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Abstract

In this paper, we describe an effective translation modeilination approach based on the
estimation of a probabilistic Support Vector Machine (SVMJe collect domain knowledge
from both in-domain and general-domain corpora inspired bpmmonly used data selection
algorithm, which we then use as features for the SVM trainiBgawing on previous work
on binary-featured phrase table fill-up (Nakov, 2008; Brsaet al., 2011), we substitute the
binary feature in the original work with our probabilistiomain-likeness feature. Later, we
design two experiments to evaluate the proposed prob@bileature-based approach on the
French-to-English language pair using data provided at WK/ WMT13 and IWLST11 trans-
lation tasks. Our experiments demonstrate that translgt@formance can gain significant
improvements of up to +0.36 and +0.82 BLEU scores by usingooaivabilistic feature-based
translation model fill-up approach compared with the birfagtured fill-up approach in both
experiments.

1 Introduction

Like many machine-learning problems, Statistical Machirranslation (SMT) is a data-
dependent learning approach. The prerequisite is largaiamm®f training data in order to
generate statistical models. In general, the training dasato be sentence-aligned and bilin-
gual. Some heuristic approaches are often used when daeettivg the training data into
phrase-level representations, and the statistical magelsomputed based on the phrase prob-
ability distributions. The generated models are then coetdbin a log-linear model (Och and
Ney, 2002). A basic SMT system may consist of a translatiodehand a language model,
where the translation model provides a target-languagslatione for a source-language sen-
tencef, and the language model ensures the fluency of the targgtidge translatios.

One challenge which rises above others in SMT is that thestation performance de-
creases when there are dissimilarities between the tgaama the testing environments. This
type of challenge is often defined as “domain adaptation’ravipus work. The underlying
reasons that caused domain adaptation challenge are martpebobvious one is that SMT
system training is a complicated data-dependent proaggsieline. It often involves many
efforts from various steps, for example, the phrase panaetibn step needs to be consistent
with the preceding word alignment step, with one assumptiade being that the context of the
extracted phrases is irrelevant. In addition, the traisieigtences are only implicitly visible and
become unnecessary once the phrase table is built. In théx pa&e try to address the problem

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers  Vancouver, BC © The Authors

96



of phrase-table extraction in a phrase-based SMT training@ment, and propose a proba-
bilistic feature-based translation model fill-up approbgttreating an inheritance relationship
between the extracted phrase pairs and the correspondimguiail sentence pairs.

Domain adaptation for SMT is a well studied research fieldceRdy, many new ideas
have been introduced, mainly regarding the data adaptatidrmodel adaptation. Most work
on data adaptation for SMT focuses on making efficient useetiriining data. Ll et al. (2007)
use information-retrieval techniques on a transductasfing framework to increase the count
of importantin-domain training instances, which resuitplirase-pair weights being favourable
to the development set. Bigici and Yuret (2011) employ éuieadecay algorithm which can be
used in both active learning and transductive learningngmtt The decay algorithm is used to
increase the variety of the training set by devaluing festithat have already been seen from
a training set. In recent studies, a cross-entropy difie@enethod has seen increasing interest
for the problem of SMT data selection (Moore and Lewis, 204xelrod et al., 2011). The
training dataset is ranked using cross-entropy differdrama some language models trained
on in-domain or general-domain sentences. Then a thregholet to select theseudoin-
domain sentences. The intuition is to find sentences as tdothe target domain and as far
from the average of the general-domain as possible. Latansbur et al. (2011) argue that
“An LM does not capture the connections between the sourd¢aaget words, and scores the
sentences independently”, and linearly interpolate IBMdeid. (Brown et al., 1993) into the
cross-entropy difference framework. The translationqrenfance is improved on both Arabic-
to-English and English-to-French translation tasks caegbavith the standalone cross-entropy
difference approach.

