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Abstract

This work investigates a crucial aspect for
the integration of MT technology into a
CAT environment, that is the ability of
MT systems to adapt from the user feed-
back. In particular, we consider the sce-
nario of an MT system tuned for a specific
translation project that after each day of
work adapts from the post-edited transla-
tions created by the user. We apply and
compare different state-of-the-art adapta-
tion methods on post-edited translations
generated by two professionals during two
days of work with a CAT tool embedding
MT suggestions. Both translators worked
at the same legal document from English
into Italian and German, respectively. Al-
though exactly the same amount of transla-
tions was available each day for each lan-
guage, the application of the same adap-
tation methods resulted in quite different
outcomes. This suggests that adaptation
strategies should not be applied blindly,
but rather taking into account language
specific issues, such as data sparsity.

1 Introduction

In this work, we refer to the experimental frame-
work set-up by the MateCat project,1 which is de-
veloping a Web-based CAT tool for professional
translators that will integrate new MT capabilities.
Among them is what we named self-tuning MT,
that is the automatic and incremental adaptation of
the MT engine by exploiting user post-edits col-
lected during the life of a translation project.2

1www.matecat.com
2By translation project we mean a set of homogeneous docu-
ments assigned to one or more translators.

The main contribution of the paper is to assess
the effectiveness of popular SMT adaptation tech-
niques in a real CAT framework, where the super-
vision is provided through post-edits from profes-
sional translators. The methods have been vali-
dated in laboratory tests on data collected in a two-
day field test, which involved professionals for the
translation of English documents to Italian and to
German, in the legal domain. This domain repre-
sents a relevant sector in the translation industry
and is suitable for exploiting SMT, since the in-
formation source is sufficiently homogeneous, the
language is sufficiently complex, and there is suf-
ficient multilingual data available to train and tune
MT models.

The paper is organized as follows. Section 2
lists some of the related works. Section 3 intro-
duces methods used for project adaptation. Sec-
tion 4 briefly describes the conduct of the field test.
Section 5 and Section 6, respectively, introduce the
set-up and results of experiments. Section 7 con-
cludes the paper with a discussion on the overall
results.

2 Related Work

Our work deals with MT adaptation in general, and
incremental adaptation more specifically.

Bertoldi et al. (2012) present an adaptation sce-
nario where foreground translation and reorder-
ing models (TM) and language model (LM) of
a phrase-based SMT system are incrementally
trained on batches of fresh data and then paired
to static background models. Similarly, the use
of local and global models for incremental learn-
ing was previously proposed through a log-linear
combination (Koehn and Schroeder, 2007), a mix-
ture model (linear or log-linear) (Foster and Kuhn,
2007), the filling-up (Bisazza et al., 2011), or via
ultraconservative updating (Liu et al., 2012).
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Bach et al. (2009) investigate how a speech-
to-speech translation system can adapt day-to-day
from collected data on day one to improve perfor-
mance on day two, similarly to us. However, the
adaptation of the MT module involves only the LM
and is performed on the MT outputs.

On standard machine translation tasks, Niehues
and Waibel (2012) compare different approaches
to adapt a SMT system towards a target domain
using small amounts of parallel in-domain data,
namely the backoff, the factored, and the already
mentioned log-linear and fill-up techniques; the
general outcome is that each of them is effective
in improving non-adapted models and none is def-
initely better than each other, which is the best de-
pending on how well the test data matches the in-
domain training data.

This work deals with data selection as well,
which is a problem widely investigated by the
SMT community, see for example (Yasuda et al.,
2008; Matsoukas et al., 2009; Foster et al., 2010;
Axelrod et al., 2011). We apply a standard selec-
tion technique (Moore and Lewis, 2010), but in
a quite different scenario where the task-specific
data is extremely small and the generic corpus is
actually close to the domain of the task.

3 Adaptation Methods

In this section we describe the techniques em-
ployed to adapt our SMT systems, namely data
selection and translation, distortion and language
model combination.

3.1 Data selection

It has been believed for a long time that just adding
more training data always improves performance
of a statistical model, e.g. a n-gram LM. However,
this is in general true only if the new data is enough
relevant to the task at hand, a condition which is
rarely satisfied. The typical case is that of a nar-
row domain, for which a small task-specific text
sample can result much more valuable than a very
large generic text corpus, coming from sources that
may be heterogeneous with respect to size, quality,
domain, production period, etc.

The main idea of data selection is to try never-
theless to take advantage of the generic corpus, by
picking out a subset of training data that is mostly
relevant to the task of interest, which in our case is
a specific translation project.

