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Abstract

The typical training of a hierarchical phrase-based machine translation involves a pipeline of
multiple steps where mistakes in early steps of the pipeline are propagated without any scope
for rectifying them. Additionally the alignments are trained independent of and without being
informed of the end goal and hence are not optimized for translation. We introduce a novel
Bayesian iterative-cascade framework for training Hiero-style model that learns the alignments
together with the synchronous translation grammar in an iterative setting. Our framework
addresses the above mentioned issues and provides an elegant and principled alternative to the
existing training pipeline. Based on the validation experiments involving two language pairs,
our proposed iterative-cascade framework shows consistent gains over the traditional training
pipeline for hierarchical translation.

1 Introduction

Hierarchical phrase-based translation, similar to other statistical machine translation (SMT)
models are trained in a series of steps that are disparate and often invoke heuristics. The train-
ing complexity as well as the modelling deficiencies in learning the translation rules using such
multi-step, heuristic ridden pipeline have been documented in many previous publications (Bur-
kett et al., 2010; DeNero and Klein, 2010; Saers et al., 2013a).

Secondly the early steps in the training pipeline, are unaware of and are almost always at
odds with, the final goal of training a translation model. As a specific example, the alignment
models are trained early in the pipeline, isolated from the step that extracts translations and
this could lead to sub-optimal alignments (DeNero and Klein, 2010). This is also true for the
syntactic models that rely on word alignments to extract the translation rules that are consistent
with those alignments (Galley et al., 2006; Chiang, 2007, inter alia).

Consider the example word-aligned phrase pair shown in Figure 1. The baseline Giza++
alignment incorrectly aligns the English the to the Chinese word X4 [E (united nations). While
the aligner is not going to be perfect, the present serial pipeline does not allow the aligner to
correct such mistakes or to adapt the alignments to yield better translation rules.

Further the serial pipeline results in the propagation of the modelling deficiencies from the
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Figure 1: Example Chinese-English phrase-pair with word alignments. The aligner incorrectly
aligns the Chinese source word FX & [H to the in the target side.

early steps to the latter steps. For the above example, the rule extractor of the original Hiero
is likely to learn several translation rules some of which are shown in Figure 2. Some of these
rules marked by an asterisk (*) encode the incorrect alignment and will lead to patently wrong
translations, when applied in a slightly different context.

X
X

*

— (& H ||| the)

— ($ A , B4 E ||| months , the)

— (BEE X ||| the Xq)

— (& A, X1 ||| months , X7)

— (& E MR %5 A% ||| the unher)

— (X1 BEAE X, ||| X the Xy)

— (X1, Xo R B 5 A% ||| X1, X3 unher)

SECE RN

Figure 2: Some extracted translation rules for the phrase-pair in Figure 1. Rules marked * will
lead to wrong translations when used in other contexts.

We present a novel iferative-cascade framework as a way to address these issues in the
training pipeline of Hiero-style systems. Our framework reduces the disparate multi-step
pipeline with a simple two-step cascade model embedded in an iterative setting that allows
the individual steps to improve based on some feedback from the other.

2 Iterative-cascade Framework

We now explain the intuitive idea behind our framework. The key idea of the framework is
to separate the inference of alignments and hierarchical translation grammar in two successive
steps and then enclose the two steps in an iterative setup. Given the dissimilarity between the
alignments and SCFG rules this separation makes it easier for the models to handle the two
structures at different steps. Thus the first phase reasons over the sentence pairs to find overlap-
ping alignments, yielding a segmentation for sentence pairs, as phrase-pairs. Subsequently the
second phase, searches over the space of derivations (of the phrase-pairs) in order to learn the
optimal ones leading to better grammar.

The framework consists of two steps, viz. 1) generating phrase alignments of different
granularities and ii) extracting SCFG rules that are consistent with the alignments. The two
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phases of the iterative-cascade framework are then repeated in an iterative setup. While we
could possibly come up with a single model to achieve this, we intend to validate our framework
in this work using a simpler approach. We do this by using existing Bayesian models for each
step in this paper.

