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Abstract
We present a first attempt at predicting the quality of translations produced by human, profes-
sional translators. We examine datasets annotated for quality at sentence- and word-level for
four language pairs and provide experiments with prediction models for these datasets. We
compare the performance of such models against that of models built from machine transla-
tions, highlighting a number of challenges in estimating quality and detecting errors in human
translations.

1 Introduction

Metrics for translation quality estimation (QE) (Blatz et al., 2004; Specia et al., 2009) aim at
providing an estimate on the quality of a translated text. Such metrics have no access to refer-
ence translations, as they are intended for translation systems in use. QE has shown promising
results in several applications in the context of Machine Translation (MT), such as improving
post-editing efficiency by filtering out low quality segments which would require more effort to
correct than translating from scratch (Specia et al., 2009; Specia, 2011), selecting high quality
segments to be published as they are, without post-editing (Soricut and Echihabi, 2010), rank-
ing or selecting the best translation from multiple MT systems (Specia et al., 2010; Hildebrand
and Vogel, 2013; Avramidis, 2013; Avramidis and Popović, 2013), or between translations from
either an MT system or a translation memory (He et al., 2010), and highlighting sub-segments
that need revision (Bach et al., 2011).

Generally speaking, QE models are built using supervised machine learning algorithms
from examples of translations at a given granularity level (e.g. sentences). For training, these
examples are annotated with quality labels and described by a number of features that can
approximate quality (or errors). “Quality” is therefore defined according to the problem at hand
and the labelled data, for example, post-editing time for a sentence or word-level errors. For an
overview of various algorithms and features we refer the reader to the WMT12-14 shared tasks
on QE (Callison-Burch et al., 2012; Bojar et al., 2013, 2014).

So far, QE has only been applied to machine translated texts. However, the above men-
tioned applications are also valid in the context of human translation. In particular, in scenarios
where translations produced by humans may be of variable or questionable levels of reliabil-
ity (e.g. crowdsourcing), it becomes important to estimate translation quality to, for example,
select among multiple options of human translations (or even a mix of human and machine
translations). In addition, even with professionally created translations, quality assurance is a
common process and an estimation method could be useful, for example, to sample the lowest
quality cases for checking/revision.

Even though it is known that human translations are generally different from machine
translations, we put forward the hypothesis that it is possible and useful to have automated
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metrics to estimate translation quality of both human and machine translations. In this paper
we analyse existing human translations annotated for quality and errors and contrast them to
machine translations. We use this data to experiment with an existing framework for quality
estimation to predict quality in human translations. More specifically, we aim at answering the
following questions:

1 Can we automatically distinguish machine from human translations?

2 Do professional human translators make mistakes?

3 Are human translation errors the same as machine translation errors?

4 Can quality estimation approaches capture issues in human translations?

We discuss each of these questions in Sections 3, 4, 5, and 6, respectively. Before that, we
introduce the datasets and settings used in our experiments in Section 2.

2 Datasets and experimental settings

2.1 Datasets
Our datasets are those used for the WMT14 shared task on quality estimation1 and were pro-
duced in the context of the QTLaunchPad project.2 They contain news texts in four language
pairs (Table 1): English→Spanish (en-es), Spanish→English (es-en), English→German (en-
de), and German→English (de-en). Each language pair dataset contains a different number
of source sentences and their human translations, as well as 2-3 versions of machine transla-
tions: by a statistical (SMT) system, a rule-based (RBMT) system and, for en-es/de only, a
hybrid system. Source sentences were extracted from tests sets of WMT13 and WMT12, and
the translations were produced by top MT systems of each type (SMT, RBMT and hybrid –
hereafter MT-1, MT-2, MT-3) which participated in the translation shared task in 2103, plus
the professional translation provided by WMT as reference (HT). In addition, for the word-level
analysis, for all language pairs except English→Spanish, which already had enough sentences,
we included some customer data (mostly technical documentation) provided and annotated by
language service providers as part of the QTLaunchPad project.