Similarly to (Servan et al., 2012), we first score
a generic corpus against a LM trained on a seed of
task-specific data, and compute the cross-entropy
for each sentence. Then, the same generic cor-
pus is scored against a LM trained on a random
sample of itself. The sample size is roughly set
equal to the seed corpus. From this point, the
difference between task-specific cross-entropy and
generic cross-entropy is computed for each sen-
tence. Finally, sentences are sorted on the basis
of this score. According the original paper (Gao
and Zhang, 2002), this procedure leads to better
selection than the simple perplexity sorting.

Now, the best splitting point of the sorted
generic corpus has to be determined. The estima-
tion is performed by minimizing the perplexity of
a development set on growing percentages of the
sorted corpus.

Moore and Lewis (2010) reported that the per-
plexity decreases when less, but more appropriate
data is used (typically reaching a minimum with
about 10 to 20% of the generic data). As a side
effect, the models become considerably smaller
which is an important aspect when deploying SMT
systems in real applications.

Note that in our case the selection of parallel text
was done by considering only one side of the par-
allel seed corpus, either the source or the target.

3.2 Adaptation of SMT models

Translation and distortion models: Fill-up is a
technique for combining translation and distortion
models estimated on corpora of different size and
content. Initially proposed by Nakov (2008) and
then refined by Bisazza et al. (2011), it merges
the background phrase table with the foreground
phrase table by adding only phrase pairs that do not
appear in the foreground table. Only for the trans-
lation model, an additional indicator feature sig-
nals whether the phrase stems from the foreground
or from the background phrase table. We chose
the fill-up technique because it performs as good
as other popular adaptation techniques (Niehues
and Waibel, 2012) but with models that are more
compact and easier to tune. It is worth noticing
that the fill-up technique investigated by Niehues
and Waibel (2012) slightly differs from the one de-
scribed by Bisazza et al. (2011) in the way the can-
didate selection is performed.

We also apply a simplified version of the fill-
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training
segments tokens (M)

(M) source target
en→it 1.7 51.1 52.6
en→de 3.2 61.4 67.1

Table 1: Overall statistics on parallel data used for
training purposes: number of segments and run-
ning words of source and target sides. Symbol M
stands for 106.

up, called backoff, in which the indicator feature is
discarded. Again, the backoff method proposed by
Niehues and Waibel (2012) differs slightly in the
way the scores of the phrase pairs stemming from
the background phrase table are computed.
Language model: As concerns the LM adap-
tation, we employed the mixture of LMs which
consists of the convex combination of one or
more background LMs with a foreground LM. The
method is available in the IRSTLM toolkit (Fed-
erico et al., 2008).

4 Field Test

For each language pair, the field test was orga-
nized over two days in which a document had to
be translated by four translators. During the first
day, for the translation of the first half of the docu-
ment, translators received suggestions by the base-
line MT engines described in Section 6; during the
second day, MT suggestions for the second half of
the document came from a system adapted to the
text of the first day by means of one of the adapta-
tion methods tested in our experiments (Section 6).
Translators post-edited machine-generated trans-
lations for correcting mistakes and making them
stylistically appropriate. The document was se-
lected such that the size of its halves corresponds
approximately to the daily productivity of profes-
sional translators, that is three to five thousand
words.

A report on the field test including an analy-
sis of the productivity of translators has already
been published (Federico et al., 2012). Moreover,
we performed a preliminary measure of the per-
formance of MT outputs versus the post-edition
of each translator. In both cases, pretty large
inter-translator differences were observed. Since
the limited number of subjects would have led to
scores with large variances, we decided to choose

one single representative translator per language
pair, postponing analysis statistically more sig-
nificant to forthcoming field tests involving more
translators.

evaluation segments
tokens

source target

en→it
D0 91 2,960 3,202
D1 90 3,007 3,421

en→de
D0 86 2,960 2,712
D1 89 3,007 2,999

Table 2: Overall statistics on test sets used in Day 0
and Day 1 of the field tests.

lng.
name seed

for
%

tokens (M)
pair test on src trg

FGtgt D0tgt D1 10.1 5.1 5.3
FGsrc D01src D1 9.8 5.1 5.2

en
→

it

FGtgt D1tgt D0 10.1 5.1 5.3
FGsrc D01src D0 9.8 5.1 5.2
FGtgt D0tgt D1 48.1 35.2 32.3
FGsrc D01src D1 39.6 28.4 26.6

en
→

de

FGtgt D1tgt D0 38.7 28.3 26.0
FGsrc D01src D0 21.6 15.3 14.5

Table 3: Statistics of the selected parallel data.