Applying adaptation techniques to the statistical modekgpecially to the translation
model, is another popular approach used in domain adapt&iioSMT. Some research fol-
lows the path of adding in new features into the phrase taBleen et al. (2013) add vector
similarity into the phrase table and use it as a tuning- amodiag-time feature. The similar-
ity is computed by comparing the vectorized representatfgrhrase pairs extracted from the
development set and the training set. Eidelman et al. (28&Rieve translation performance
improvement by including a lexical weight topic featureoittihe translation model. The topic
model used in their work is built based on the source side etihining sentences. There is
also work which focuses on translation model combinatiast& and Kuhn (2007) and Koehn
and Schroeder (2007) combine the translation models in-irlegr model at tuning and decod-
ing time. Sennrich (2012) proposes an approach to intetgtha translation models based on
perplexity minimization. Haddow and Koehn (2012) focus lea ¢xtracting and scoring steps
when building a phrase table for SMT. One of the conclusisrisat while out-of-domain data
can improve the translation coverage for rare words, it meakdrmful for common in-domain
words. This suggests that the translations which contain eflin-domain evidence should be
kept.

2 Redated Work

The translation model fill-up approach was introduced iftr®y Nakov (2008). In his work,
the phrase tables are merged by keeping all the phrase paihgnged from the in-domain
phrase table, and only adding in the phrase pairs from thergedomain phrase tables that are
not contained at the in-domain phrase table, as in (1):

Fill — UP{PT} = {Pﬂzn} U {P/T_out - PT_zn} (1)

wherePT;, andPT ,,; are the in-domain and general-domain phrase table, respgcand
{PT ,ut — PT;,} is therelative complemerdf PT,,; in PT ;,, with the original SMT trans-
lation model features from each merging phrase tables pwedeFurthermore, a new feature
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value (1 or 0.5) is allocated to each phrase pair in the mgubedake table to indicate its prove-
nance.

Bisazza et al. (2011) modify the feature value of Nakov (3@38nterpreting it differently.
A scaling factor, such as (& exp(0)) and 2.718 = exp(1)), is used to define the provenance
of each phrase pair in the phrase table. The fill-up modeb@#®ia et al., 2011} is defined as
in (2):

V(.]F, é) eThuTy:

oy [ (@1(F.8).eap(0)) if(fe) €T (2)
of, )_{ (p2(f,€),exp(l)) otherwise

Bisazza et al. (2011) also extend the fill-up approach intdSNT reordering model and
provide a study of pruning options. The experiments showttiefill-up approach is not only
able to produce comparable translation performance wigHitear combinations of translation
models, but is also an approach which increases the effic@fmainimum error rate training.

3 Probabilistic Feature-based Fill-up

In this paper, we follow the previous studies (Nakov, 2008aBza et al., 2011), and propose
a probabilistic feature-based translation model fill-upraach for SMT. The assumption we
make for our approach is that the domain information of aning sentence pair is inheritable
by the extracted phrase pairs, and such an assumption is dtal in the traditional data
selection research for SMT training. Data selection isrofipplied when in-domain training
data is small and expensive to collect, but where a large atrmfugeneral-domain training
data is nonetheless available. However, Haddow and Koedit?jZoint out that it might be
heavy-handed if a 1-0 cutoff is used for SMT data selectisnthe general-domain data can
still have a contribution to the translation system. Weduaithat a probabilistic feature-based
fill-up approach can be factored in as a soft-handed datatsmh approach. Like Bisazza et al.
(2011), we extend the original fill-up algorithm (Nakov, B)0but instead of assigning firmness
provenance feature values to the phrase table, we train hingalearning algorithm to give
a probability measurement with respect to the domain in&tion to each training sentence
pair. Then we use the assumption that the domain informatiatraining sentence pair is
inheritable by the extracted phrase pairs to make such aiddikaness feature applicable to
the phrase table. The probability scale ensures the dolikaimess feature is elastic, but also
under control at tuning and decoding time.

