Using any machine translation source for
fuzzy-match repair in a computer-aided translation

setting
John E. Ortega jeol0@alu.ua.es
Felipe Sanchez-Martinez fsanchez@dlsi.ua.es
Mikel L. Forcada mlf@dlsi.ua.es

Dept. de Llenguatges i Sistemes Informatics, Universitat d’ Alacant, E-03071, Alacant, Spain

Abstract

When a computer-assisted translation (CAT) tool does not find an exact match for the source
segment to translate in its translation memory (TM), translators must use fuzzy matches that
come from translation units in the translation memory that do not completely match the source
segment. We explore the use of a fuzzy-match repair technique called patching to repair trans-
lation proposals from a TM in a CAT environment using any available machine translation
system, or any external bilingual source, regardless of its internals. Patching attempts to aid
CAT tool users by repairing fuzzy matches and proposing improved translations. Our results
show that patching improves the quality of translation proposals and reduces the amount of edit
operations to perform, especially when a specific set of restrictions is applied.

1 Introduction

Computer-aided translation (CAT) tools based on translation memories (TM) are one of the
most popular technologies among professional translators (Bowker, 2002; Somers, 2003). CAT
tools exploit existing, segment-aligned translations to help the translator translate a new docu-
ment by recycling as much target-language (TL) text as possible. To do so, CAT tools first split
the source-language (SL) document to translate into segments, and for each SL segment s’ they
look up the translation memory for segment pairs (s, t) (called translation units) where t is the
translation of s and s is similar to s’. These translation units are then shown to the translator in
decreasing order of similarity, together with an indication of the words in s that do not match
those in s’. Finally, the translator decides which translation unit to use and which parts of its
TL segment ¢ have to be edited to produce ¢/, the desired translation of s’, and performs such
editions.

The similarity between s and s’ is computed by means of a fuzzy-match score (FMS) func-
tion whose output is between 0% (no match at all) and 100% (a perfect match, s = s’). Com-
mercial CAT systems implement proprietary versions of FMS, but a reasonable approximation
is given by:

ED(s, s')

max(]s], |s'])

FMS(s,s') = (1) -100% (1)
where ED(s, s’) is the (word-based) edit distance (Wagner and Fischer, 1974) between s and s’
—the minimum number of one-word deletions, insertions and substitutions needed to transform
s into s’— and |x| stands for the number of words in segment z. Many times translation tools

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

42

use a fuzzy-match score threshold (FMT), for instance 80%, to reduce the number of translation
proposals.

When a perfect match is not found in the translation memory, and before making any
changes to the TL segment ¢ in the proposed translation unit, the translator has to identify the
sub-segments of ¢ that correspond to the sub-segments of s that are not common to s’. To help
in finding the sub-segments of ¢ that need to be edited, but without actually editing them, Espla-
Gomis et al. (2011) use machine translation (MT) to find sub-segment alignments between s
and ¢, and train a classifier to classify the words in ¢ as words to be kept unedited or words to
be changed to transform ¢ into the desired translation ¢’.

Other researchers have gone one step further and have explored different ways to com-
bine the TL segment of the proposed translation unit and the output of a statistical machine
translation (SMT) system to produce a translation closer to ¢'. Bigici and Dymetman (2008),
for example, use a phrase-based SMT system trained on a bilingual corpus in the same do-
main as the TM and combine it with the TM’s fuzzy match by extracting a phrase table that is
dynamically added to the usual set of bi-phrases used for decoding the source. Their implemen-
tation augments the internal translation table in the SMT system with bilingual discontiguous
sub-segments (phrases) that have source sub-segments in common with s’. Alignments in the
system created by Bigici and Dymetman (2008) are detected using word alignments directly
obtained from the SMT system training process and are used to find the parts of ¢ that need to
be edited (mismatches).