5 Data

Training Data: Training data come from Version
3.0 of the JRC-Acquis collection (Steinberger et
al., 2006). Refer to Table 1 for statistics on the
actual corpora employed for training.
Evaluation Data: Concerning the evaluation, the
document was taken from a motion for a European
Parliament resolution published on the EUR-Lex
platform in 2012. Statistics on the test documents
translated during the field test are reported in Ta-
ble 2; they refer to tokenized texts. Figures on the
source side (English) refer to the texts the users
are requested to translate; figures on the target side
(Italian/German) refer to the text post-edited by the
chosen translator (one for each language pair).3

The data selection described in Section 3.1 was
applied to the training corpus. Table 3 provides
the amount of data selected for each task. In our
3Although the document to translate is the same for the two
language pairs, the segmentation differ due to a language-
dependent automatic sentence alignment.
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en→it en→de
LM D0 D1 D0 D1

PP/OOV PP/OOV PP/OOV PP/OOV
BG 97.5/0.31 93.2/0.27 209.9/1.91 172.9/1.40
FGtgt 73.3/0.54 72.2/0.67 181.4/1.91 147.4/1.43
FGsrc 69.4/0.73 67.6/0.70 166.1/1.95 136.8/1.43
Dn+BG 78.4/0.28 74.3/0.15 201.1/1.84 168.8/1.26
Dn+FGtgt 71.6/0.53 70.9/0.57 170.5/1.84 142.8/1.30
Dn+FGsrc 65.3/0.47 64.1/0.36 156.5/1.88 132.9/1.30
mix(Dn,FGtgt) 76.1/0.53 75.6/0.57 172.3/1.84 145.2/1.30
mix(Dn,FGsrc) 70.7/0.47 69.0/0.36 167.3/1.88 139.2/1.30
mix(Dn+FGtgt, BG) 80.8/0.28 78.1/0.15 185.5/1.84 167.8/1.26
mix(Dn+FGsrc, BG) 80.3/0.28 77.0/0.15 186.8/1.84 167.6/1.26
mix(Dn, FGtgt, BG) 66.8/0.28 64.7/0.15 169.3/1.84 146.3/1.26
mix(Dn, FGsrc, BG) 65.3/0.28 62.5/0.15 165.4/1.84 144.1/1.26

Table 4: Perplexity (PP) and out-of-vocabulary rate (OOV) of D0 and D1 on different 5gr LMs.

experiments, D0 and D1 alternatively played the
role of development and test set. The seed for the
selection was either the target side of the devel-
opment set (Dntgt, n=0,1) or the concatenation of
the source side of both the development and test
set (D01src); we name FGtgt and FGsrc the se-
lected corpus and the models trained on it in the
two cases.

The table also provides the percentage of data
selected, computed with respect to the target side.
The optimal splitting was performed by minimiz-
ing the perplexity of the target side of the develop-
ment set.

6 Experiments

Lab test experiments have been performed on data
sets described in Section 5. Performance are pro-
vided in terms of BLEU and TER, computed by
means of the MultEval script implemented by
Clark et al. (2011), and of GTM.4 For statistical
significance, p-values were calculated via approx-
imate randomization for adapted systems with re-
spect to the baselines and are reported in Tables 5
and 6 whenever not larger than 0.10.

The SMT systems have been built upon the
open-source MT toolkit Moses (Koehn et al.,
2007). The translation and the lexicalized re-
ordering models are trained on the available
parallel training data (Table 1); 5-gram LMs
smoothed through the improved Kneser-Ney tech-
4http://nlp.cs.nyu.edu/GTM

nique (Chen and Goodman, 1999) are estimated on
the target side via the IRSTLM toolkit (Federico
et al., 2008). The weights of the log-linear in-
terpolation model have been optimized by means
of the Margin Infused Relaxed Algorithm (MIRA)
process (Hasler et al., 2011) provided within the
Moses toolkit.