One concern is that a phrase pair in a translation table caxtb@&cted from a number of
different training sentence pairs depending on the alignimeplied and the extraction heuristic
used. Accordingly, those training sentence pairs will hgrested to different domain-likeness
feature values by the machine-learning algorithm used. e the following three simple
heuristics to address this issue:

e Min: the feature value uses the minimum domain-likeness eStingfrom the extracted
sentence pairs. The motivation for this is if a phrase padxisacted from a sentence pair
which has a lot of evidence to be excluded from the target donsach a phrase pair
should not be classified as in-domain even if other strordpimain indicators are present.

e Arithmetic Mean: use the arithmetic mean of all the domain-likeness estimat
There is no bias to any sentence pair since each will stillide ® contribute the final
feature value.

e Geometric Mean: use the geometric mean value to describe the central tepaémall
domain-likeness estimations.
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In the rest of this paper, we describe the machine-leardoyithm used to assign the
domain-likeness value in the merged phrase table, and tieentvoduce the feature set used
to train the said learning algorithm in Section 4. Then wecdbe our experiments to evaluate
our probabilistic feature-based translation model fillaygproach and make comparisons with
the previous fill-up studies using the basic settinigsSection 5. Later in the paper, we make
comparisons between the proposed approach with previots evodata selection (Axelrod
et al.,, 2011) in Section 6, and provide our observationsroigg the probabilistic domain-
likeness feature distribution on the merged phrase tabtgeiction 7. Finally, we give our
conclusion together with avenue for future work in Section 8

4 Support Vector Machines

4.1 SVM Algorithm

SVM is a well-known machine-learning algorithm often apglio classification or regression
tasks. In classification, SVM maps a testing instance intgpetplane which optimally sepa-
rates the training data, and then outputs the predicted tdhsl of the testing instance belongs
to, the(soft margin)objective function is defined as (Cortes and Vapnik, 199%nghand Lin,
2011)in (3):

l
min tw'w+C Y &

w,b,§ =1
gi > an € {15 _1}
wherew is the weight vectorC' is a tunable trade-off parameter indicating a punishment fo
misclassified decisionss the number of training instances,is known as the slack variable,
ando is the kernel function mapping training instances into akigmensional space.

The underlying reason for using a kernel function in SVM iattthe training instances in
some situations are linearly non-separable and we neegtoimthe separability by projecting
them into a high-dimensional space. In our experiments wehesRadial Basis Function (RBF)
kernel for SVM training and predicting, defined as in (4):

exp{—7lu — v} (4)
The gamma parameteris a tunable variable which adjusts the width of RBF.
As SVM predicts class labels only, Chang and Lin (2011) extise approach proposed
by Wu et al. (2004) to give a probability estimation for evergdiction. In our work, we use
the predicted probability to indicate the domain-likenestimation.

®3)

4.2 SVM Feature Set

It is worth recalling that our probabilistic feature-basilelp approach is based on the assump-
tion that the domain information of a training sentence pain be inherited by the extracted
phrase pairs, and such an assumption is often applied in Sitrsglection algorithms for do-
main adaptation. In our case, if we are able to assign a piigdtebdomain-likeness value to
each training sentence, then to include them as a new degé@atture into the fill-up phrase
table is effortless. Thus, we can transfer our objective assigning the domain-likeness esti-
mation to the SMT training sentences.

The cross-entropy, which is defined as in (5):

1 n
H(prm) = —— > logprar(wilwy, ..., wi 1) (5)
=1

1The fill-up (Bisazza et al., 2011) provides several pruniptioms. There is also a cascaded fill-up method appli-
cable for more than one general-domain phrase model. Wetdoaile® comparisons for these cases.
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has been used as a strong domain indicator in much adaptetiearch (Klakow, 2000; Gao
et al., 2002; Moore and Lewis, 2010; Axelrod et al., 2011) eduation (3), is the number

of wordsw in a sentence. However, in our work, we use the transformaticross-entropy,

known as perplexity, which is defined as in (6),

Perplexity = 9H(pra) ©)

We take inspiration from the previous works in Axelrod et(aD11), and design three sets
of SVM training features for each SMT training sentence pair

e Source Domain Features. the domain evidence shown from the source side of the trgini
data. We use the perplexity value computed from the in- ametigd-domain language
models in this feature set.

e Target Domain Features: the domain evidence shown from the target side of the trgini
data. We use the perplexity value computed from the in- ametigd-domain language
models in this feature set.

e Domain Distance Features. a feature set similar to the language model data-selection
approach in Axelrod et al. (2011). We use both the source{sidplexity difference and
the target-side perplexity difference in this feature set.

