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Abstract

We describe a systematic analysis on the
effectiveness of features commonly ex-
ploited for the problem of predicting ma-
chine translation quality. Using a fea-
ture selection technique based on Gaus-
sian Processes, we identify small subsets
of features that perform well across many
datasets for different language pairs, text
domains, machine translation systems and
quality labels. In addition, we show the
potential of the reduced feature sets result-
ing from our feature selection technique to
lead to significantly better performance in
most datasets, as compared to the complete
feature sets.

1 Introduction

As Machine Translation (MT) systems become
widely adopted both for gisting purposes and to
produce professional quality translations, auto-
matic methods are needed for predicting the qual-
ity of translations. This is referred to as Quality Es-
timation (QE). Different from standard MT evalu-
ation metrics, QE metrics do not have access to
reference (human) translations; they are aimed at
MT systems in use. Applications of QE include:
• Decide which segments need revision by a

translator (quality assurance);
• Decide whether a reader gets a reliable gist of

the text;
• Estimate how much effort it will be needed to

post-edit a segment;
• Select among alternative translations pro-

duced by different MT systems.

Work in QE started with the goal of estimat-
ing automatic metrics such as BLEU (Papineni et
al., 2002) and WER (Blatz et al., 2004). How-
ever, these metrics are difficult to interpret, par-
ticularly at the sentence-level, and results proved
unsuccessful. A new surge of interest in the field
started recently, motivated by the widespread use
of MT systems in the translation industry, as a con-
sequence of better translation quality, more user-
friendly tools, and higher demand for translation.
In order to make MT maximally useful in this sce-
nario, a quantification of the quality of translated
segments similar to “fuzzy match scores” from
translation memory systems is needed. QE work
addresses this problem by using more complex
metrics that go beyond matching the source seg-
ment against previously translated data. QE can
also be useful for end-users reading translations
for gisting, particularly those who cannot read the
source language. Recent work focuses on estimat-
ing more interpretable metrics, where “quality” is
defined according to the task at hand: post-editing,
gisting, etc. A number of positive results have been
reported (Section 2).

QE is generally addressed as a supervised ma-
chine learning task using algorithms to induce
models from examples of translations described
through a number of features and annotated for
quality. One of most challenging aspects of the
task is the design of feature extractors to capture
relevant aspects of quality.

A wide range of features from source and trans-
lation texts and external resources and tools have
been used. These go from simple, language-
independent features, to advanced, linguistically
motivated features. They include features that rely
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on information from the MT system that generated
the translations, and features that are oblivious to
the way translations were produced. This variety
of features plays a key role in QE, but it also intro-
duces a few challenges. Datasets for QE are usu-
ally small because of the cost of human annotation.
Therefore, large feature sets bring sparsity issues.
In addition, some of these features are more costly
to extract as they depend on external resources or
require time-consuming computations. Finally, it
is generally believed that different datasets (i.e.
language pair, MT system or specific quality anno-
tation such as post-editing time vs translation ade-
quacy) can benefit from different features.

Feature selection techniques can help not only
select the best features for a given dataset, but
also understand which features are in general ef-
fective. While recent work has exploited selection
techniques to some extent, the focus has been on
improving QE performance on individual datasets
(Section 2). As a result, no general conclusions
can be made about the effectiveness of features
across language pairs, text domains, MT systems
and quality labels.

In this paper we propose to use Gaussian Pro-
cesses for feature selection, a technique that has
proved effective in ranking features according to
their discriminative power (Specia et al., 2013).
We benchmark with this technique on two settings:
(i) nine datasets for three language pairs, seven
Statistical MT (SMT) systems and three types of
quality scores with the same feature sets; (i) one
dataset (same language pair and quality scores)
with seven feature sets produced in a completely
independent fashion (by participants in a shared
task on the topic) (Section 3). The experiments
showed the potential of feature selection to im-
prove overall regression results, often outperform-
ing published results on features that had been pre-
viously selected using other methods. They also
allowed us to identify a small number of well-
performing features across datasets (Section 4).
We discuss the feasibility of extracting these fea-
tures based on their dependence on external re-
sources or specific languages.

2 Related work

Examples of successful cases of QE include im-
proving post-editing efficiency by filtering out low
quality segments which would require more ef-

fort or time to correct than translating from scratch
(Specia et al., 2009; Specia, 2011), selecting high
quality segments to be published as they are, with-
out post-editing (Soricut and Echihabi, 2010), se-
lecting a translation from either an MT system or
a translation memory for post-editing (He et al.,
2010), selecting the best translation from multiple
MT systems (Specia et al., 2010), and highlight-
ing sub-segments that need revision (Bach et al.,
2011). For an overview of various algorithms and
features we refer the reader to the WMT12 shared
task on QE (Callison-Burch et al., 2012).