Various models have been built by means of the
methods described in Section 3. Here the list of
acronyms and corresponding meaning used in the
rest of the paper. Note that whenever “data se-
lected” is mentioned, we refer to the application
of the procedure described in Section 3.1 with the
training data playing the role of generic corpus and
the portion of the document translated during ei-
ther the first day (D0) or the second day (D1) that
of seed corpus:

BG: background model, trained on the whole
training data

Dn+BG: model trained on the concatenation of
Dn (either D0 or D1) and training data

FGtgt: model trained on data selected using the
target side of either D0 or D1 as seed corpus

Dn+FGtgt: model trained on the concatenation
of the target side of either D0 or D1 and
FGtgt

FGsrc/Dn+FGsrc: similar to
FGtgt/Dn+FGtgt, but the selection
is made using the concatenation of the source
side of both D0 and D1 as seed corpus
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en→it en→de
TM=BG D0 D1 D0 D1

LM BLEU TER GTM BLEU TER GTM BLEU TER GTM BLEU TER GTM
BG 47.9 34.9 73.6 46.8 34.7 74.3 32.2 58.4 60.1 37.4 49.1 65.5
Dn+BG 50.2N 33.2N 75.0 48.1M 34.0M 74.9 32.4� 57.1M 59.7 37.9� 48.6M 65.7
Dn+FGtgt 46.4 36.1 72.5 47.8 34.5 74.4 32.6� 56.5M 59.7 37.9� 48.1M 65.5
Dn+FGsrc 47.6 34.8 73.6 48.2 35.0 74.2 33.0� 56.2M 60.6 37.9� 47.9M 65.5
mix(Dn,FGtgt) 45.7� 35.2 73.5 46.8 34.7 74.3 33.0� 56.0M 60.3 36.1 49.0� 65.4
mix(Dn,FGsrc) 47.0 34.4 74.4 47.3 34.5 74.2 33.7M 55.4N 60.8 36.2 48.8M 65.4
mix(Dn+FGtgt,BG) 49.8N 33.0N 75.3 47.7M 33.8M 75.0 33.4M 55.3N 59.8 36.0 49.1 64.3
mix(Dn+FGsrc,BG) 48.8 33.6M 74.8 47.4 34.1� 74.7 33.8M 54.6N 60.3 35.8 49.5 64.1
mix(Dn,FGtgt,BG) 47.6 34.0 74.3 48.5� 33.7 74.9 33.3� 56.4M 60.5 36.8 48.1M 66.2
mix(Dn,FGsrc,BG) 48.5 33.6 75.4 48.6� 33.2M 75.1 32.8� 56.9M 60.5 36.7 48.2M 66.0

Table 5: Performance on D0/D1 of systems with LMs adapted on D1/D0. Symbols N, M and � near to
BLEU and TER scores indicate that adapted models outperform BG with p-values not larger than 0.01,
0.05 and 0.10, respectively.

mix(): mixture of LMs (linear interpolation)

fillup(): fill-up of TMs

backoff(): backoff of TMs

It is worth noticing that using the source side
of the test set for data selection (systems FGsrc
and Dn+FGsrc) can be ambivalent. On the one
hand the system can be penalized since its LM is
estimated on the target side of the selected paral-
lel data; on the other hand it can be rewarded since
the seed corpus includes the actual text to translate,
and hence the selected data could be more appro-
priate.

First of all, the quality of LMs was assessed
in terms of perplexity (PP) and out-of-vocabulary
(OOV) rate. Indeed, in the computation of PP of
a text with respect to a given LM, the presence of
OOV words is accounted by adding a fixed penalty
for each OOV occurrence; nevertheless, we think
useful to provide even explicit OOV values for the
sake of completeness. Scores are provided in Ta-
ble 4: they refer to D0 and to D1 and are com-
puted on the baseline LM (BG) or on LMs adapted
in various ways to the other portion of the field test
document (D1 or D0).

In general, adapted models always improve the
PP of the baseline LM, while the OOV decreases
provided that the whole training text is also used to
train the model. More specifically:
• data selection is effective: with reference to
FGtgt and FGsrc rows, whatever the seed, the

PP of Dn on the selected data always improves
over the baseline, from 15% up to 30% depend-
ing on the target language and on the test set; of
course, the OOV rate worsens because the lower
amount of training data

• the selection on the concatenation of the source
side of the development and evaluation sets is more
effective than the selection made only on the target
side of the development set: compare paired rows
including FGsrc and FGtgt

• the linear interpolation of LMs gives contrasting
results: from one side, mix(Dn,FGsrc,BG) al-
lows the lowest PP on Italian and very competi-
tive on German; from the other, when it is applied
to Dn and FGtgt/src it fails with respect to the
naive concatenation

• the use of the development set in LM training
yields a significant improvement of the OOV rate,
especially for D1 (from 0.27% to 0.15% for Ital-
ian, from 1.40% to 1.26% for German); at the same
time, Dn+BG row shows a significant PP improve-
ment over the baseline only for Italian: this means
that D0 and D1 are alike for that language pair, less
for English-German where consequently the adap-
tation could be more problematic.