We use the Bayesian hierarchical ITG alignment model (Neubig et al., 2011) for getting
the phrasal alignments at the first step. For the phrase extraction step, we use the Bayesian
model motivated by a lexical alignment prior employing Variational-Bayesian inference pro-
posed by Sankaran et al. (2013), which operates on the extracted phrasal alignments in the
earlier step. We now explain the two models briefly.

2.1 Alignments

The joint model proposed by (Neubig et al., 2011) uses a phrasal-ITG based hierarchical model
with a Pitman-Yor Process (PYP) prior. Unlike the earlier models (DeNero et al., 2008; Zhang
et al., 2008) that extract minimal many-to-many phrase alignments, Neubig’s model extracts
phrases of varying granularities. This is achieved by inverting the order to first generate the
entire sentence/ phrase pair from a phrase distribution (7;) and then falls back to ITG derivation
to divide the sentence/ phrase pair into shorter phrase-pairs (this effectively avoids the sparsity
problem).

Under this model each phrase pair gets some probability distribution Ppe,({e, f) : 64, 0t),
where 0, and 6; are the parameters of symbol distribution and phrase table respectively. The
phrase table parameters 6; are given by a PYP prior as

0; ~ PYP(d,s, Piac) )

where, d and s are discount and strength parameters. The base measure Py, adopts a "divide-
and-conquer" strategy of recursively breaking up a longer phrase-pair into two shorter phrases
through an ITG derivation. The entire generative process for begins from the full sentence pair
(say s) and follows the script given below.

1. Generate the entire phrase-pair s from the phrase-table distribution P;. Now fall back to
break the phrase-pair through ITG-style derivations employing Py,

2. Decide the ITG derivation type I; from symbol distribution 6, which can be BASE, REG
or INV

(a) If I; = BASE, directly generate a new terminal phrase-pair from Pp,s., based on
IBM Model 1 word alignment probabilities, defined similar to (DeNero et al., 2008)

(b) If I; = REG, recursively generate smaller biphrases (e1, f1) and (e, f2) from Phre;
and concatenate them as (ejes, f1f2)

(c) If Iy = INV, recursively generate smaller biphrases (eq, f1) and (ea, f2) from Ppe,
and concatenate them as (ejea, fof1)

For inference it uses a sentence-level block sampler exploring the space of ITG-phrase
alignments. In order to reduce the time complexity in sampling, it uses a heuristic beam search
approximation that prunes the alignment spans based on a probability threshold (see Neubig
et al. (2011) for details).
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2.2 Grammar Extraction

After extracting the phrasal alignments in the previous step, we now need to learn hierarchi-
cal translation grammar along with the rule parameters. We have chosen the Bayesian model
proposed by (Sankaran et al., 2013) for this step because, unlike other Bayesian models, their
model can infer a Hiero-style grammar' that can be used directly by a hierarchical phrase-based
decoder.

Their model assumes the existence of initial phrase-pairs obtained from bidirectional sym-
metrization of word alignments (traditional SMT training pipeline). In our case these are ob-
tained by the earlier step. The model generates an aligned phrase pair x from the hierarchical
translation rules using the following two-step generative story.

1. First decide the derivation type z4 for generating the aligned phrase pair x. It can either
be a terminal derivation or hierarchical derivation with one/two gaps,” i.e. 24 = {TERM,
HIER-A1, HIER-A2}. Following Chiang (2007), we allow a maximum of two gaps or
two non-terminals in the SCFG because the hierarchical phrase-based decoder becomes
prohibitively computationally expensive with more than two non-terminals.

2. Identify the constituent rules r in the derivation to generate the phrase pair.

¢* ~ Dirichlet(c) [draw derivation type parameters]

6 ~ Dirichlet(a,po) [draw rule parameters]

z4 ~ Multinomial(¢®) [decide the derivation type]

r|r € d, ~ Multinomial(6) [generate rules deriving phrase-pair x]

Figure 3: SCFG Extraction model: Definition

Under this model the probability of a particular derivation d € ¢, for a given phrase pair
x will be given by:
p(d) o p(za) [ [ p(r1G.0) )
red

where r is a rule in grammar G and 6 is the grammar parameter.