Similarly, Simard and Isabelle (2009) use a phrase-based SMT system by adding phrase
pairs (sub-segment pairs) of any length (obtained using a statistical aligner on the TM) to the
SMT system’s phrase table and introduce a feature to indicate that the phrase-pairs came from
their TM. After that, they optimize the weighting of the TM-based phrase table in a regular
SMT decoder. By means of optimization and phrase table inclusion they are able to make their
SMT system produce a translation close to the desired translation ¢’.

Additional work done by Zhechev and Genabith (2010) makes use of a phrase-based SMT
system along with an alignment method that, like Simard and Isabelle (2009), connects sub-
segments from the target translation ¢ with those in s. The alignment method Zhechev and
Genabith (2010) use takes advantage of a tree-based structural alignment created from a bilin-
gual dictionary after training their SMT system with phrase pairs. After aligning the words in
s with those in ¢, Zhechev and Genabith (2010) are able to identify words that should appear in
the final translation ¢'.

Koehn and Senellart (2010) take a similar approach to Bicici and Dymetman (2008). They
first align words in s’ and s to find mismatches. Then, they align the words in s and ¢ to
identify target matches and remove the words in ¢ that are aligned to the mismatched words in
s. Target mismatches are sent to the SMT decoder for translation. Mismatched words in Koehn
and Senellart (2010)’s system are treated separately; that is, context around a mismatch, while
indirectly taken into account by the language model, is not directly taken into account of when
applying phrase pairs.

Ma et al. (2011), on the other hand, decided to research the shortcomings of using a fuzzy-
match score as a threshold for determining translation unit matches that serve as translations
for other segments. Ma et al. (2011)’s approach uses discriminative learning and support vector
machines to salvage translations of matched words to select a translation unit that would have
been otherwise thrown away due to the fuzzy-match score being used as a threshold. Their
work, unlike Koehn and Senellart (2010), takes matched parts in s and replaces them with their
counterparts in t. The main drawback of the approaches from Ma et al. (2011), Koehn and
Senellart (2010), Zhechev and Genabith (2010), and Bigici and Dymetman (2008) is that they
are all based on SMT and either have access to the internals of an SMT system trained on the

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

43

user’s or related data or modify its behavior in some way.

Other research work (Hewavitharana et al., 2005; Dandapat et al., 2011) focuses on the
identification of the sub-segments in the TL segment ¢ of the translation unit (s,t) needed
to produce ¢’ and then produces a translation by applying a set of edit operations over ¢. In
particular, Hewavitharana et al. (2005) first align the mismatches in s to their TL translations in
t by means of a modified IBM model 1 and then apply the same edit operations —substitutions,
deletions and insertions— that are needed to convert s into s’ to the TL segment ¢. Their
resulting translation may contain agreement and reordering errors because their method assumes
that edit operations applied on the SL are exactly the ones needed in the TL and do not take word
context into account.

Dandapat et al. (2011) were also able to successfully translate texts in the TL by marking
mismatched words for translation. Dandapat et al. (2011)’s example-based machine translation
(EBMT) and SMT work marks sub-segments for translation from s’ and s in a manner similar
to that of this paper. Their work involves creating sub-segment pairs to form a sub-segment TM,
marking mismatched words, aligning matched words, and finally substituting words marked for
translation in what they call a recombination step. Their recombination step substitutes words
using a sub-segment TM, that is, a mismatched phrase table obtained from the user’s TM in an
SMT training job. Sub-segments are translated and “plugged” (i.e. inserted or replaced) into
t according to how they are found in the source text without taking into account other context
around the mismatched sub-segments. Plugging and similar approaches, like the one from
Hewavitharana et al. (2005), have some shortcomings due to the lack of contextual information
around a mismatched sub-segment and differ from our approach in this respect.

