m )}, with x(t)i ∈ Rd where d is the number of features and y(t)i ∈ R

is the output (the response variable or label). The input features and labels are stacked together
to form two different matrices X(t) = [x

(t)
1 , . . . , x

(t)
m ] and Y (t) = [x

(t)
1 , . . . , x

(t)
m ], respectively.

The weights of the features for each task are represented byW , where each column corresponds
to a task and each row corresponds to a feature.

min
W

T∑

t=1

||(W (t)X(t) − Y (t))||22 + λl||L||∗ + λs||S||1,2 subject to: W = L+ S (1)

where ||S||1,2 is the group regularizer that induces sparsity on the tasks and ||L||∗ is the
trace norm.

The key assumption in MTL is that tasks are related in some way. However, this assump-
tion might not hold for a series of real-world problems. In situations in which tasks are not
related a negative transfer of information among tasks might occur, harming the generalization
of the model. One way to deal with this problem is to: (i) group related tasks in one structure
and share knowledge among them, and (ii) identify irrelevant tasks maintaining them in a dif-
ferent group that does not share information with the first group. This is the idea of robust MTL
(RMTL henceforth). The algorithm approximates task relatedness via a low-rank structure and
identifies outlier tasks using a group-sparse structure (column-sparse, at task level).

RMTL is described by Equation 1. It employs a non-negative linear combination of the
trace norm (the task relatedness component L) and a column-sparse structure induced by the
l1,2-norm (the outlier task detection component S). If a task is an outlier it will have non-zero
entries in S. Both L and S are matrices that represent T tasks in the columns and d features
in the rows, like W . The trace norm is the sum of singular values computed over the feature

weights and given by ||L||∗ =
r∑

i=1

σi(L) where {σi}ri=1 is the set of non-zero singular values

in non-increasing order and r = rank(L). The l1,2-norm is given by ||S||1,2 =
∑T

t=1 ||st||2
where st is the column representing task t and ||.||2 is the l2-norm (also known as the Euclidean
norm of a vector).

Online Learning. In the online framework, differently from the batch mode, the learning
algorithm sequentially processes a sequence of n instances X = x1, x2, . . . , xn, returning a
prediction ŷt = wt · xt as output at each step. A loss function between ŷt and the true label
yt obtained as feedback is used by the algorithm to update the model. In our experiments
we aim to predict the quality of the suggested translations in terms of HTER. To this aim we
use online learning, in particular, the passive aggressive learning method, which is defined as
follows (adapted from Crammer et al. (2006)):

• Receive X , the vector of features extracted from sentence (source, target) pairs;
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• Predict ŷt = wt · xt. The prediction ŷt is the estimated HTER score for instance t and wt

is the incrementally learned weights feature vector;

• Receive label yt = [0, 1]. The observed HTER score;

• Compute loss lt for the current instance t. The loss is 0 if |w ·x−y| < ε and |w ·x−y|− ε
otherwise. This is know as the ε-insensitive loss;

• Update w according to wt+1 = wt + sign(yt − ŷt)τtxt where τt is given by lt/||xt||2.

At each step of the process, the goal of the learner is to exploit user post-editions to reduce
the difference between the predicted HTER values and the true labels for the following (source,
target) pairs.

4 Experimental Setting

In this section we describe the data used for our experiments, the features extracted, the set up
of the learning methods, the baselines used for comparison and the evaluation of the models.
The goal of our experiments is to show that the methods presented in Section 3 outperform
competitive baselines and standard QE learning methods that are not capable of adapting to
different domains. We experiment with three different domains of comparable size and evaluate
the performance of the adaptive methods and the standard techniques with different amounts
of training data. The RMTL algorithm described in section 3 is trained with the Malsar toolkit
implementation (Zhou et al., 2012). The online learning algorithm is trained using the AQET
toolkit2 (Turchi et al., 2014). The hyper-parameters for both RMTL and PA algorithms are
optimized using 5-fold cross-validation in a grid search procedure over the training data.

Data. Our experiments focus on the English-French language pair and encompass three very
different domains: newswire text (henceforth News), transcriptions of Technology Entertain-
ment Design talks (TED) and Information Technology manuals (IT). Such domains are a chal-
lenging combination for adaptive systems since they come from very different sources spanning
speech and written discourse (TED and News/IT, respectively) as well as a very well defined
and controlled vocabulary in the case of IT.

Each domain is composed of 1000 tuples formed by the source sentence in English, the
French translation produced by an MT system and a human post-edition of the translated sen-
tence. For each pair (translation, post-edition) we use as labels the HTER score computed with
TERCpp3. For the three domains we use 70% of the data for training (700 instances) and 30%
of the data for testing (300 instances). The limited amount of instances for training contrasts
with the 800 or more instances of the WMT evaluation campaigns and is closer to real-world
applications where the availability of large and representative training sets is far from being
guaranteed (e.g. the CAT scenario).