Most previous work on QE use machine learn-
ing algorithms such as SVMs, which are robust
to redundant/noisy features to a certain extent. In
what follows we summarise recent work using ex-
plicit feature selection methods in the WMT12 QE
shared task.

González-Rubio et al. (2012) performed fea-
ture selection on a set of 475 sentence- and sub-
sentence level features. Principal Component
Analysis and a greedy selection algorithm to iter-
atively create subsets of increasing size with the
best-scoring individual features were exploited.
Both selection methods yielded better performance
than all features, with greedy selection achieving
the best MAE scores with 254 features.

Langlois et al. (2012) reported positive results
with a greedy backward selection algorithm that
removes 21 poor features from an initial set of 66
features based on error minimisation on a develop-
ment set.

In an oracle-like experiment, Felice and Specia
(2012) use a sequential forward selection method,
which starts from an empty set and adds one fea-
ture at a time as long as it decreases the model’s er-
ror, evaluating the performance of the feature sub-
sets on the test set directly. 37 features out of 147
are selected, and these significantly improved the
overall performance.

Avramidis (2012) tested a few feature selection
methods using both greedy stepwise and best first
search to select among their 266 features with 10-
fold cross-validation on the training set. These re-
sulted in sets of 30-80 features, all outperforming
the complete feature set. Correlation-based selec-
tion with best first search strategy was reported to
perform the best. Conversely, Moreau and Vogel
(2012) reported no improvements in performance
in experiments with several selection methods.
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Finally, (Soricut et al., 2012), the winning
system in the WMT12 QE shared task, used a
computationally-intensive method on a develop-
ment set. For each of the official evaluation metrics
(e.g. MAE), from an initial set of 24 features, all
224 possible combinations were tested, followed
by an exhaustive search to find the best combina-
tions. The 15 features belonging to most of the top
combinations were selected. Other rounds were
added to deal with POS features, but the final fea-
ture sets included 14-15 features depending on the
evaluation metric. This technique outperformed
the complete feature set by a very large margin.

3 Experimental settings

3.1 Datasets with common feature sets

All datasets used in our experiments are available
for download.1 The statistics of these datasets are
shown in Table 1.

WMT12 English-Spanish news sentence trans-
lations produced by a phrase-based (PB) Moses
“baseline” SMT system,2 and judged for post-
editing effort in 1-5 (highest-lowest), taking a
weighted average of three annotators.

EAMT11 English-Spanish (EAMT11-en-es)
and French-English (EAMT11-fr-en) news sen-
tence translations produced by a PB-SMT Moses
baseline system and judged for post-editing effort
in 1-4 (highest-lowest).

EAMT09 English sentences from the European
Parliament corpus translated by four SMT sys-
tems (two Moses-like PB-SMT systems and two
fully discriminative training systems) into Spanish
and scored for post-editing effort in 1-4 (highest-
lowest). Systems are denoted by s1-s4.

GALE11 Arabic newswire sentences translated
by two Moses-like PB-SMT systems into English
and scored for adequacy in 1-4 (worst-best). Sys-
tems are denoted by s1-s2.

The features for these datasets are extracted
using an open source toolkit QuEst.3 We dif-
ferentiate between black-box (BB) and glass-box
(GB) features, as only BB are available for all
1http://www.dcs.shef.ac.uk/˜lucia/
resources.html
2http://www.statmt.org/moses/?n=Moses.
Baseline
3http://www.quest.dcs.shef.ac.uk

Data Training Test
WMT12 (en-es) 1,832 422
EAMT11 (en-es) 900 64
EAMT11 (fr-en) 2,300 225
EAMT09-s1-s4 (en-es) 3,095 906
GALE11-s1-s2 (ar-en) 2,198 387

Table 1: Number of sentences in our datasets

datasets (we did not have access to the MT sys-
tems that produced the other datasets). For the
WMT12 and GALE11 datasets, we experimented
with both BB and GB features. The BB feature
sets are the same for all datasets, except for one
language pair (Arabic-English), where language-
specific features supplement the initial 80 features.