We investigate fuzzy-match repair using a technique called patching that uses any external
bilingual source to translate mismatched sub-segments; patching could use a glossary, a termi-
nological database (Bowker, 2003), or another translation memory containing smaller segment
pairs. Our approach, while related to the research described above, exhibits three main novel-
ties: (¢) it removes the dependency on knowledge of the internal workings of the MT system
used, (¢¢) it removes the need to modify an MT system’s behavior in some way and (¢i2) avoids
having to pre-process a user’s TM. We repair the mismatched sub-segments in a translation
unit using a simple, yet novel, method that, unlike those by Hewavitharana et al. (2005) and
Dandapat et al. (2011), takes context around mismatched words into account. Patching uses
overlapping sub-segments as powerful anchors much like Brown et al. (2003)’s maximal left-
overlap compositional (example-based) MT system where the use of overlapping sub-segments
reduces “boundary friction” problems and increases the likelihood of producing a correct trans-
lation. Since patching treats sources of external bilingual translation information as black boxes,
we generate translations on the fly without training SMT models on the user’s TM. We are not
aware of any research work that: (a) uses any source of bilingual information for translation or
(b) uses the context around mismatched words for repair.

In the following sections, we show how the fuzzy-match repair method mentioned can
be applied in a CAT setting. The rest of the paper is organized as follows. The next section
describes in detail our approach and illustrates how it works with an example. Section 3 de-
scribes the experiments we have conducted and the results achieved. The paper closes with
some concluding remarks and potential future research.

2 Methodology

We begin with a foundation similar to Espla-Gomis et al. (2011): an engine-agnostic approach
which, unlike other work done so far, only requires that the CAT tool is able to invoke the
external translation system, in order to translate short source-side sub-segments o of s to obtain
the corresponding short target-side sub-segments 7 of . As Espla-Gomis et al. (2011), the

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

44

method described here can use online MT or any MT system “out of the box” — indeed, as
described earlier, any source of such sub-segmental translation units (o, 7) may in principle be
queried.

Our methodology, unlike Espla-Gomis et al. (2011), does not only mark words from ¢ for
editing, it goes one step further and edits them using a patching method that can be described
in 5 steps:

1. Align the words in the SL segment s’ to be translated to those in the SL segment s of the
translation unit and find mismatched words.

2. Translate the sub-segments o of s and ¢’ of s’ containing at least one mismatched word, up
to a given sub-segment length, by querying the sources of bilingual information available.

3. Match each translated sub-segment o of the SL segment s to those sub-segments 7 in the
TL segment ¢ of the translation unit (as in Espla-Gomis et al. (2011)).

4. Pair the translation 7 of the (mismatched) sub-segments o in s for which a match has been
found in ¢ to the translation 7’ obtained for sub-segments ¢’ in s’. The pairs (7,7’) are
the patching operators which replace mismatched sub-segments in ¢ with the translation
of the corresponding mismatched sub-segments in s’ to generate an improved translation
candidate t~.

5. Apply the patching operators to build all possible translation hypotheses by selecting valid
sets of patching operators that can be applied to form a final proposal. Restrictions can be
applied to limit the amount of patching operators considered valid.

As patching can, in general, yield more than one solution, translation hypotheses could
then be ranked according to their estimated quality so that the best one is shown to the translator
for validation or post-editing. Here, in the absence of a quality estimation (QE) method that we
plan as future work, we experiment with restrictions to discard less reliable patching operators
and reduce the number of translation hypotheses to generate. With restrictions in place, we then
evaluate the average quality of the resulting repaired sentences on a test set as well as the quality
of the best proposal.

In the following sub-sections, we illustrate the patching process (steps 1 through 5 above)
in detail by building patching operators for an English segment and then applying them to
produce a translation in Spanish.