The TED talks domain is formed by subtitles of several talks in a range of topics pre-
sented in the TED conferences. The complete dataset has been used for MT and automatic
speech recognition systems evaluation within the International Workshop on Spoken Language
Translation (IWSLT). The News domain is formed by newswire text used in WMT translation
campaigns and covers different topics. The sentence tuples for TED and News domains are
taken from the Trace corpus4. The translations were generated by two different MT systems, a
state-of-the-art phrase-based statistical MT system and a commercial rule-based system. Fur-
thermore, the translations were post-edited by up to four different translators, as described in

2http://hlt.fbk.eu/technologies/aqet
3http://sourceforge.net/projects/tercpp/
4http://anrtrace.limsi.fr/trace_postedit.tar.bz2
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(Wisniewski et al., 2013). The IT texts come from a software user manual translated by a statis-
tical MT system based on the state-of-the-art phrase-based Moses toolkit (Koehn et al., 2007)
trained on about 2M parallel sentences. The post-editions were collected from one professional
translator operating on the Matecat5 (Federico et al., 2014) CAT tool in real working conditions.

Features. For all the experiments we use the same feature set composed of 17 features pro-
posed in Specia et al. (2009) and extracted with the QuEst feature extractor (Specia et al., 2013;
Shah et al., 2014). The set is formed by features that model the complexity of translating the
source sentence (e.g. the average source token length or the number of tokens in the source
sentence), and the fluency of the translated sentence produced by the MT system (e.g. the lan-
guage model probability of the translation). The decision to use this feature set is motivated by
the fact that it demonstrated to be robust across language pairs, MT systems and text domains
(Specia et al., 2009).

Baselines. As a term of comparison, in our experiments we consider two baselines. A simple
to implement but difficult to beat baseline when dealing with regression on tasks with different
distributions is to compute the mean of the training labels and use it as the prediction for each
testing point (Rubino et al., 2013). In our experiments we compute the mean HTER of the
training instances of each domain and use it as prediction for each instance of the in-domain
test set. Hereafter we refer to this baseline as µ.

Since supervised domain adaptation techniques should outperform models that are trained
only on the available in-domain data, we also use as baseline the regressor built only on the
available in-domain data (SVR in-domain). The in-domain baseline system is trained on the
feature set described earlier in Section 4 with an SVM regression (SVR) method using the
implementation of Scikit-learn (Pedregosa et al., 2011). The radial basis function (RBF) kernel
is used for all experiments. The hyper-parameters of the model are optimized using randomized
search optimization process with 50 iterations as described in Bergstra and Bengio (2012) and
used previously for QE in C. de Souza et al. (2013).

Evaluation. The accuracy of the models is evaluated with the mean absolute error (MAE),
which was also used in previous work and in the WMT QE shared tasks (Bojar et al., 2013).
MAE is the average of the absolute difference between the prediction ŷi of a model and the
gold standard response yi (Equation 2). As it is an error measure, lower values indicate better
performance.

MAE =
1

m

m∑

i=1

|ŷi − yi| (2)

In our experiments we compare multiple hypothesis among each other (µ, SVR in-domain,
RMTL and PA) across different training sets sizes. Given these requirements we need to per-
form multiple hypothesis tests instead of paired tests. It has been shown in Demšar (2006) that
for comparisons of multiple machine learning models, the recommended approach is to use a
non-parametric multiple hypothesis test followed by a post-hoc analysis that compares each pair
of hypothesis. For computing the statistical significance we use the Friedman test (Friedman,
1937, 1940) followed by a post-hoc analysis of the pairs of regressors using Holm’s procedure
(Holm, 1979) to perform the pairwise comparisons when the null hypothesis is rejected. All
tests for both Friedman and post-hoc analysis are run with α = 0.05. For more details about
these methods, we refer the reader to Demšar (2006); Garcia and Herrera (2008) which pro-
vide a complete review about the application of multiple hypothesis testing to machine learning
methods.

5www.matecat.com

13



5 Results and Discussion

In this section we describe the experiments made with the models described in Section 3 and
discuss the results. As shown in previous work, using single task learning algorithms with in-
domain training data on a cross-domain setting leads to poor results (C. de Souza et al., 2014b).
In our experiments we run the baselines described in Section 4 and the methods described in
Section 3 on different amounts of training data, ranging from 70 to 700 instances (10% and
100% of the training data, respectively). The motivation is to verify how much training data
is required by the MTL and online methods to outperform the baselines for a target domain.
It is important to remark that MTL approach use the training data of the multiple domains to
jointly learn the models for each domain whereas the online learning protocol used here only
uses in-domain data.

Algorithm 20% 50% 100%
TED

µ 0.2088 0.2091 0.2066
SVR in-domain 0.2063 0.2083 0.2036
RMTL 0.1962 0.2019 0.1990
PA 0.2036 0.1977 0.1943

News
µ 0.1384 0.1386 0.1384
SVR in-domain 0.1533 0.1484 0.1460
RMTL 0.1492 0.1446 0.1433
PA 0.2305 0.2218 0.2200

IT
µ 0.2125 0.2128 0.2125
SVR in-domain 0.2114 0.1959 0.1863
RMTL 0.2082 0.2041 0.2023
PA 0.1917 0.1877 0.1858

Table 1: Average performance of 30 runs of the algorithms on different train and test splits with
20, 50 and 100 percent of training data. The average scores reported are the MAE.