5 Experiment

5.1 Corpora

The experiments in this paper use data from WMTO07, WMT13 &d3T11 translation tasks.
We choose our experiments on the French-to-English largpag. We first perform some
standard data cleaning steps, including tokenizationciuation normalization, replacement
of special characters, lower casing and long sentence @mei0 or >80 ), resulting in the
preprocessed data summarized in Table 1. We use scriptislpdovithin Moses 1.0 translation
system framework (Koehn et al., 2087yr all cleaning steps.

Corpus Train Tune Test

News Commentarync_2007) | 42,884 1,064 (nc-devtest200) 2,007 (news-test2007,
Europarl €p.2007) 1,257,436 n/a n/a

TED (ted.11) 106,642 | 934 (dev2010) 1,664 (tst2010)
news-commentary-vah¢€.v9) | 181,274 | n/a n/a

Table 1: SMT training corpus statistics

There are two fill-up experiments designed to evaluate oprageh, defined agrob-fill-
up_heuristic(in-domain,general-domairguch agrob-fill-up_heuristic(nc2007,ep2007)and
prob-fill-up_heuristic(ted11,ncv9), whereheuristicrefers to the heuristics stated in Section
3 of this paper. The experimental design is to assess oupagiprin both of the following
situations: (i) general-domain dataset being significargdr than the in-domain data, and (ii)
the two datasets being similar in size, as seen in Table 1.

2http://www.statmt.org/moses/
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5.2 SVM training

We uses the R language packagd®71(Dimitriadou et al., 200F)to train the SVM algorithm,
where the21071in R language is an interface to the libsvm (version 2.6) (@end Lin, 2011)
implementation. SVM training is a supervised learning psscso having labeled training data
available is essential. The label is either in-domain oregalkdomain for the SVM training
instance in our case.

A set of high-quality training data for tasks like classifioa is a luxury in machine-
learning, and such datasets often cannot be obtained atitaitya The in-domain labeled
SVM training data can be obtained directly from the SMT tirmjnset, but the general-domain
data is mixed with in- and out-of-domain instances. Onetgwils to rank the general-domain
instances with respect to the known in-domain informatamg then mark the most distant
partition instances as the opposite of the in-domain clas$¥M training. Such a solution
can create a clear boundary in the SMT training set, but tisexedanger of causing the SVM
training data to be of low variance and high bias. The reaspthfs is that a similar amount of
SVM training instances from both labeled classes are stggés be used in order to set up a
fair training condition. However, in the domain-adaptatémntext, where only a small amount
of in-domain instances and a large amount of general-domsiances are available, we are
restricted to selecting only a limited number of SVM traminstances. The size limitation and
the ranking selection used may lead the SVM training in®arec be of low variance and high
bias. In addition, we also have the prior knowledge of theljoteng instances available before
the SVM is trained, but it is unfortunate that such knowledggnored. In fact, the SVM in
our case prefers to be trained on the two classes of instémaeepresents the average of the
general-domain dataset and the in-domain dataset. Themdbability prediction produced by
such an SVM can indicate the distance of a predicting ingténoon those two classes. Thus, we
simply randomly seledl number of general-domain and in-domain sentences as S\ivhga
instances in our experiments.

To extract features for the selected SVM training data, wedoaly select an equal number
(sizeN) of sentences from the in- and the general-domain dataddtain ann-gram language
model, wheren = {2...5}, then extract the perplexity features for eactetting. The language
model training at this step uses the same restrictions a®réand Lewis (2010), where a to-
kenis treated as an instance<dNK> unless it appears at least twice at the in-domain training
dataset. We keep number of SVM training sentences to tune the parametersuatims (3)
and (4). We test the accuracy of the trained SVM using theesponding SMT development
data. The data used for SVM training, language model trgiaimd SVM tuning are summa-
rized in Table 2. The SVM-tuned parameters are presentedhiteB. We use the open source
IRSTLM toolkit (Federico et al., 2008) for language modaliting and KenLM (Heafield,
2011) to compute the sentence perplexity.

Experiment M N T
prob-fill-up(nc.2007,ep2007) 42,884 40,000 2,884
prob-fill-up(ted 11,ncv9) 50,000 45,000 5,000

Table 2: SVM data statistics, whelgN andT are the data sizes (in sentences) used for training,
tuning and testing, respectively.