2.1 Step 1: align and find mismatches

We first find mismatched sub-segments from the source side (s, s) segments of the document
and translation memory using fuzzy matching. Imagine we are translating from English to
Spanish and the new segment to be translated is:

s’ = “The blue dog barks loud when it rains at night”
The system shows a fuzzy-match (s, t) from the translation memory and marks mismatched
words (in bold below):

s’ = “The blue dog barks loud when it rains at night”
s = “The red dog barks loud sometimes when it rains at night”

t = “El perro rojo ladra fuerte a veces cuando llueve por la noche”
According to Eq. (1) the fuzzy-match score is FMS(s’,s) = 81.8%, and as a side result of
the computation of the edit distance, the alignment between the words in s’ and those in s is
produced:

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

45

/

s’ | the blue dog barks Iloud when it rains at night

S ‘the red dog barks loud sometimes when it rains at night

It is clear that there are two words in s that do not match s’: red and sometimes. Using the edit
distance (Wagner and Fischer, 1974), the edit operations to convert s into s’ would consist of:

e one substitution - replace the word red in s for the word blue from s’ and

e one deletion - delete the word sometimes from s between the words loud and when.

2.2 Step 2: translate source-side sub-segments covering mismatches

Each one of the sub-segments o from s covering a mismatch is sent to an external machine
translation system or bilingual source of information to find their corresponding TL translations
7. The hope is to find a translation 7 that exists in ¢ so that the corresponding sub-segment can
be later modified to produce the desired translation ¢'. When 7 is a substring of ¢, it is marked
as applicable for patching.

If we choose Apertium (Forcada et al., 2011) as the external source of bilingual informa-
tion to translate the mismatched (o, 7) pairs and the maximum length of the sub-segments to
translate is set to 3, we generate the following translated pairs:

o (the red dog, el perro rojo)

(the red, el rojo)

(red dog, perro rojo)

(red, rojo)

(loud sometimes when, fuerte a veces cuando)

(loud sometimes, fuerte a veces)
e (sometimes when, a veces cuando)

e (sometimes, a veces)

2.3 Step 3: match the source-side translations to ¢

In step 3, we identify the (o, 7) pairs that have a matching sub-segment in ¢ and can, therefore,
be used to build the patching operators. We keep the following (o, 7) pairs whose 7 appears in
t:

o positionins | T position in ¢ | outcome
the red dog 1-3 el perro rojo 1-3 kept

the red 1-2 el rojo none discarded
red dog 2-3 perro rojo 2-3 kept

red 2-2 rojo 3-3 kept

loud sometimes when | 5-7 fuerte a veces cuando | 5-8 kept

loud sometimes 5-6 fuerte a veces 5-7 kept
sometimes when 6-7 a veces cuando 6-8 kept
sometimes 6-6 aveces 6-7 kept

Sub-segments that do not have a match in ¢ (e.g. the second one in the example above)
are discarded and not used further in the patching process. Word positions in ¢ not covered by

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers

Vancouver, BC

© The Authors

46

any translation 7 of any segment o in s contain words for which there is no evidence to modify
them. In the absence of information, they will not be changed.

2.4 Step 4: pair translations of 7 and 7’ to form patching operators

After the initial matching occurs from the translations of s to form (o, 7) pairs, (¢, 7’) pairs
are created by translating mismatched sub-segments from s’. The alignment found between
words in s and words in s’ during fuzzy matching are used by an algorithm, analogous to that
by Och and Ney (2000), to extract phrase pairs that project mismatched o sub-segments in s
into the corresponding sub-segments ¢’ in s’. The ¢’ sub-segments are sent to the MT system
or other source of bilingual information to obtain their translations 7/. The final result is a set
of patching operators that contain translations that match the previously mismatched words in
s’ and s.

In steps 1 through 3, we have already created the (o, 7) pairs; now we translate s’ sub-
segments to form (o', 7") pairs. In our example, the (o”, 7’) pairs translated by Apertium (For-
cada et al., 2011) are:

o’ o positions | T o

the blue dog | the red dog o'=1-3, | el perro rojo el perro azul
o=1-3

blue dog red dog c'=2-3, | perro rojo perro azul
0=2-3

blue red o'=2-2, | rojo azul
0=2-2

loud when loud sometimes when | o'=5-6, | fuerte a veces cuando | fuerte cuando
0=5-7

In the example above, most of the 7" are aligned word by word to their corresponding 7
in part because their source sub-segments (¢’ and o) are also aligned word by word. Notice
however that the last 7/ (fuerte cuando) does not align word by word to its corresponding 7
(fuerte a veces cuando) because it is a deletion case where the words a veces should be deleted.