Figure 3 depicts the generative story of this model, while its corresponding graphical rep-
resentation is shown in Figure 4. The derivation-type z4 is sampled from a multinomial dis-
tribution parameterized by ¢*, where ¢~ is distributed itself by a Dirichlet distribution with
hyper-parameter c,. The grammar rules are generated from a multinomial distribution param-
eterized by 6, where 0 itself is distributed according to a Dirichlet distribution parameterized
by a concentration parameter «;, and a base distribution pgy. For the base distribution, we again
follow Sankaran et al. (2013) and use an informative prior based on geometric mean of the bidi-
rectional alignment scores. This ensures that the model only considers the derivations that are

! As we mentioned earlier most of the other Bayesian models are merely alignment models and employ an additional
heuristic step for extracting Hiero-style grammar.
2This refers to the maximum arity of a rule involved in the derivation.
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Figure 4: Graphical model depicting SCFG rule extraction in phase-2. The generative process
first decides the derivation type z; from a Multinomial parametrized by ¢. It then generates
the rules 7; in the derivation by using a Dirichlet distribution ¢ with base measure Fy and
concentration parameter o. There are K rules in the derivation which yields the phrase-pair x;.

consistent with the underlying word alignments.? This setting closely mimics the Hiero heuris-
tic extraction approach (Chiang, 2007), which constrains the rule extraction to be consistent
with the alignments.

Our goal in this phase is to infer the joint posterior p(6, ®|ay, po, oz, X), where @ are the
model parameters and ® the latent derivations over all the phrase pairs. This could be factor-
ized by using Variational approximation, yielding the posterior distributions 6 (over grammar
parameters) and ¢ (over latent derivations).

p(0, lan, po, oz, X) ~ q(0|u)q(®|m)
where u and 7 are the parameters of the variational distributions.

The inference is then performed in an EM-style algorithm, similar to Sankaran et al. (2013)
- by iteratively updating the parameters u and 7. We initialize u® := ay,p, which is then
updated with expected rule counts in subsequent iterations. The expected count for a rule r at
time-step ¢ can be written as:

E[r'] = Y pldx"™" z) fa(r) 3)

d€¢s

where p(d|7!~1, z) is the probability of the derivation d for the phrase pair 2 and f;(r) is the
frequency of the rule r in derivation d. The p(d|.) term in Equation 3 can then be written in
terms of 7 as:

p(dln ", @) o p(za) [ " )
red

The p(d|.) are normalized across all the derivations of a given phrase pair to yield probabilities.
For each derivation type z4, its expected count (at time t) is the sum of the probabilities of all

3While a non-parametric prior would be better from a Bayesian perspective, we leave it for future consideration.
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the derivations of its type.

Ezl=> >  pd" ©)

T {zq=zy|d' €y}

We initialize the Dirichlet hyperparameters o, using a Gamma prior ranging between
107! and 103: a,, ~ Gamma(10~!,10%). We run inference for a fixed number of iterations*
and use the grammar along with their posterior counts from the last iteration for the translation
table.

2.3 Iterative Cascade Framework

The formulation of the framework with independent modules allow us to easily experiment with
existing models for alignment and SCFG rule extraction. This also helps us quickly validate the
effectiveness of our framework.

The many-to-many alignments extracted by pialign is directly fed to the rule extraction
model in phase-2 for extracting the Hiero-style grammar. In the reverse direction, we could
parse the sentences in the training set with the extracted Hiero-style grammar and use the re-
sulting alignments to initialize the aligner in the next iteration. However, we decided to use a
simple setting for this paper; hence we iterate the two steps of the iterative framework without
the feedback in the reverse direction. Using the existing models as described above, we run the
iterative cascade framework as below.

1. Run the alignment model described in Section 2.1 for a fixed burn-in iterations (set to 9)
and collect alignment samples from the next iteration. (Phase-1)

2. Recompute lexical probabilities based on the current alignments for computing the prior
in the phase-2.

3. Extract hierarchical translation grammar from the phrasal alignments that were obtained
in phase-1 and using the Variational-Bayesian inference explained in Section 2.2. We run
the VB inference for a fixed number (set to 10) of iterations. (Phase-2)

4. Repeat steps 1 through 3 for a small number of times (we use 3 runs) and at each iteration
collect the samples independently.