Shttp:/iwww.csie.ntu.edu.tw/ ~cjlin/libsvm
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Experiment C ~ Accuracy
prob-fill-up(nc.2007,ep2007) 16 0.125 0.8139
prob-fill-up(ted 11,ncv9) 2 0.03125 0.8565

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers

Table 3: SVM-tuned parameters valu@and-~y, whereC is the trade-off parameter in equation
(3), andy adjusts the width of RBF in equation (4).

5.3 Trandation System Training

All SMT systems in our experiments are trained using the ggxzased SMT with Moses 1.0
framework. The reordering model is not included in our ttatign system since we are inter-
ested only in measuring the system effects coming from aéioe models. We use the word
aligner MGIZA++ (Gao and Vogel, 2008) for word alignment ioth translation directions, and
then symmetrize the word alignment models using the héuiasgrow-diag-final-and. We use

all five default Moses 1.0 translation model features. Thadlation systems are tuned with
minimum error rate training (Och, 2003) using case-ingaedBLEU (Papineni et al., 2002) as
the optimization measure. A 5-gram language model is tcawieh the open source IRSTLM

toolkit using all the available target sentences in eacteffill-up experiment scenarios. We
use the Moses default language model toolkit KenLM at thextpand decoding time.

5.4 Resaults

We set our baseline systems to be the fill-up system of Bisetzzda(2011)fill-up(experiment),
which has been integrated within the Moses 1.0 framewonklebad and 5 report our results us-
ing case-insensitive BLEU on the corresponding test se¢sus® to indicate where the prob-
abilistic feature-based fill-up approach systeprslf-fill-up_heuristic(experimenyachieve sig-
nificant improvement (Koehn, 2004) compared with the basedistems at the level= 0.01
level with 1000 iterations.

System Test (news-test2007)
fill-up(nc.2007,ep2007) 28.01
prob-fill-up_Min(nc_2007,ep2007) 28.03
prob-fill-up-ArithmeticMean(nc2007,ep2007) 28.21
prob-fill-up-GeometricMean(nc2007,ep2007) 28.3%

Table 4:prob-fill-up_heuristic(nc2007,ep2007)experiment BLEU scores on testing data, the
significance testing at the level= 0.01 level with 1000 iterations.

The result of thegrob-fill-up_heuristic(nc2007,ep2007)experiment in Table 4 shows that
the probabilistic feature-based fill-up systems usingehreuristics for domain-likeness cal-
culation can improve the translation performance over teeline system. The system using
the central tendency heuristic for the domain-likenegsmasion outperforms the other, obtain-
ing 0.36 absolute BLEU score and 1.3% relative improvement over #seline system, and
p = 0.01 significant improvement.

In our second experiment as seen in Table 5, the geometrin paaulation produces a
strong BLEU score, +0.39 (1.3% relative) higher in contvéth the baseline system. However,
the arithmetic mean calculation achieves the best restitiisrexperiment with a 31.64 BLEU
score (2.66% relative) on the test set. Both of the above figtems in our last experiment
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System Test (tst2011)
fill-up(ted.-11,ncv9) 30.82
prob-fill-up_Min(ted.11,ncv9) 30.73
prob-fill-up_Arithmetic Mean(ted11,ncv9) 31.64
prob-fill-up_.GeometricMean(ted11,ncv9) 31.2%

Table 5:prob-fill-up_heuristic(ted11,ncv9) experiment BLEU scores on testing data, the sig-
nificance testing at the level= 0.01 level with 1000 iterations.

qualify as statistically significant improvements over bizseline system at= 0.01 level. The
prob-fill-up_Min(ted 11,ncv9) system underperforms the baseline system by about 0. liabsol
BLEU score difference.

Overall, our approach is able to significantly improve ugmmhaseline translation perfor-
mance in both of the designed testing scenarios.