This data is very different from existing corpora of human translations annotated for qual-
ity. Existing resources contain translations from students, while ours only contain translations
produced by professional translators, and annotated by (other) professional translators. In ad-
dition, our data contains translations from multiple state of the art MT systems, also annotated
by professional translators. For comparison purposes, in the remaining of the paper we report
statistics for the human versus all MT data together.

Sentence-level data At sentence-level, the details about the datasets are given in Table 1. All
translations for each source sentence were annotated by a single professional translator (and
that one translator annotated all sentences for a given language pair) using the following three
options representing the translator’s perception on the effort that would be needed to post-edit
such a sentence:

• 1 = Perfect translation, no post-editing needed at all.

• 2 = Near-miss translation: translation contains a maximum of 2-3 errors, and possibly
additional errors that can be easily fixed (capitalisation, punctuation, etc.).

• 3 = Very low quality translation, cannot be easily fixed.

1http://www.statmt.org/wmt14/quality-estimation-task.html
2http://www.qt21.eu/launchpad/

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1:  MT Researchers      Vancouver, BC       © The Authors 289



# Source # HT+MTs # Target
1,104 English 4 4,416 Spanish
500 English 4 2,000 German
500 German 3 1,500 English
500 Spanish 3 1,500 English

Table 1: Number of source and target sentences labelled for post-editing effort at sentence-level.

Word-level data For word-level annotation, a subset of sentences of type “2” (near-miss)
from MT systems and from human translators (Table 2) were annotated with core issue types
(errors) of the Multidimensional Quality Metric (MQM),3 as shown in Figure 1. In addition to
the 16 fine-grained labels, two levels of labels were automatically generated by climbing up the
MQM hierarchy: Accuracy versus Fluency, and OK (no issue) versus BAD (any issue). Each
translation was annotated by 1-5 professional translators. For translations annotated by more
than one translator, only one annotation was randomly selected and used in our analysis. For a
discussion on annotator agreement within these datasets, see (Lommel et al., 2014).

Figure 1: MQM core issue types used for the word-level annotation task.

Source→target # WMT (news) # Technical
English→Spanish 2,339 -
English→German 467 398
German→English 250 200
Spanish→English 440 610

Table 2: Number of sentences labelled at word-level, from news and technical domains.

2.2 Settings
Prediction models are only built for sentence-level, given the small number of human transla-
tions labelled at word-level (at most 294, for en-es). Our word-level analysis focuses on error
distributions. For the building and evaluation of sentence-level prediction models (as described
in Sections 3 and 6), we use the following settings.

Dataset splits We use the standard training and test splits as distributed by WMT14: each
MT system or HT dataset is split into 70% for training and 30% for test.

3http://www.qt21.eu/launchpad/content/background-and-principles
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Learning algorithms We use the Support Vector Machines (SVM) implementation within
the QuEst toolkit for quality estimation4 (Specia et al., 2013; Shah et al., 2013) to perform
classification (SVC) (Section 3) and regression (SVR) (Section 6) with Radial Basis Function
as kernel and parameters optimised using grid search.

Evaluation metrics To evaluate our models, we use standard metrics for regression (MAE:
mean absolute error) and classification (precision, recall and F1). In all tables, bold-faced fig-
ures are significantly better (paired t-test with p ≤ 0.05) wrt the baseline for the given language
pair. As baseline for the regression models, we consider the Mean of the training data, i.e., sim-
ply outputting the average value of the training set to all test instances. Similarly, as baseline for
the classification models, we consider assigning the most frequent class (MC) in the training
set to all test instances.