Figures 5 and 6 depict the alignments and the extracted rules at the end of first and second
iterations of the cascade framework. Each figure consists of three parts i) word alignments on
the left, ii) alignment matrix in the middle and iii) the extracted rules on the right. It can be seen
that the incorrect word alignment (marked in red in Figure 5) is correctly aligned at the end of
second iteration in Figure 6.

At the end of 3 iterations of the cascade framework, we do model combination to aggre-
gate the resulting Hiero-style grammars. The parameters for the rules are then estimated using
relative frequency estimation as is done in the original Hiero rule extraction method.

4In our experiments, we set the number of iterations to 10.
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Figure 5: Alignments and SCFG rules at the end of first iteration of iterative-cascade framework
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Figure 6: Alignments and SCFG rules at the end of second iteration of iterative-cascade frame-
work

3 Experiments

We evaluate our iterative-cascade framework on two language pairs: Korean-English and
Arabic-English. In both language pairs we limit the sentence length of the training set to 60
in order to run the Gibbs sampler in phase-1 efficiently (mainly due to the limitation of the
Gibbs sampler employed by the aligner).

We use the Rochester corpus for Korean-English and remove the sentences longer than 60
words, resulting in about 52K sentence pairs for training. We retain 1118 sentence pairs each
for tuning and testing. For Arabic-English, we randomly sample the ISI parallel-corpus to select
120K sentence pairs that satisfy the sentence length criterion. For tuning and testing, we use
1982 and 987 sentence pairs from the same corpus. The statistics of the two corpora are shown
in Table 1.

Lang. Corpus Train (# of words) Dev/ test (# of sents)
Korean-English ~ University of Rochester 1.5M/ 1.4M 1118/ 1118
Arabic-English  1SI web-crawled 3.1M/3.3M 1982/ 987

Table 1: Hiero-style binary grammar extraction: Corpus statistics for iterative-cascade experi-
ments. The sentences are restricted to have at most 60 words due to the limitation of the aligner.

We use our implementation of conventional Hiero system for training the baseline models
and our CKY-style hierarchical phrase-based decoder for decoding in all our experiments. We
use the respective systems for the two steps of our cascade-framework, i.e. pialign (Neubig
et al., 2011) and Variational inference models. For experiments involving pialign, we ran the
aligner for 10 iterations with 9 burn-in iterations. The samples were read off from the last
iteration. For extracting SCFG grammar we use the initial phrase-pairs obtained by pialign and
pass them through either the heuristic (Chiang, 2007) or the Variational-Bayesian (Section 2.2)
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extractor. We tuned the feature weights using MERT and decoded the test set with the optimal
weights. For language model, we use a 5-gram model trained on the gigaword corpus with
Kneser-Ney smoothing using the SRILM toolkit. For the iterative-cascade setting, we iterate
the two steps of the framework for three runs and do a sample combination to get the final
grammar.

Aligner Extractor BLEU

Giza++ Heuristic 7.97
Giza++ Var. Bayes 8.03
Pialign Heuristic 7.70
Pialign Var. Bayes 7.54
Iterative-cascade (3 iters)  8.19

Table 2: Iterative-cascade framework: Korean-English BLEU scores. For the iterative-cascade
framework we ran Pialign and VB inferences for three iterations and did a sample combination.
The BLEU scores that are less than the baseline Moses (Giza++, Heuristic) BLEU of 8.23 by a
statistically significant margin are italicized. The best BLEU score is in boldface.

The results of the iterative-cascade inference are summarized in Tables 2 and 3 for Korean-
English and Arabic-English settings respectively. We use four baseline hierarchical translation
systems that arise from different combinations of the aligner and extractor as listed in the tables.

The first two baselines use Giza++ aligner and then use the two different (heuristic and
VB) methods for extracting translation rules, which are then tuned/ tested with our CKY-style
decoder. Baselines 3 and 4 differ from the earlier ones in that, these baselines use pialign to
generate many-to-many alignments. The last row corresponds to the iterative-cascade grammar
setting, where we run the iterative inference three times and then aggregate the grammars.

In both language pairs, baselines employing pialign perform marginally worse and the first
iteration of iterative-cascade model in fact results in statistically significant BLEU reduction
compared to phrase-based baseline of 8.23. However when we run our cascade framework for
three iterations, we see consistent BLEU score improvements ranging between 0.2 and 0.65 as
compared to other baselines in the table.