We also distinguish one special feature: the
pseudo-reference (PR), as this is not a standard
feature in that it requires another MT system to
be extracted. This feature consists in translating
the source sentence using another MT system (in
our case, Google Translate) to obtain a pseudo-
reference. The geometric mean of (lambda-
smoothed) 1-to-4-gram precision scores (i.e. a
smoothed version of BLEU to avoid 0-counts with-
out the brevity penalty) is then computed between
the original MT and this pseudo-reference. We
note that the better the external MT system, the
closer the pseudo-reference translation is to a hu-
man translation, and therefore the more reliable
this feature becomes.

For each dataset we built five systems:
• BL: 17 features that performed well across

languages in previous work and were used as
baseline in the WMT12 QE task.
• AF: All features available for the dataset, a

superset of the above. For a comprehensive
list, we refer the reader to QuEst website.3

• BL+PR: 17 baseline features along with a
pseudo reference feature.
• AF+PR: All features along with a pseudo ref-

erence feature.
• FS(GP): Feature selection for automatic

ranking and selection of top features with
Gaussian Process on set AF+PR.

3.2 WMT12 feature sets
These very diverse feature sets were provided by
the participants in the WMT12 shared task on QE.4

4These feature sets were made available by the task or-
ganisers at http://www.dcs.shef.ac.uk/˜lucia/
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We note that in a few cases these are a subset of the
datasets used in the shared task, e.g. UU. This ex-
plains the difference between the official scores re-
ported in (Callison-Burch et al., 2012) and our fig-
ures. This difference can also be explained by the
learning algorithms: while we used GPs, partici-
pants have used SVRs, M5P and other algorithms.
Some of these feature sets already result from fea-
ture selection techniques.

SDL (Soricut et al., 2012): 15 features selected
after an exhaustive search algorithm based on all
possible combinations of features. This is the op-
timal set used by the winning submission. It in-
cludes many of the baseline features, the pseudo-
reference feature, phrase table probabilities, and a
few part-of-speech tag alignment features.

UU (Hardmeier et al., 2012): 82 features, a sub-
set of those used in the shared-task as the parse tree
features (based on tree-kernels) were not provided
by the participants. These are similar to the com-
mon BL and BB features presented above and in-
clude various source and target LM features, aver-
age number of translations per source word, num-
ber of tokens matching certain patterns (hyphens,
ellipsis, etc.), percentage of n-grams seen in cor-
pus, percentage of non-aligned words, etc.

UEdin (Buck, 2012): 56 black-box features in-
cluding source translatability, named entities, LM
back-off features, discriminative word-lexicon,
edit distance between source sentence and the
SMT source training corpus, and word-level fea-
tures based on neural networks to select a subset
of relevant words among all words in the corpus.

Loria (Langlois et al., 2012): 49 features includ-
ing 1-5gram LM and back-off LM features, inter-
lingual and cross-lingual mutual information fea-
tures, IBM1 model average translation probability,
punctuation checks, and out-of-vocabulary rate.

TCD (Moreau and Vogel, 2012): 43 features
based on the similarity between the (source or tar-
get) sentence and a reference set (the SMT training
corpus or Google N-grams) with n-grams of differ-
ent lengths, including the TF-IDF metric.

WLV-SHEF (Felice and Specia, 2012): 147 fea-
tures which are a superset of the common 80 BB
features above. The additional features include

resources.html

a number of linguistically motivated features for
source or target sentences (percentage) or their
comparison (ratio), such as content words and
function words, width and depth of constituency
and dependency trees, nouns, verbs and pronouns.

UPC (Pighin et al., 2012): 56 features on top of
the baseline features. Most of these features are
based on different language models estimated on
reference and automatic Spanish translations.

3.3 Gaussian Processes for feature selection
and model learning

Gaussian Processes (GPs; Rasmussen and
Williams (2006)) are an advanced machine
learning framework incorporating Bayesian non-
parametrics and kernels, and are widely regarded
as state of the art for many regression tasks.
Despite that, GPs have been under-exploited
for language applications. Most of the previous
work on QE uses kernel-based Support Vec-
tor Machines for regression (SVR), based on
experimental findings that non-linear models
significantly outperform linear models. Like
SVR, GPs can describe non-linear functions
using kernels such as radial basis function (RBF).
However in contrast, inference in GP regression
can be expressed analytically and the kernel
hyper-parameters optimised directly using gradi-
ent descent. This avoids the need for costly grid
search while also allowing the use of much richer
kernel functions with many more parameters.
Further differences between the two techniques
are that GPs are probabilistic models, and take
a fully Bayesian approach by integrating out
the model parameters to represent the posterior
distribution.
GPs allow for many different kernels. Here we