Features We use the QuEst toolkit to extract two feature sets for each dataset:

• Baseline features (BL): 17 features used as baseline in the WMT shared tasks on QE.
Examples of baseline features for sentence-level include the following:

– no. of tokens in the source & target texts

– average source token length

– average no. of occurrences of target words in target text

– no. of punctuation marks in source & target texts

– language model probability of source & target texts using LMs built from large
source/target language corpora of human texts

– avg. no. of translations per source word built using lexical tables from the IBM 1
model thresholded such that P (t|s) > 0.2)

– % of 1-grams, 2-grams & 3-grams in frequency quartiles 1 & 4 (lower/higher fre-
quency) in a large corpus of the source language

– % of 1-grams in source text seen in a large corpus of the source language

• All features (AF): 80 common MT system-independent features (superset of BL).

The resources used to extract all features (language models, etc.) are available as part of
the WMT14 shared task on QE.

3 Can we distinguish machine from human translations?

In this experiment we train an SVM classifier to distinguish human translations from machine
translations at sentence-level. We put together all MT and human translations for each language
pair, label all human translations as 1, and all system translations as 0. We then train a binary
classifier to distinguish them. Results are given in Table 3, where MC stands for “majority
class” (always picking MT). They show a large variation across language pairs, although MC is
outperformed in all cases in terms of F1. The lower performance for en-es and en-de may be
because here translations from three MT systems are put together (only 25% of the examples
are HT), while for the remaining datasets, only two MT systems are available, and therefore the
data distribution is less skewed (33% of the examples are HT). Nevertheless, figures for en-es
are substantially better than those for en-de, possibly because of the larger size of the en-es
dataset.

4http://www.quest.dcs.shef.ac.uk/
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With similar classifiers (albeit different datasets), Gamon et al. (2005) reported as trivial the
problem of distinguishing human translations from machine translations. However, our results
seem to indicate that this is now a harder problem than some years ago, possibly pointing in
the direction that MT systems produce more translations that are better in quality, and therefore
closer to human translation nowadays. Moreover, human translations also contain errors, which
gives us a further motivation for modelling the prediction of quality in human translations (see
Figure 2).

Model #feats Precision Recall F1

en-de
MC - 0.3041 0.1316 0.1566
BL 17 0.3272 0.1200 0.1756
AF 80 0.3281 0.1193 0.1801

de-en
MC - 0.5041 0.2416 0.2961
BL 17 0.5420 0.2321 0.3262
AF 80 0.5468 0.2333 0.3271

en-es
MC - 0.6541 0.1521 0.2312
BL 17 0.7012 0.1524 0.2561
AF 80 0.7188 0.1533 0.2527

es-en
MC - 0.7311 0.3513 0.4625
BL 17 0.7665 0.3651 0.4942
AF 80 0.7639 0.3667 0.4954

Table 3: Performance of classifier to distinguish between human translations and machine trans-
lations (all MT systems together). “MC” corresponds to always picking machine translation
(most frequent) as label.

4 Do professional human translators make mistakes?

In order to answer this question, we look at the distribution of the 1-3 scores at sentence-level
(Figure 2) and the distribution of OK versus BAD word-level labels (Figure 3). Both sets of
distributions show that, for all language pairs, human translations (HT), albeit professionally
produced, contain errors. In the sentence-level figures, the first set of bars for all language
pairs show that in the best case only about 80% of the human translations are labelled “1”
(perfect). While – not surprisingly – very low quality translations (label “3”) are virtually
non-existent (maximum 1.2%), many cases of near-misses are found for all language pairs.
For English→Spanish, 27% of the translations are considered near-misses, whereas for other
languages pairs this rate is between 15 and 20%. The bars for MT systems essentially show
the inverse behaviour: very few perfect translations (less than 10% for all language pairs except
Spanish→English), predominantly near-miss translations for English↔Spanish, and a mostly
even distribution between very low quality and near-miss translations for German↔English.

It is worth noticing that the translators annotating datasets for errors received explicit
guidelines to consider only true errors for the annotation. They were instructed not to label
any segment/word as incorrect or near-miss because of preferential changes, i.e., because they
would simply have preferred a different translation. They were also instructed to consider a
segment/word correct when they were not sure about such a segment/word because of lack
of context, style guidelines, etc. Some examples of near-miss human translations (with issues
highlighted and identified) are shown in Table 4.