6.1 MT results
MT experiments have been conducted either by
varying the LM and keeping fixed the baseline TM
(Table 5) and by consistently pairing the adapted
models (Table 6). Baseline MT system uses BG
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adapted
en→it en→de

LM/TM
D0 D1 D0 D1

BLEU TER GTM BLEU TER GTM BLEU TER GTM BLEU TER GTM
BG 47.9 34.9 73.6 46.8 34.7 74.3 32.2 58.4 60.1 37.4 49.1 65.5
Dn+BG 49.9 32.9� 76.0 49.8N 33.3� 75.8 32.6� 57.4M 60.0 37.6� 48.4M 65.6
Dn+FGtgt 45.5 35.8 72.9 49.3M 33.2 75.5 31.9 58.0� 59.6 38.1M 48.2M 65.9
Dn+FGsrc 48.3 33.7 74.3 49.6M 33.2 75.5 31.9 58.90 58.3 37.9M 48.4M 66.1
mix/fillup(Dn,FGtgt) 45.2 36.7 73.1 46.9 34.8 75.0 30.6 58.5 58.5 35.1 50.80 64.2
mix/fillup(Dn,FGsrc) 45.8 35.6 73.7 48.4 33.9 75.4 31.3 59.0 58.6 35.2 51.30 64.3
mix/fillup(Dn+FGtgt,BG) 50.3M 32.5N 76.0 49.4N 33.3M 75.6 31.6 58.4 59.4 38.5N 47.8N 65.7
mix/fillup(Dn+FGsrc,BG) 48.8 33.4� 75.0 49.5N 32.3N 76.1 31.1 59.0 58.9 37.9M 48.9M 65.7
mix/backoff(Dn+FGtgt,BG) 50.5N 32.4N 76.1 49.1M 33.4� 75.4 33.0M 56.7N 60.4 38.9N 48.1N 66.0
mix/backoff(Dn+FGsrc,BG) 49.2 32.9M 75.1 49.1M 32.3N 76.0 31.8 59.1 59.6 38.3M 48.4M 65.9
mix/fillup(Dn,FGtgt,BG) 46.6 35.5 73.7 49.0� 33.3 76.0 31.6 58.3 58.9 36.1 51.0 63.6
mix/fillup(Dn,FGsrc,BG) 48.1 34.4 75.2 49.4M 32.9� 75.8 30.3 59.7 58.8 36.5 50.6 64.3

Table 6: Performance on D0/D1 of systems with models adapted on D1/D0. Symbols N, M and � near to
BLEU and TER scores indicate that adapted models outperform BG with p-values not larger than 0.01,
0.05 and 0.10, respectively.

models; its results are replicated in the first row of
the two tables for the sake of readability.

The first set of experiments aimed at isolating
the contribution of adapted LMs, a fortiori since
adaptation often involves just the LM. The sym-
metric experiments where only the TM is changed
are less informative since the lack of LM sup-
port prevents improvements by the TM to emerge;
therefore, they are not presented.

Adapted LMs: in many cases, Italian adapted
LMs allows to outperform the performance of the
baseline system, whereas no method yield signif-
icant improvements on both days in the English-
German task; this should be due to the degree of
similarity between D0 and D1: pretty high for
English-Italian, quite low for English-German, as
stated before in comments to Table 4.

For the English-Italian pair, in general the better
the PP and OOV values are, the better the trans-
lation is. In fact, the low PP of LMs built over
Dn and FGtgt/src only, does not yield good
MT scores, because the high OOV rates. The
naive concatenation of Dn and BG provides sur-
prisingly good performance, matched only by the
mix(Dn+FGtgt/src,BG) LMs; the interpola-
tion of the three LMs, which gave the best PP,
keeps its promise only on D1. Differently than PP,
data selection on the source side of D0 and D1 not
always overcomes that on the target side of the de-

velopment set.
Concerning the English-German pair, the

naive concatenation of Dn and BG does not
improve nor hurt baseline performance. Again
mix(Dn+FGtgt/src,BG) outperforms the
baseline, but limited to D0. On D1 the only effec-
tive method is the concatenation of development
and selected data (Dn+FGtgt/src).

A common outcome regards the unreliability of
the Dn model: whenever it is combined with other
LMs as it is (mix(Dn,· · ·)), effects are mostly
negative compared to concatenation; this is due
to the small amount of data used for its training
(about 3,000 words).