A patching operator consists of a (7,7') pair and its positions in ¢. To obtain safer patching
operators, we keep only those patching operators where there is overlap between 7 and 7/. On
top of that, deletions are required to have at least two words (one on each side of the mismatched
sub-segment) of overlapping. The fraction of words in 7’ overlapping 7 (and therefore ¢) may
be a good indicator of the quality of the patching operator.

The resulting operators from our example with overlap underlined are:

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

47

T posint | 7’ result

#1 | el perro rojo 1-3 el perro azul | safe, overlap

#2 | perro rojo 2-3 perro azul safe, overlap

#3 | rojo 3-3 azul unsafe, no overlap

#4 | fuerte a veces cuando | 5-8 fuerte cuando | safe, deletion with context on
both sides

#5 | fuerte a veces 5-7 fuerte unsafe, deletion with context on

one side only

#6 | a veces cuando 6-8 cuando unsafe, deletion with context on
one side only

#7 | aveces 6-7 € unsafe, deletion with no context
on either side

2.5 Step 5: applying the patching operators

Once the applicable patching operators have been determined, the final step is to apply them
to sub-segments in ¢ to create the final translation that is presented to the translator. It is en-
tirely possible to have multiple combinations of patching operators that form multiple repaired
segments t=~. Here are some possible results of applying patching operators to ¢ from our patch-
ing example comparing them to the reference translation ¢’ — el perro azul ladra fuerte cuando
llueve por la noche:

o 7" = el perro azul ladra fuerte cuando llueve por la noche - (correct, produced by #1 and
#4 above)

o t5 = el perro azul ladra fuerte a veces cuando llueve por la noche - (incorrect, produced
by #2 above)

o 13 = el perro rojo ladra fuerte a veces cuando llueve por la noche - (incorrect, produced
by #4 above)

o t3° = el perro azul ladra fuerte cuando llueve por la noche - (correct, produced by #2 and
#4 above)

Patching operators can deal with all three types of edit operations (substitution, insertion,
and deletion). The patching examples shown above depict a substitution and a deletion example.
Nonetheless, insertions can be handled using patching also. Insertions occur when 7’ contains
new words not in 7 (most likely because its corresponding ¢’ contained words that were not in
the corresponding o).

Note that deletions are always produced with some overlap, that is, in context. Context
words around a word to be deleted along with their positions are necessary to determine if
an operation is valid. The example above, for instance, creates a patching operator (#4) that
deletes the word sometimes. We are able to use the context of the surrounding words loud and
when to determine deletion. Context used for patching in this manner is different from other
research: Hewavitharana et al. (2005), for example, apply all possible context-free deletions
according to statistical word alignment, and later score the resulting segments to determine the
best translation.

It is worthwhile to note that patching operators, as seen above, may not always be appli-
cable because positions in ¢ that are modified by a patching operator may not be available for
another patching operator when 7 does not match the partially-patched sentence. That would

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

48

make the two patching operators incompatible. Our method generates all possible ¢t~ obtained
by applying all possible sets of mutually compatible patching operators. In our experiments, t='s
are determined to be correct (or not) by comparing the ¢~ translation to a previously-translated
“gold” segment in a test set. Below, in the Experiments section, all of the patching operators
applied are compared against their “gold” ¢’ counterparts. During real-world deployment of
fuzzy-match repair, and in the absence of a reference translation, patching operators should be
assessed before applying them in order to present only the best quality translations to CAT tool
users.