Looking at the distribution of OK and BAD word-level annotations (Figure 3), we see that
even though both HT and MT segments had already been pre-labelled as near-misses (i.e., as
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HT MT-1 MT-2

de-en

1 - perfect 2 - few errors 3 - too bad

  
1 - perfect 2 - few errors 3 - too bad

HT MT-1 MT-2 MT-3

en-es

  
1 - perfect 2 - few errors 3 - too bad

HT MT-1 MT-2 MT-3

en-de

  

HT MT-1 MT-2

es-en

1 - perfect 2 - few errors 3 - too bad

Figure 2: Percentage of 1-3 scores given as labels at sentence-level data for human (HT) and
each machine (MT-i) translation system.
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Lang. Source Target Issues
de-en Deutsche Welle: Anfang der Woche

hatte Deutschland zunächst signal-
isiert, dass es gegen den Antrag
auf einen Beobachterstatus der
Palästinenser bei den Vereinten Na-
tionen stimmen würde.

Deutsche Welle: At the beginning
of the week, Germany had initially
signalled that it would vote against
the Palestinians’ application for ob-
server status within the United Na-
tions.

agreement

en-de So I had plenty of time to think
about the subject of boredom.

So hatte ich viel Zeit, um an das
Thema der Langeweile zu denken.

grammar

en-es People assume we are like the
Bullingdon Club without meeting
us.

La gente supone que parezcamos
al Club Bullingdon sin vernos

mistranslation,
function words,
mistranslation

es-en La princesa D’Arenberg guarda sus
vestidos de fiesta del modisto con
“los máximos cuidados... porque un
vestido no es solamente un vestido,
también es el conjunto de recuerdos
que conlleva“.

Princess D’Arenberg looks after her
couturier gowns with ”the utmost
care... because a dress not just a
dress, it’s also the many memories
that go with it.

terminology,
omission

Table 4: Examples of near-miss human translations. Issues are highlighted and listed in order.

containing 1-3 errors that are easy to fix), as expected, MT segments contain more errors for
all language pairs. Only up to 10% of the words in HT segments contain errors. For MT, this
percentage reaches 40% for English→Spanish.

5 Are human translation errors the same as machine translation errors?

To answer this question we look at the distribution of specific issue types coming from the
word-level annotation. In Figure 4 we show the distribution of errors in HT and MT grouped
by fluency and accuracy types (here we ignore the “OK” category for clarity purposes). Once
again, these statistics only consider segments that had already been pre-labelled as near-misses.
For all language pairs except English→German, MT segments tend to contain considerably
more words labelled as having fluency issues than as containing accuracy issues. In human
translations, however, fluency issues are more frequent in language pairs involving Spanish,
whereas accuracy issues are more frequent in language pairs involving German, although
English→German shows a close distribution between accuracy and fluency issues. This seems
to indicate that the types of errors in translations may be more dependent on the language pair
than on the type of translation (MT or HT).

A more detailed view on the types of errors by HT and MT is given in Figure 5. Here we
look at percentages of specific issues (again ignoring the “OK” category) in human and machine
(a mixture of all MT systems) near-miss translations. Given the limited size of the datasets,
some issues are not observed for certain language pairs. Overall, the distributions of specific
issue types are very distinct in HT and MT segments, as well as across language pairs. Mis-
translation is by far the most frequent error type in human translations for German↔English.
For Spanish↔English, fluency errors are the most frequent. We note that the latter are not a
combination of all errors under “fluency” in Figure 1. Instead, they are a more general category
that annotators were asked to use when they could not flag the specific fluency issue with the
word.
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Lang
Words tagged

HT MT

de-en 808 7420

en-es 8933 48089

en-de 1241 12406

es-en 1206 21818

de-en en-es en-de es-en
0

0.2

0.4

0.6

0.8

1

1.2

OK – HT OK – MT

Figure 3: Percentage of words labelled as OK versus BAD in human (HT) and machine (MT)
near-miss translations (MT contains a mixture of all MT systems). The table shows the number
of words tagged for issues, including the “OK” tag, which in fact means that no issue was found
for the word.