6 Data sdection

In this section, we compare our probabilistic feature-tdileup approach with the data selec-
tion approach proposed in Axelrod et al. (2011). In geneiath selection is one of the standard
approaches used in SMT training when out-of-domain or gd+tirmain data is available. Itis
often required to train many SMT systems in order to find thetappropriate proportion of
general-domain data to include and obtain the best perfocenrom it. In this experiment, we
first rank the general-domain corpus according to the sum-adnid out-of-domain perplexity
difference normalized by the corresponding sentencetiegfined as in (7), with the ranking
in reverse order:

[PPLI_STC(S) - PPLO_S’I‘C(S)] [PPLI_tgt(T) - PPLO_tgt(T)]

PPL - DIFF = 7
length(S) length(T) 0

whereSandT are the source and target sentences, respectively. Thedgagnodels described
in Section 5.2 are used to compute perplexities. Theptppoportion of the ranked general-
domain corpus is selected, and concatenated with the iratooorpus. The concatenation
is then used to train the data selection systems. We emptogdme experimental settings
described in Section 5.3 for this experiment, with the wdigranents computed in advance
using the combination of all in- and general-domain data fliming and test datasets described
in Table 1 are also taken in order to compare with the experimesults described in Section
5.4.

Figures 1 and 2 illustrate the effects of the selection pridgo on the BLEU score of
SMT systems. As we might expect, additional general-dortraining instances can benefit
SMT performance, with 20% o#p.2007 and 65% ofnc.v9 selection, obtaining 27.28 and
31.73 BLEU scores, respectively. In addition, it is harntfulinclude a large proportion of
general-domain data, which can overtake the in-domainatadecause target-domain bias. In
contrast, the proposed probabilistic feature-based filepproach is able to efficiently use all
of the general-domain data, achieving significantly bett@nslation results (Table 4) on the
(nc_2007,ep2007)dataset and comparable translation results (Table 5) oftete 1,ncv9)
dataset.
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Figure 1: BLEU scores with different proportion of data selection ofmc_2007,ep2007)
dataset.
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Figure 2: BLEU scores with differeptproportion of data selection qted.11,ncv9) dataset.
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7 Domain-likeness Distribution

In this section, we study the distribution of the domairelikss feature added into the final
merged phrase table. The main difference between our agiprath the previous fill-up meth-
ods is the interpretation of the additional features enmgxioyA learned probabilistic domain-
likeness feature is used by our approach, while a binaryeprance indicator is applied in
previous work. It is easy to establish that the in-domairt p&the produced phrase tables
is identical in our and previous work, and that the total nemdf phrase entries is also the
same. Thus, we mainly focus on the general-domain phrase®irt this section. We take the
prob-fill-up_heuristic(ted11,ncv9) experiment in the previous section as the case study.
The prob-fill-up_heuristic(ted11,ncv9) experiment mergept(ted11) and pt(hcv9)
phrase tables. 5,790,068 in-domain phrase entries friftad11) are kept, and 12,915,649
general-domain phrase entries frgagncv9) are used to fill-up. 236,779 of the phrase entries
from pt(nc.v9) conflict with the phrase entries pt(ted11), and are neglected in the final pro-
duced phrase table. The final merged phrase table contaja68,838 phrase entries in the

prob-fill-up_heuristic(ted11,ncv9) experiment, where the standalone phrase table using the

concatenated tetll and ncv9 corpus produces 18,339,548 phrase pairs.

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers

Interval Group # of phrases # of phrases # of phrases
Min Arithmetic_Mean Geometric_Mean
0.95~ 1.00 1,301,571 1,301,803 1,301,820
0.90~ 0.95 29,085 29,197 29,209
0.85~ 0.90 20,117 20,229 20,254
0.80~ 0.85 16,272 16,335 16,366
0.75~ 0.80 15,565 15,625 15,675
0.70~ 0.75 14,041 14,164 14,352
0.65~ 0.70 12,816 12,966 13,747
0.60~ 0.65 12,635 12,889 13,595
0.55~ 0.60 12,536 12,938 13,759
0.50~ 0.55 11,562 13,121 21,299
0.45~ 0.50 14,673 15,930 33,106
0.40~ 0.45 13,596 15,539 20,530
0.35~ 0.40 16,060 43,168 22,923
0.30~ 0.35 17,022 26,438 34,956
0.25~ 0.30 20,564 29,720 34,802
0.20~ 0.25 24,397 47,674 43,848
0.15~ 0.20 31,233 56,000 55,217
0.10~ 0.15 45,590 81,080 79,150
0.05~ 0.10 88,412 146,956 140,063
0.00~ 0.05 5,916,294 5,722,269 5,709,370