2.6 Selecting the best ¢~

The patching process can produce a large amount of patched segments ¢=~. Sometimes, various
patches exist for the same (o, 0’) mismatch. In our patching example, three different (7, 7")
patching operators are produced that cover the same (blue, red) mismatch:

1. (el perro rojo, el perro azul)
2. (perro rojo, perro azul)

3. (rojo, azul)

In order to present the optimum translations to a CAT tool user, it would be beneficial to apply
various restrictions to discard redundant or low quality patching operators like those above. The
restrictions that we have tested in our experiments are:

e Restriction 1 (R;) = Establish a minimum source-side ¢ length in order to disallow patches
that are too short.

e Restriction 2 (Ry) = Disallow patches that do not have context on both sides of the mis-
matched word to be translated.

e Restriction 3 (R3) = Set |7/| = |7| = 3 to handle one-word substitutions with a minimum
amount of context.

By applying the restrictions above to the corpus used in experimentation, we show that by
using the patching method we are able to increase the translation accuracy of proposals from a
translation memory via fuzzy-match repair. The amount of patching operators is limited by our
restrictions; experiments display the effects of restriction on performance.

3 Experiments

3.1 Experimental Settings

3.1.1 Corpus

Our experiments were performed using an English—Spanish parallel corpus; note, however, that
the fuzzy-match repair method would work with any language pair. We have used a data set!
extracted from the DGT translation memories,” which was also used in a project® on editing TL
hints in a CAT system. The corpus provides an ideal number of segmented sentences both for
input and testing as well as a translation memory.

The two main components that we used for experimentation are:

Test Set - The input (in English) and output (in Spanish) containing 1500 source sentences
to translate and their corresponding “gold” target sentences.

Inttp://transducens.dlsi.ua.es/~mespla/resources/mtacat/02.40.10.40/
’https://open-data.europa.eu/en/data/dataset/dgt-translation-memory
3http://www.dlsi.ua.es/-mespla/edithints.html

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

49

FMS Threshold (%) | # Matched SL Seg’s # Patched TL Seg’s # TL Words Edited
[80, 85) 76 686 750

[85, 90) 123 239 285

[90, 95) 82 115 109

[95, 100) 1 1 1
Total: 282 1041 1145

Table 1: Segments and target words at different FMS thresholds

TM - The translation memory with 6000 translation units in English and Spanish.

Since our implementation is a proof of concept, and to avoid onerous computations, we
chose to limit the amount of words in the source segments. Segments (s and s”) with more than
25 words or a FMS below 80 percent were discarded because they are harder to deal with in
reasonable time due to the combinatorial explosion of patching operator sets.

The amount of mismatched sub-segments varies according to the FMS threshold used.
Table 1 shows, for different FMS threshold intervals, the amount of matching (source language)
segments, the amount of patched (target) segments and the amount of words in target segments
that have been edited.

3.1.2 System Setup

Translations for the patching algorithm were performed using an MT system as a black box.
In this case, segments were translated directly using the Apertium shallow-transfer MT system
(Forcada et al., 2011). The word error rate (WER: see below) on the test set for this rule-based
MT system is 56%; this value was computed by translating the source segments in the test set
and using their target ”gold” translations as references. It is important to note that MT errors
are less likely to affect the quality of the patching operators because the 7’s obtained are always
required to match a sub-segment in ¢.

3.2 Evaluation

To evaluate the performance of patching and the different types of restrictions (/2 — R3) that
can be applied to patching operators, we computed the following metrics:

e The average WER between the “gold” translation (¢') and the patch translation for all
repaired hypotheses (£~).

e The average WER between the “gold” translation and the best repaired hypothesis (this
metric provides an indication of the best results we can achieve by patching)

e The average number of repaired hypotheses per segment
WER in our experiments is defined as the complement of the FMS defined in eq. (1):

ED(t, t~)

WER() = (o

) -100% 2)
WER tells us how patching performs and by computing the average WER for hypotheses with
and without patching along with each individual restriction, we are able to gain better knowl-
edge of restrictions that could be beneficial; that is, those reducing the number of hypotheses
while retaining the best hypotheses as often as possible.