  
de-en en-es en-de es-en

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fluency Accuracy

de-en en-es en-de es-en
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fluency Accuracy

HT

MT

Figure 4: Percentage of words labelled as containing fluency versus accuracy issues in human
(HT) and machine (MT) near-miss translations (MT contains a mixture of all MT systems).
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 Addition 
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 Function_words 

 Grammar 
 Mistranslation 

 Morphology
 Part_of_speech 

 Punctuation 
 Spelling 

 Style/register 
 Tense/aspect/mood 

 Terminology 
 Typography 

 Unintelligible 
 Untranslated 
 Word_order 
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Figure 5: Percentage of words labelled with each type of MQM issue in human (HT) and
machine (MT) near-miss translations.
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Figure 6: Absolute and relative improvement of prediction models over Mean baseline for
machine (MT) and human (HT) translation data. Only the most predictable (lowest MAE score)
MT system is shown for each language pair.

6 Can quality estimation approaches capture issues in human translations?

In what follows we show the performance of regression models trained on HT and MT data
independently (Table 5), for the sentence-level annotated data. The performance obtained for
models trained on MT data is comparable to the state of the art, based on the results of the
latest WMT14 shared task (Bojar et al., 2014). In absolute terms, the figures show that models
trained on HT datasets are better (lower MAE) than models trained on any MT dataset, for
all language pairs. That could be seen as indicative that tools used for MT quality estimation
are also applicable for HT quality estimation. However, although all HT and MT models were
trained on datasets of the same size, the distribution of scores in each of these datasets is very
different (see Figure 2). Human translations are “perfect” in approximately 80% of the cases
for all languages. Therefore, it becomes much harder to outperform the “Mean” baseline in HT
models. This is reflected in the consistently lower MAE scores obtained by the Mean baseline
on the HT data. Therefore, a better way of comparing the performance of models for HT
against models for MT is to measure the improvement on the MAE scores between the Mean
baseline and the best (AF) prediction model. The absolute and relative improvements for each
language pair are shown in Figure 6. In terms of absolute improvement, the figures for MT are
always more substantial than those for HT. This is also the case in relative terms, except for
German→English, where the HT model achieves relatively better improvement over the Mean
baseline than the MT models, although the difference is minor (18% improvement versus 15%
improvement).

Our results seems to indicate that it is generally harder to predict human translation quality.
In addition to the highly skewed data distribution, one reason for that could be that errors in hu-
man translations may be more subtle than in machine translations, requiring more sophisticated
features than the ones used in current quality estimation approaches. In fact, another interesting
finding from Table 5 is that there is zero or little gain for moving from the BL to the AF feature
sets for HT, whereas the gain is evident for models built from MT data. This seems to indicate
again that the features we resort to are not appropriate or sufficient to capture the quality of
human translations.

To further inspect this problem, we take the MQM core issue types (see Figure 1) as guid-
ance on the types of quality issues features should attempt to capture. We note that many issue
types are not covered at all or only approximated by features in current quality estimation ap-
proaches. In what follows we provide a discussion for each issue type:5

5A detailed description of the issue types can be found on http://www.qt21.eu/launchpad/content/
list-mqm-issue-types
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en-de Model #feats MAE