Table 1 presents the results for the three domains with models trained on 20, 50 and 100%
of the training data (140, 350 and 700 instances, respectively). Each method was run on 30
different train/test splits of the data in order to account for the variability of points in each split.
Results for PA are statistically significant w.r.t both baselines for IT (p ≤ 0.016667) and TED
(p ≤ 0.025) but not for News. Results for RMTL are statistically significant w.r.t both baselines
for TED (p ≤ 0.025) and they are not statistically significant for the other two domains.

Both the RMTL and PA algorithms outperform the SVR in-domain and µ baselines for the
TED and IT domains with different amounts of training data. For TED, with as much as 20% of
the training data, RMTL outperforms SVR in-domain (the best performing baseline) by around
4.89%. Training the models with 50 and 100% of the training data PA outperforms all other
models and in particular the SVR in-domain by 5 and 4.5%, respectively. The learning curves
of all algorithms for the TED domain are shown in Figure 1. The learning curves show that
RMTL does very well with very little training data whereas PA performs better as we add more
training data.

Similarly, for the IT domain, PA presents the best performance outperforming the best
performing baselines when trained with 20, 50% of the training data by 9.13 and 4.15% and a
very similar performance when trained with 100% of the training data. It is important to notice
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Figure 1: Learning curves for the TED domain.

that PA learns in an online fashion over the test data in addition to the training data, as opposed
to the other algorithms presented here.

For the News domain, RMTL outperforms SVR in-domain but it is outperformed by the
µ baseline. One indication that explains why the µ baseline is hard to beat are the distributions
of the HTER scores for the News domain (Table 2). Whereas the three domains present similar
means, the standard deviation of the HTER scores of News is smaller than for IT and TED.
This indicates that every point in the News domain is closer to the mean than in the other two
domains.

Domain Mean Std
IT 0.3620 0.2653
TED 0.3396 0.2446
News 0.3737 0.1859

Table 2: Mean and standard deviation of the distributions of HTER scores for TED, IT and
News domains.

The distribution of data for News shows that different things might be happening in this
data, such as: (i) the different MT systems that compose this domain produce translations of
similar quality (around the mean of 0.3737); (ii) the difficulty of translating the sentences is
homogeneous and (iii) the post-editors tend to agree more. The kernel density estimation of the
labels for the three domains is shown in Figure 2. The News domain presents only one maxima
and has a different shape than the other two domains that present at least two other maximum,
indicating that TED and IT are more alike in terms of label distributions with respect to the
News domain.

The results show that both RMTL and PA improve over in-domain single-task learning
on different domains. The MTL method used in our experiments is capable of transferring
knowledge from different domains whereas the online learning method is capable of training
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Figure 2: Kernel density estimation of HTER scores for TED, IT and News domains (1000
instances).

incremental models that can leverage also the test data. Interestingly, the results achieved with
the two approaches suggest that they can complement each other if combined. Indeed, online
MTL would make it possible to leverage the positive characteristics of both methodologies for
both for batch and online learning applications of MT QE.

For example, in an application like MT QE for the CAT scenario, we can have an on-
line MTL method that uses the MTL transfer capability to learn more robust models that can
continuously evolve over time accounting for knowledge acquired from post-editors work (the
same setting proposed by Turchi et al. (2014)). Likewise, online MTL can be used to adapt to
new domains (different post-editors, MT systems and text genres) in scenarios in which only a
very limited amount of training labels is available (the scenario described in C. de Souza et al.
(2014b)). An interesting characteristic of the results presented in this work is that both online
and MTL learning require fewer training points than single-task batch learning methods (as
shown in Figure 1). A combination of both techniques might hence lead to further reduction on
the amount of training data needed, depending on the data.

This motivates, as an interesting line of future work, the combination of the two methods.
We believe that significant improvements towards the application of QE in real-world scenarios
could be reached by leveraging the adaptation capability of MTL and the incremental learning
capability of online methods.

6 Conclusion

In this work we presented an evaluation of multitask and online methods capable of learning
models across different domains for MT QE. In our experiments we worked close to a real world
scenario in which the training data is formed by translations generated by different MT systems,
the translations are post-edited by different translators and the texts come from differente text
genres. We compared one multitask (robust MTL) and one online learning method (passive
agressive) with two different competitive baselines.

The results of our experiments show that both MTL and online learning methods produce
better models than single task learning batch models under such difficult conditions. Further-
more, this comparison opens an interesting research direction for MT QE that is to explore on-
line multitask learning methods. Such methods join the information transfer capability intrinsic
to MTL methods with the incremental learning capabilities of online learning methods, enabling
better adaptation capabilities in MT QE applications that require online or batch learning.
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