One can also compare these scores to the phrase-based model for the sake of completeness.
We consider two phrase-based models one using the regular heuristic training pipeline as Koehn
et al. (2003) and the other using pialign. For pialign, we use the phrase table extracted by
pialign and directly used it with Moses for tuning and decoding. Note that this baseline uses
two additional features including span probability (see Neubig et al. (2011)) that are not used in
the standard baseline or in the later models in the tables. The two phrase-based models obtained
BLEU scores of 8.23 and 8.30 respectively and these are comparable to the performance of our
iterative-cascade model.

Now turning our attention to the Arabic-English language pair we again notice a very
similar behaviour as we saw for Korean-English. The only difference is that the scale of im-
provement is marginally less and our iterative-cascade framework improves the BLEU scores in
the range of 0.25 and 0.5 over the other baselines. A phrase-based model using Moses achieves
25.34 BLEU score, while the pialign achieves 24.90.
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Aligner Extractor BLEU

Giza++ Heuristic 25.13
Giza++ Var. Bayes 25.20
Pialign Heuristic 24.97
Pialign Var. Bayes 25.09
Iterative-cascade (3 iters) 25.45

Table 3: Iterative-cascade framework: Arabic-English BLEU scores. For the iterative-cascade
framework we ran Pialign and VB inferences independently for three runs and did a sample
combination. The best BLEU score is in boldface.

4 Related work

On models learning Alignments or Hiero-style grammar: The potential incompatibility between
the word alignments and the translation rules for the syntactic translation models have been
noticed earlier (DeNero and Klein, 2007). Apart from showing the incompatibility, they also
propose an unsupervised HMM alignment model that soft constrains the alignments conditioned
on the target sentences and the corresponding (automatically generated) parse trees. The main
difference is that our approach seek to improve alignments of different granularities and not just
the word-level alignments.

Several other works have focussed on learning phrase alignments from synchronous
derivations using non-lexicalized (Blunsom et al., 2008) or lexicalized (Hiero-style) ITG (Blun-
som et al., 2009; Levenberg et al., 2012) rules and apply them for hierarchical phrase-based
models. While these models extract ITG-style rules, they use them only for obtaining the align-
ment information. In other words, the extracted ITG-style rules are not directly used by a hier-
archical translation decoder, which are in fact obtained from the alignments suggested by these
rules. Thus the biggest drawback is that these models, strictly speaking, are alignment models
and they use the heuristic rule extractor (Chiang, 2007) for learning the Hiero-style translation
grammar.

In contrast to these, Sankaran et al. (2012, 2013) proposed a set of Bayesian models that
directly learns the SCFG grammar. However these models only focus on the rule extraction
part and rely on the heuristically extracted phrasal alignments. Instead our iterative-cascade
framework simplifies the entire hierarchical translation training pipeline.

On Joint models for PBMT: Several works have exploited word alignments to improving the
performance of parsing (Burkett and Klein, 2008; Snyder et al., 2009) outside the machine
translation setting. In the reverse direction syntactic parsing has been used to get better align-
ments (May and Knight, 2007; DeNero and Klein, 2007; Fossum et al., 2008) in the context of
machine translations.

Joint models for learning alignments and translation rules have been a fairly recent direc-
tion. A joint model using two syntactic parsers and combined with an ITG derivation to model
alignments, enables the trees to diverge if required and otherwise encouraging the derivation
to synchronize with the trees (Burkett et al., 2010). However it requires a parallel treebank
and gold alignments to train on in addition to parsers for the source and target languages, thus
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severely limiting its applicability. DeNero and Klein (2010) proposed a supervised model for
extracting all overlapping bispans called extraction sets under a discriminative model by using
phrase-level features in addition to the one-to-one alignments.

In contrast, Neubig et al. (2011) proposed an unsupervised hierarchical ITG model for
jointly learning the alignments and translations as we explained in section 2.1. The extracted
translation rules are then directly used in a phrase-based decoder. While, their alignments are
based on the ITG, it uses with a flat (phrase-based) model for translation. We extend their
approach through our iterative-cascade framework and extract SCFG rules in a separate phase.