HT
Mean - 0.3552
BL 17 0.3350
AF 80 0.3325

MT-1
Mean - 0.4857
BL 17 0.3615
AF 80 0.3570

MT-2
Mean - 0.5577
BL 17 0.4535
AF 80 0.4482

MT-3
Mean - 0.5782
BL 17 0.4912
AF 80 0.4818

en-es Model #feats MAE

HT
Mean - 0.3883
BL 17 0.3633
AF 80 0.3519

MT-1
Mean - 0.4232
BL 17 0.3812
AF 80 0.3730

MT-2
Mean - 0.4288
BL 17 0.3821
AF 80 0.3714

MT-3
Mean - 0.4300
BL 17 0.4022
AF 80 0.3902

de-en Model #feats MAE

HT
Mean - 0.2506
BL 17 0.2123
AF 80 0.2065

MT-1
Mean - 0.5412
BL 17 0.4745
AF 80 0.4604

MT-2
Mean - 0.6000
BL 17 0.4965
AF 80 0.4828

es-en Model #feats MAE

HT
Mean - 0.3026
BL 17 0.3022
AF 80 0.3023

MT-1
Mean - 0.4494
BL 17 0.4384
AF 80 0.4309

MT-2
Mean - 0.4720
BL 17 0.4993
AF 80 0.4974

Table 5: Error (MAE) scores for prediction models built for each language pair and translation
system. Mean indicates a baseline that always outputs the average score of the training set. BL
indicates the set of simple model using baseline features. AF indicates models built using all
features.

Accuracy

• Terminology: Normative terminology infringed. This issue is not directly covered by cur-
rent approaches to quality estimation. However, as a proxy to it, both monolingual (target)
and bilingual terminology lists could be used for simple checks, such as whether all content
words (or nouns) in the translation belong to the terminology list.

• Mistranslation: Incorrect word translation chosen (overly literal, false friend, should not
have been translated, entity, date/time/number, unit conversion). This issue cannot be
easily automated, apart from some mechanical checks on date/time/number format.

• Omission: Translation for source word is missing. Certain existing features approximate
this issue type, e.g., source versus target segment word counts, counts of words with certain
POS tags in both source and target segments, and language models of the target language,
which can detect unusual constructions due to – among other things - omissions.

• Addition: Word that is not in the source segment is added to the translation. Existing
features approximate this issue as in the case of “omission”.

• Untranslated: A source word is left untranslated in the translation. This issue is currently
covered by out-of-vocabulary features based on language model of the target language.
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Fluency

• Register/style: Incorrect use of words due to variants/slang, company style or style guide.
This issue is not directly covered by existing approaches, but it is approximated by the
target language model features, as long as this model is trained on documents with the
correct register/style.

• Spelling: Incorrect word spelling due to capitalisation or diacritics. This issue is also
approximated by language model features, which are trained on truecased models. Spell
checkers could also be used.

• Typography: Incorrect use of punctuation, unpaired quote marks or brackets. These issues
are captured by a number of features, such as those checking for missing closing brack-
ets or quotation symbols in the target segment, and those contrasting the percentage of
different punctuation symbols in the source and target languages.

• Grammar: The several grammar-related issues (morphology, part of speech, agreement,
word order, function words, tense/mood/aspect) are captured partly by target language
model features, and partly by advanced syntactic features based on probabilistic context
free grammars, dependency structures and categorical combinatory grammar (Felice and
Specia, 2012; Almaghout and Specia, 2013).

• Unintelligible: Parts of the translation are not understandable enough to be analysed. This
issue is only approximated by language model features of the target language.

7 Conclusions

This paper has presented an analysis and experiments on quality prediction of professionally
produced translations. The data analysis has shown that although intuitively we know that
human translations differ significantly from machine translations, distinguishing them using
automated methods is not a trivial task. In particular, it seems to be a harder problem nowadays
then it was ten years ago. This is most likely due to overall improvements in the quality of
machine translation systems over the time. In addition, the human translations analysed, albeit
professionally created, contain errors in up to almost 30% of the cases. We have shown that the
types of errors in human translations tend to be different from those in machine translations, but
that larger differences are observed across language pairs.

Finally, we have shown that human translation quality seems harder to estimate than ma-
chine translation quality. We believe this is mostly due to two reasons: skewed label distribution
(most human translations are labelled as perfect), and the limitations of existing features, which
do not capture more subtle or complex issues present in human translations. Our on-going work
is aimed at addressing these two challenges: we are collecting a larger dataset including more
lower quality human translations (produced by less experienced translators) and designing more
linguistically motivated features.
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