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

50

Restriction(s) Avg Amount of Hypotheses Avg WER Best WER
No Patching 0 21.37% 21.37%
No Restrictions 68.96 20.07% 17.42%
Restriction #1 14.20 20.74% 18.42%
Restriction #2 21.99 20.07% 17.43%
Restriction #3 23.14 19.78% 17.44%
Restrictions #1 - #3 combined | 1.67 21.03% 19.62%

Table 2: Evaluation of Restriction 1 through Restriction 3 with 6000 source segments

3.3 Patching Results

Patching restrictions that help improve system quality are those described in section 2.6: R,
restricting the o length (restricted here to a minimum of 2 and a maximum of 5); R, disallowing
non-anchored patches, and Rz, which sets |7|" = || = 3 to handle one-word repairs with
minimal context.

Table 2 displays the results achieved for the restrictions and computations described in
the Evaluation section. A separate execution is done during evaluation for the following cases:
1) evaluation without applying patching at all, 2) evaluation applying patching without any
restrictions, 3) evaluation using each particular restriction, and 4) evaluation using all possible
restrictions. A calculation is done that shows the average amount of hypotheses per segment for
each setting along with the average WER and the best WER.

The patching technique seems to work better when applied to 7 with less words as seen
from the results above for Ry. In order to achieve quality patches, we use (o,0’) pairs that
contain anchored words with overlap on both sides. For example, if the source input file contains
a segment with the words “power input of 5 watts” and the translation memory source file
contains words in a parallel sentence “power input of about 5 watts”, the system is more likely
to correctly replace the “of about 5” by “of 5 due to the fact that there is overlap on both sides
of the word “about”.

Table 2 shows a clear distinction between patching with restrictions and without them.
Patching improves WER in all cases since the average WER for any restriction R; is lower than
the average WER without patching. But, with respect to restrictions R; — R3, only R3 is able
to improve the average quality of the hypotheses, thus reducing the average WER. In addition,
R3’s average amount of hypotheses is considerably lower (23.14). Restriction Ro, while not
scoring as well as R3, was able to maintain the same quality (average WER of 20.07%) as
patching without restrictions with an average amount of hypotheses (21.99) even lower than
R3. Restriction R; is of less quality when compared to patching without restrictions. R;’s best
WER (18.42%) is worse, in absolute terms, than Ry and R3’s best WER.

When combining the restrictions (R; — R3), we notice that both the average WER and
Best WER perform considerably worse (a quality loss of near 1% or above). On the other hand,
Ry and R3, retain the best WER much like their averages above with a very slight degradation
of between .01% and .02%. That means that restrictions R, and R3 should be considered the
better restrictions for future use and; due to its lower performance, R; would probably not be
used in the future.

It is worthwhile to note that another useful way to reduce redundant patches would be
by deleting patching operator (71, 71) when there is another operator (72, 75) such that 7 is a

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

51

substring of 72 and 71 is a substring of 75 or vice-versa. It could be used as a way of reducing
patches; but, it does not change the quality of patching as it only reduces patches that cover the
same sub-segments. This type of filtering is left for future work and not covered in this paper.

4 Conclusion

We have presented a novel approach to fuzzy-match repair using any MT system or bilingual
information source called patching. Patching focuses on a problem in the CAT environment:
presenting accurate translation proposals to CAT tool users. In order to help CAT tool users
translate faster, patching may be applied to repair and improve fuzzy-match proposals from a
translation memory alone. By using any external source for gathering sub-segment translations,
translation systems would be able to take advantage of patching by simply adding the patching
library to an existing CAT tool and setting the external source of bilingual information.