Adapted Models: the different effectiveness of
methods on the two language pairs observed by
changing only the LM is confirmed when adapted
LMs and TMs are consistently paired: most tech-
niques are effective on English-Italian with the
added value guaranteed by the reciprocal support
of models, while controversial results characterize
the English-German pair.

For the favorite pair, adapted systems signifi-
cantly outperform the baseline provided that the
whole training data is somehow used in build-
ing models. It deserves mentioning the excel-
lent performance of the models built over the
naive concatenation of the development and train-
ing data (Dn+BG). The best systems seem to

116



be those combining (Dn+FGtgt,BG) for D0,
(Dn+FGsrc,BG) for D1: the fact that the ref-
erences of D0 and D1 are post-edits and are used
both for evaluation and for building adapted mod-
els could explain that apparently incoherent behav-
ior. Again, the use of the model built on just Dn
negatively affects performance.

On English-German task, the only good-
performing technique on both days is the
mix/backoff(Dn+FGtgt,BG), while the
naive concatenation Dn+BG slightly improves
some scores and does not affect the others.
Evidently, D0 and D1 are too different to allow
models adapted on one of them to well represent
also the other.

An outcome shared by the two tasks is that
backoff is a bit more effective than fillup,
probably due to the difficulty in properly setting
the weight of the additional indicator feature of the
latter method.

7 Discussion

The experiments with Italian and German transla-
tions, although performed on the same source texts
and by applying the same adaptation methods, re-
sult in quite different outcomes.

We try now to summarize the main issues and
to sketch possible explanations and directions we
will investigate in the future to overcome them.

Data selection. The same amount of seed data
(3,000 words) does not work equally for German
and Italian. While for Italian, around 10% of the
training data were selected by seeding with D0
and D1 texts, between 20%-48% were selected for
German. Data selection relies on similarity scores
computed using small language models estimated
disregarding infrequent words (Moore and Lewis,
2010). Given its highly inflected language, it is
likely that for German the large majority of project
specific words in the seed are singletons, so that the
corresponding LM looses most of its specificity.
Alternative ways to explore, specifically for highly
inflected languages such as German, could be to
remove word inflection during data selection, e.g.
by stemming words, and to work with low-order
n-grams, e.g. 1-grams and 2-grams.

LM adaptation. All the tested LM adaptation
methods provided improvements in terms of per-
plexity and OOV rate (Table 4), both on the Italian

and German translations. Such improvements re-
flected for some adaptation methods in better MT
scores (Table 5) for the English-Italian direction,
but not always for the English-German direction. It
is worth noticing that the simple concatenation of
training and adaptation data performs better than
more refined and probably too aggressive adapta-
tion approaches. The inconsistent behavior of per-
plexity and translation scores for both translation
directions can be explained by the fact that adapted
LMs basically boost the probability of subsets of
target words, that should likely occur in the refer-
ence test translations, thus giving better perplex-
ity values and OOV rates. However, if the same
target words are not reachable through the transla-
tion model, the advantage provided by the adapted
LM vanishes. This mismatch becomes even more
relevant when adapted translation models are em-
ployed, too.

TM adaptation. The use of only adapted
LMs showed significant improvements to slight
degradations in performance, according to the
considered method, translation directions, and
adaptation and testing sets. The addition of
adapted translation models (Table 6) further
widened the range of outcomes and, mostly
important, does not show to be additive with
language model adaptation. In fact, language
model adaptation configurations that perform
best do not seem to combine well with some
translation model adaptation methods, espe-
cially for English-German. In fact, the most
consistent behavior across all languages and
data sets is shown by a specific configuration
(mix/backoff(Dn+FGtgt,BG)), whereas
very similar set-ups show mixed behaviors. A
possible reason for this may be the overfitting of
the TM on the adaptation data. In particular, as for
each English word more German surface forms
may correspond than for Italian, biasing the TM
towards the observations of the adaptation data
can hurt the overall quality of adapted models.
Concerning data selection, the problem with
German seems that the seed is not large enough
to properly characterize the narrow domain of
the document. Hence, in such a case, only soft
adaptation methods appear adequate and safe.

As future work, we plan to investigate both on
data selection in case of small seeds and on less
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aggressive adaptation methods for inflected lan-
guages, such as biasing the translation model only
at the lexical rather than phrase level and to gen-
eralize over different word inflections. Moreover,
other field tests will be carried out in order to col-
lect further post-edited translations.
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