consider the RBF with automatic relevance deter-
mination,

k(x,x′) = σ2f exp

(
−1

2

D∑

i

xi − x′i
li

)
(1)

where the k(x,x′) is the kernel function between
two data points x, x′ and D is the number of fea-
tures, and σf and li ≥ 0 are the kernel hyper-
parameters, which control the covariance magni-
tude and the length scales of variation in each di-
mension, respectively. This is closely related to the
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RBF kernel used with SVR, except that each fea-
ture is scaled independently from the others, i.e.,
li = l for SVR, while GPs allow for a vector
of independent values. Following standard prac-
tice we also include an additive white-noise term
in the kernel with variance σ2s . The kernel hyper-
parameters (σf , σn, l) are learned from data using
a maximum likelihood estimates.

The learned length scale hyper-parameters can
be interpreted as the per-feature RBF widths which
encode the importance of a feature: the narrower
the RBF (the smaller is li) the more important a
change in the feature value is to the model predic-
tion. Therefore, a model trained using GPs can be
viewed as a list of features ranked by relevance,
and this information can be used for feature selec-
tion by discarding the lowest ranked (least useful)
features. GPs on their own do not provide a cut-
off point on this ranked list of features, instead this
needs to be determined by evaluating loss on a sep-
arate set to determine the optimal number of fea-
tures.

In our experiments, learning and feature rank-
ing are performed with an open source implemen-
tation of GP5 regression. Each feature is centred
and scaled to have zero mean and unit standard de-
viation. For feature ranking, the models are trained
on the full training sets. The RBF widths, scale and
noise variance are initialised with an isotropic ker-
nel (with a single length scale, li = l) which helps
to avoid local minima. The hyper-parameters are
learned using gradient descent with a maximum of
100 iterations and cross-validation on the training
set. A forward selection approach is then used to
select features ranked from top to worst and train
models with increasing numbers of features. In
an oracle-like experiment, we analyse the perfor-
mance of models with different sizes of feature sets
directly on the test set. The subset of top ranked
features that minimises error in each test set is se-
lected to report optimal results and therefore the
potential of feature selection using GPs.

4 Results

We use Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) to evaluate the mod-
els.

5http://sheffieldml.github.io/GPy/

4.1 Results on the common feature sets

The error scores for all datasets with common BB
features are reported in Table 2, while Table 3
shows the results with GB features for a subset of
these datasets, and Table 4 the results with BB and
GB features together for the same datasets. For
each Table and dataset, bold-faced figures are sig-
nificantly better than all others (paired t-test with
p ≤ 0.05).

It can be seen from the results that adding more
BB features (systems AF) improves the results in
most cases as compared to the baseline systems
BL, however, in some cases the improvements are
not significant. This behaviour is to be expected
as adding more features may bring more relevant
information, but at the same time it makes the rep-
resentation more sparse and the learning prone to
overfitting.

It is interesting to note that adding a single fea-
ture, the pseudo-reference (systems BL+PR) to
our baseline improves results in all datasets, of-
ten by a large margin. Similar improvements are
observed by adding this feature to the set with all
available features (systems AF+PR) .

Our experiments with feature selection using
GPs lead to significant further improvements in
most cases. We note that the FS(GP) figures are
produced from selecting the ideal number of top-
ranked features based on the test set results, and
therefore should be interpreted as oracle-like op-
timal results. These results show the potential of
feature selection with GPs: FS(GP) outperforms
other systems despite using considerably fewer
features (10-20 in most cases, with up to 31 in the
Arabic-English datasets). These are very promis-
ing results, as they show that it is possible to reduce
the resources and overall computational complex-
ity for training the models, while achieving sim-
ilar or better performance. For a more realistic
overview of the results of feature selection using
GPs, we plot the learning curves for some of our
datasets.

The learning curves for top-ranked features ac-
cording to our forward selection method for two
of our feature sets is given in Figures 1. The y
axis shows the MAE scores, while the x axis shows
the number of features selected. Generally, we ob-
serve a very fast error decrease in the beginning
as features are added until approximately 20 fea-
tures, where the minimum (optimal) error scores
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Figure 1: Error on (a) WMT12 and (b) EAMT11-en-es datasets with 80 BB features ranked by GPs

are found, and as more features are added, the er-
ror starts to quickly increase again, until a plateau
is reached (approximately 45 features). This shows
that while a very small number of features is nat-
urally insufficient, adding features ranked lower
by GPs degrades performance. Similar curves
were observed for all datasets with slightly dif-
ferent ranges for optimal numbers of features and
best score. It is interesting to note that the best
performance gains on most datasets are observed
within the 10-20 top-ranked features. Therefore,
even though our optimal results rely on the test as
oracle, this range of features could be used to find
optimal results across datasets without an oracle.
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Figure 2: Error on 82 UU ranked features

GB features on their own perform worse than
BB features, but in all three datasets, the combi-
nation of GB and BB followed by feature selec-
tion resulted in significantly lower errors than us-
ing only BB features with feature selection, show-
ing that the two features sets are complementary.