In this work, we have applied a preliminary set of restrictions which have been shown to
effectively reduce the number of repaired segments while keeping the best ones. We have shown
that by applying patching to fuzzy matches from a translation memory, we can achieve better
WERSs as opposed to raw fuzzy matches. Future research will explore further restrictions and
use the results to inspire the design of features relevant to learn quality estimators capable of
ranking repaired fuzzy-matches so that only the most useful ones are shown to the professional
translator using the CAT environment.

Acknowledgements: The authors thank the Spanish Ministry of Economy and Competitive-
ness for support through grant TIN2012-32615 and Rafael C. Carrasco for useful comments.

References

Bi¢ici, E. and Dymetman, M. (2008). Dynamic translation memory: Using statistical machine trans-
lation to improve translation memory fuzzy matches. Computational Linguistics and Intelligent Text
Processing, pages 454-465.

Bowker, L. (2002). Computer-aided translation technology: a practical introduction. University of Ottawa
Press.

Bowker, L. (2003). Terminology tools for translators. In Somers, H., editor, Computers and Translation:
a Translator’s Guide, pages 49—65. John Benjamins.

Brown, R. D., Hutchinson, R., Bennett, P. N., Carbonell, J. G., and Jansen, P. (2003). Reducing Bound-
ary Friction Using Translation-Fragment Overlap. In Proceedings of the Ninth Machine Translation
Summit, pages 24-31.

Dandapat, S., Morrissey, S., Way, A., and Forcada, M. L. (2011). Using example-based MT to support
statistical MT when translating homogeneous data in a resource-poor setting. In Proceedings of the 15th
conference of the European Association for Machine Translation, pages 201-208. Leuven, Belgium.

Espla-Gomis, M., Sanchez-Martinez, F., and Forcada, M. L. (2011). Using machine translation in
computer-aided translation to suggest the target-side words to change. In Proceedings of the 13th
Machine Translation Summit, pages 172-179, Xiamen, China.

Forcada, M. L., Ginesti-Rosell, M., Nordfalk, J., O’Regan, J., Ortiz-Rojas, S., Pérez-Ortiz, J. A., Felipe
Sanchez-Martinez, G. R.-S., and Tyers, F. M. (2011). Apertium: a free/open-source platform for rule-
based machine translation. Machine Translation, 25(2):127-144.

Hewavitharana, S., Vogel, S., and Waibel, A. (2005). Augmenting a statistical translation system with a
translation memory. In Proceedings of the 10th conference of the EAMT on ’Practical applications of
machine translation’, pages 126—132, Carnegie Mellon University, Pittsburgh, USA.

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

52

Koehn, P. and Senellart, J. (2010). Convergence of translation memory and statistical machine transla-
tion. In Proceedings of AMTA Workshop on MT Research and the Translation Industry, pages 21-31,
Edinburgh, United Kingdom and Paris, France.

Ma, Y., He, Y., Way, A., and van Genabith, J. (2011). Consistent translation using discriminative learning -
a translation memory-inspired approach. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 1239—-1248, Portland, Oregon,
USA. Association for Computational Linguistics.

Och, F. J. and Ney, H. (2000). Improved statistical alignment models. pages 440—447, Hongkong, China.

Simard, M. and Isabelle, P. (2009). Phrase-based machine translation in a computer-assisted translation
environment. Proceeding of the Twelfth Machine Translation Summit (MT Summit XII), pages 120-127.

Somers, H. (2003). Translation memory systems. In Somers, H., editor, Computers and Translation: a
Translator’s Guide, pages 31-47. John Benjamins.

Wagner, R. A. and Fischer, M. J. (1974). The string-to-string correction problem. J. ACM, 21(1):168-173.

Zhechev, V. and Genabith, J. V. (2010). Seeding statistical machine translation with translation memory
output through tree-based structural alignment. In Proceedings of SSST-4 - 4th Workshop on Syntax and
Structure in Statistical Translation, pages 43—49, Dublin,Ireland.

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1: MT Researchers Vancouver, BC © The Authors

53