Iterative approach has been used for directly training the phrase translation models for a
phrase-based system (Wuebker et al., 2010). This method employs force decoding the training
set (based on the IBM word alignments) to obtain phrase segmentations. Phrase probabilities
are then estimated using leaving-one-out technique, in order to avoid overfitting. Our present
work on learning hierarchical translation model differs from this in obvious way; additionally
we just use model aggregation as opposed to their iterative force decoding.

Heger et al. (2010) extend the Wuebker’s work by combining the iteratively learned
phase alignments with the heuristically learned hierarchical translation model for Hiero-style
system. This approach is similar in spirit to our goal of learning a hierarchical translation
model that is consistent throughout. However their approach does not learn the hierarchical
SCFG rules through force alignments, but only combines the iteratively learned phrase table
with hierarchical translation grammar extracted traditionally. Secondly our framework allow
both alignments and SCFG rules to be improved iteratively unlike theirs,> where only the
phrase alignments are improved. Another major difference is that we use Variational-Bayesian
inference to aggregate rule counts globally as opposed to the leave-one-out counting.

On Joint models for (Hiero-style) ITG: Recently, Saers et al. (2013b,a,c) proposed a Bayesian
maximum a posteriori (MAP) driven model for extracting bracketing inversion transduction
grammar. This approach aims to improve coherence and model consistency between the training
and test. Unlike Neubig et al. (2011), this line of work is motivated to employ same (lexicalized-
ITG) model in both training and testing. While this approach is elegant, the emphasis on a single
coherent model is too restrictive and is unable to integrate well with other feature functions such
as better reordering or language models, while our method is able to do so.

Similar to Saers et al. (2013b,a,c), our iterative-cascade framework simplifies the train-
ing pipeline of the hierarchical phrase-based system in order to obtain novel alignments and
translation rules to be used in the SMT decoder. However, their approach stands separate from
conventional phrase-based and hierarchical phrase-based SMT models. In contrast, while our
approach does compute new alignments and translation rules, it can also be combined with some
of the recent advancements in SMT, for example in reordering model and language model.

Finally many of the previous work on Bayesian grammar induction are trained and tested
on datasets that have simple and short sentences (Blunsom et al., 2008; Saers et al., 2013b,a,c).
Typically they use the IWSLT Chinese-English corpus consisting of sentences in the travel do-
main, where the average sentence length on English side is around 7 words. On the other hand,

SThe present approach however only does model aggregation as opposed to full iterative learning, which we leave
for future research.
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we use realistic datasets with fairly long (average sentence length > 27 words) and complex
sentences.

5 Conclusion and Future Directions

Our iterative-cascade framework reduces the serial, multi-component and heuristic-ridden Hi-
ero training pipeline with a simple two-step iterative pipeline. The simplicity of the framework
further enables any appropriate model to be plugged in for the alignment and rule extraction
steps. Validation experiments with existing models demonstrate small but consistent gains over
the traditional Hiero training baseline involving heuristic steps for two language pairs. Further
the resulting synchronous context-free grammar has a sparse distribution, where the probability
mass is concentrated on few rules unlike the flat distribution of rules generated by the conven-
tional pipeline. Unlike the earlier research on Hiero-style Bayesian grammar induction (Blun-
som et al., 2008, 2009; Levenberg et al., 2012), the grammar induced by our iterative-cascade
framework are directly used by the CKY decoder.

A minor shortcoming of our work relates to the smaller training corpus we use for the
experiments in this paper. However, as we noted earlier our experimental results are based
on realistic SMT datasets that contain longer and complex sentences. This is unlike some
earlier approaches that rely on some corpus consisting of shorter sentences with much simpler
structure, where a large number of the sentences might share the same structure due to the nature
of the domain. Further, we intend to address this shortcoming in near future (see below).

As a future work, we are currently working on adding the feedback loop to improve the
alignments by using the information from the hierarchical translation grammar extracted in the
second step. One could use the simple approach of parsing the training corpus using the SCFG
extracted in the second step of iterative-cascade and use the resulting alignments to initialize
the aligner in the next iteration. We are also exploring other approaches for doing this. Sec-
ondly, we also intend to replace the current ITG aligner to avoid the sampling issues due to the
approximation employed by its beam search sampler. This would enable us to run experiments
on large parallel corpora for better validation of our iterative-cascade framework.
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