Table 6: Filteredorob-fill-up_heuristic(ted11,ncv9) phrase table entry counts with intervals of
0.05 according to SVM-assigned domain-likeness featureeva

To demonstrate the distribution of the phrase pairs in thegatephrase table, we first
group the phrase entries in the merged phrase tables (iltesiag the corresponding test set)
with intervals 0f0.05 according to the domain-likeness feature value. We canrobse Table
6 that the SVM predictions fall mostly into the 0.600.05 or 0.95° 1 intervals. We think
that the prediction follows the natural composition of trengral-domain dataset, so the com-
position can be described as consisting of some of the targetated sentences, some of the
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Figure 3: The distribution of\/in,Arithmetic_Mean and Geometric_Mean phrase pairs
contribution comparison: X-axis represents the range foab® to 1.00. Y-axis represents the
percentage of phrase entries to the overall testing dategfiltphrase table.

mixed domain sentences and some of the in-domain sentefttesange between 0.050.95
also draws our attention. All three heuristic functionsateesimilar numbers of phrase entries
for each interval group at the upper bound range: 6.7000. This may be evidence that
there is only 0.92 BLEU score difference between the bestveorst-performed probabilistic
feature-based fill-up systems in Table 5 since the upperdoamge is the closest to the target
translation domain. Later, th@cometric_M ean system acts more aggressively and there is a
dramatic increase in the quality of phrase pairs at thevaterof 0.45~ 0.50. We think that
this interval is the most uncertain region in the generahdim dataset given the knowledge
inferred by the corresponding heuristic functions. A sanihcrease also can be found in the
Arithmetic_Mean system at the intervals of 0.350.40, but the increasing curve is sharper
compared with the growth iGeometric_Mean. The lower bound range in Table 6 is in a very
mixed situation.

The graph in Figure 3 compares for the interval grouped révegeeen 0.10 to 1.00, the
percentage of phrase entries contributing to the overafigghtable. It shows that the general-
domain training sentences can provide different levelstitifyy and can be beneficial (in the
case of probability feature value0.5) or harmful (in the case of probability feature vatu@.5)
to the merged phrase table. Haddow and Koehn (2012) alsal fitnah general-domain training
data can benefit the translation table most when it is justvaltl to add entries, but also that
the scores from the general-domain may be harmful to traoslguality. Previous work tries
to address this question by defining a fairness feature vala#f phrase pairs extracted from
the general-domain training sentences. However, suchreefs feature value may cause the
potential in-domain phrase entries to be treated unjuging a probabilistic feature value rep-
resenting domain-likeness can distinguish between thraeed phrase pairs and also provides
a soft-handed approach for phrase-table merging.

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers  Vancouver, BC © The Authors 106



8 Conclusion and Future Work

In this paper, we addressed the inaccurate assumptionlirtteal at the phrase extraction step
for phrase-based SMT training. We extended the fill-up phtable merging approach by
assigning a domain-likeness probabilistic feature. Werilesd the rationale behind our prob-
abilistic feature-based fill-up approach and explainedmuitions regarding the SVM feature
set. We also designed two experimental scenarios, showaigtr fill-up approach is a soft-
handed dynamic approach and can significantly improvelatios performance in both exper-
iments compared to previous fill-up studies. However, theagch shown in this paper is still
preliminary and can be extended further. We have not camigexperiments regarding any
implication between the SVM performance and the SMT trdiwigperformance; our SVM
features are purely inspired by the previous data selestiaties and can also be more elegant.
In future work, we would like to carry out such studies. We Vdoalso like to experiment on
a reordering model fill-up and introduce more domain-oedndVM training features. The
proposed probabilistic feature-based fill-up approachatam be viewed as a domain adapta-
tion approach, where bilingual in-domain training senésnare unavailable, but where a large
amount of general-domain bilingual training sentenceasy¢o obtain. We can train the SVM
algorithm to assign the domain-likeness feature usingdhbece and the target monolingual in-
and general-domain data to the general-domain only phedde.t Thus the general-domain-
only phrase table can gain some domain knowledge at dectidieg
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