4.2 Results on the WMT12 dataset
In order to investigate whether our feature selec-
tion results hold for other feature sets, we exper-
imented with the feature sets provided by most

teams participating in the WMT12 QE shared task.
These feature sets are very diverse in terms of the
types of features, resources used, and their sizes.
As shown in Table 5, we observed similar results:
feature selection with GPs has the potential to out-
perform models with all initial feature sets. Im-
provements were observed even on feature sets
which had already been produced as a result of
some other feature selection technique. Table 5
also shows the official results from the shared task
(Callison-Burch et al., 2012), which are often dif-
ferent from the results obtained with GPs even be-
fore feature selection, simply because of differ-
ences in the learning algorithms used. In some
cases results with GPs before feature selection are
better, notably for WLV-SHEF, showing the poten-
tial of GPs as a learning algorithm for QE.

The learning curves with the performance on the
test sets for different numbers of top-ranked fea-
tures have a similar shape to those with the com-
mon feature sets. As an example, Figure 2 shows
the Uppsala University feature set, with the lowest
error score for the 15 top-ranked features.

4.3 Commonly selected features

Next we investigate whether it is possible to iden-
tify a common subset of features which are se-
lected for the optimal feature sets in most datasets.
In our experiments with the common feature sets,
we found that the following features appear ranked
at the top set that maximises the performance of
the models in at least 75% of the times out of all
datasets where they appear:
• LM perplexities and log probabilities for

source and target sentences;
• size of source and target sentences;
• average number of possible translations of
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Team System #feats. Official WMT12 score Score with GP
MAE RMSE MAE RMSE

SDL AF 15∗ 0.61 0.75 0.6030 0.7510
FS(GP) 10 - - 0.6015 0.7474

UU AF 82 0.64 0.79 0.6507 0.8012
FS(GP) 10 0.6419 0.7931

Loria AF 49 0.68 0.82 0.6866 0.8340
FS(GP) 10 - - 0.6824 0.8395

UEdin AF 56 0.68 0.82 0.6949 0.8540
FS(GP) 20 - - 0.6795 0 8323

TCD AF 43 0.68 0.82 0.6906 0.8367
FS(GP) 10 - - 0.6904 0.8370

WLV-SHEF AF 147 0.69 0.85 0.6665 0.8219
FS(GP) 15 - - 0.6592 0.8088

UPC AF 57 0.84 1.01 0.8365 0.9601
FS(GP) 15 - - 0.8092 0.9288

DCU AF 308 0.75 0.97 0.6782 0.8394
FS(GP) 15 - - 0.6137 0.7602

PRHLT AF 497 0.70 0.85 0.6733 0.8297
FS(GP) 30 - - 0.6647 0.8179

Table 5: Results on WMT12 feature sets. * indicates initial feature sets resulting from feature selection

source words (IBM 1 with thresholds);
• ratio of target by source lengths in words;
• percentage of numbers in the target sentence;
• percentage of distinct unigrams seen in the

MT source training corpus;
• pseudo-reference.
Interestingly, not all top ranked features are

among the 17 reportedly good baseline features.
All of these features are language-independent.
Also, most of them are simple and straightfor-
ward to extract: they either do not rely on exter-
nal resources, or use resources that are easily avail-
able, such as tools for LM (e.g., SRILM), or word-
alignment (e.g., GIZA++).

The same analysis on the feature sets from the
WMT12 shared task is not possible, given the very
little overlap in features used by the different fea-
ture sets.

5 Conclusion

We have presented a number of experiments show-
ing the potential of a promising feature ranking
technique based on Gaussian Processes for trans-
lation quality estimation. Using an oracle to select
the number of top-ranked features to train quality
estimation models, this technique has been shown
to outperform strong baseline systems with only
a small fraction of their features. In addition, it
allowed us to identify a common set of features
which perform well across many datasets with dif-
ferent language pairs, machine translation systems,
text domains and quality labels.
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