
Parameter Optimization for Iterative Confusion Network

Decoding in Weather-Domain Speech Recognition

Shahab Jalalvand, Daniele Falavigna

Human Language Technology unit, Fondazione Bruno Kessler, via Sommarive 18, Trento, Italy
{jalalvand,falavi}@fbk.eu

Abstract

In this paper, we apply a set of approaches to, efficiently,

rescore the output of the automatic speech recognition over

weather-domain data. Since the in-domain data is usually

insufficient for training an accurate language model (LM) we

utilize an automatic selection method to extract domain-related

sentences from a general text resource. Then, an N-gram

language model is trained on this set. We exploit this LM,

along with a pre-trained acoustic model for recognition of the

development and test instances. The recognizer generates a

confusion network (CN) for each instance. Afterwards, we

make use of the recurrent neural network language model

(RNNLM), trained on the in-domain data, in order to

iteratively rescore the CNs. Rescoring the CNs, in this way,

requires estimating the weights of the RNNLM, N-gramLM

and acoustic model scores. Weights optimization is the critical

part of this work, whereby, we propose using the minimum

error rate training (MERT) algorithm along with a novel N-

best list extraction method. The experiments are done over

weather forecast domain data that has been provided in the

framework of EUBRIDGE project.

Key words: automatic speech recognition, language model,

neural network, confusion network, minimum error rate

training

1. Introduction

A major problem in domain-specific speech recognition is the

lack of sufficient in-domain data for acoustic modeling and

language modeling. In the case of language modeling, one

could train a n-gram based LM using a huge set of out of

domain data and, then, adapt it to the domain using a given set

of in-domain data and some adaptation techniques such as the

ones described in [1], [2] and [3].

In this paper, we focus on the language modeling part and we

introduce efficient approaches for post-processing the output

of the automatic speech recognition (ASR) system. The

recognizer generates the word graphs for each utterance. Then,

we convert them into the Confusion Network (CN) forms. This

form yields better oracle word error rate (WER) in comparison

to the N-best list and word graphs. Then, we go through an

iterative decoding approach for rescoring the confusion

networks.

For rescoring the CNs, we adopt an approach similar to the

one described by A. Deoras [4], in particular we combine,

using iterative decoding, word posterior, RNNLM and

NgramLM probabilities. The RNNLM is trained on the small

(about 1 million words) set of in-domain data, which consists

of captioning of weather forecast news. The reason for using

RNNLM is that it has proven to exhibit good performance

even if trained on small sizes of training data [5]. In order to

estimate the weights to be assigned to RNNLM, NgramLM

and posterior probability scores, we utilize Minimum Error

Rate Training (MERT) technique [6] along with a novel

method for extracting the N-best lists from the CNs.

In Section 2 we will describe the acoustic models and the

baseline LM employed in the experiments, as well as the

process for generating word graphs and confusion networks. A

description of the iterative decoding approach is given in

Section 4. In Section 4 we describe the MERT approach

developed for learning the weights of the various models used

in the rescoring step. Section 5 describes the development/test

corpora used and reports the experiments and results. Finally,

Section 6 concludes the paper.

1.1. Related Works

The N-gram language model is commonly used in speech

recognition systems. Simplicity and low computational

complexity are the most important factors of this type of

language model which has made it quite popular among the

researchers. During the years, different extensions have been

made on top of this model to overcome its deficiencies such as

data sparseness, generalization and curse of dimensionality.

The back-off techniques [7] and the discounting methods [8],

[9] are the main extensions over the N-gram LM which are

mostly based on making an interpolation between the shorter

contexts. However, since in the N-gram LM the words are

seen as discrete entities, computing interpolation between their

probabilities is, in principle, not possible.

An attempt to change the representation of the words in

language modeling was done by Y. Bengio [10], when he

introduced the neural network LM. In this model, the words

are represented as the binary vectors. Schwenck [11] added a

projection layer to the NNLM and named it the continuous

space language model. The projection layer converts the

binary word vectors into the real number vectors. He also

applied this model in a large vocabulary continuous speech

recognition system. The probability of the words in these feed

forward NNLMs depends on a limited context (the same as the

N-gram LMs). T. Mikolov [5] proposed the recurrent neural

network LM in which the context is not constrained by a

Markov window. The recursive arcs in the hidden layers work

as a cache to save the impact of the previous words.

These neural network approaches have shown better

performance in terms of Perplexity; however, applying them

directly in the ASR decoder is costly in computation and

memory. A common solution is to utilize these models for

rescoring the N-best list produced by a traditional ASR

decoder which uses a finite state network constructed from a

lexicon and an N-gram LM.

However, N-best list rescoring is not the best way to benefit

from the high potential of the NNLMs, as the number of the

hypotheses limited. For example in our case, the oracle word

error rate of the 1000-best list is around 9.9%, while, the word

error rate of the 1-best is 10.4%. One could see that there is no

big gap in-between. Instead of the N-best list, it is also

possible to rescore word graphs or confusion networks. In our

case, the oracle word error rate of the word graphs and the

confusion networks resulted to be 5.5% and 3.4%,

respectively.

2. ASR training and CN generation

For training acoustic models (AMs) we have used audio data

provided within the EUBRIDGE consortium containing

recordings of weather forecasts. These recordings come with

captioning which is not exact transcriptions of the audio so

that, in order to train tri-phone Hidden Markov Models

(HMMs) a preliminary alignment step is carried out between

automatic transcriptions of the training data and the

corresponding given captioning. Hence, only the segments of

audio recordings that align with the corresponding captioning

are retained for HMM training. After this phase about 30 hours

of the weather forecasts have been selected for AM training.

For language modeling, we are given a set of weather

forecast sentences consisting of about 1 million words. With

this latter set of sentences we train an in-domain LM which, in

turn, is used for automatically selecting from a large general

corpus (see [18]), containing about 1.6 billions of words, the

sentences with the lowest perplexity. The automatically

selected sentences, formed by about one hundred million

words, are used to train a 4-gram, back-off LM which is

finally adapted, using the “mix” adaptation method described

in [2] to the in-domain data.

From the 4-gram adapted LM, we generate a finite state

network (FSN), which also embeds the lexicon, that is used in

two ASR decoding passes (the details of the ASR decoder are

given in [14]).

Word graphs (WGs) are generated in the second decoding

pass. To do this, all of the word hypotheses that survive inside

the trellis during the Viterbi beam search are saved in a word

lattice containing the following information: initial word state

in the trellis, final word state in the trellis, related time instants

and word log-likelihood. From this data structure and given

the LM used in the recognition steps, WGs are built with

separate acoustic likelihood and LM probabilities associated to

the word transitions. To increase the recombination of paths

inside the trellis and consequently the density of the WGs, the

so called word pair approximation [16] is applied. In this way

the resulting graph error rate was estimated to be around 33%

of the corresponding WER.
Consensus decoding, through confusion network (CN)

generation, allows minimizing the word error rate (WER) of

sentence hypotheses, instead of maximizing the related

posterior probability or, equivalently, minimizing the sentence

error rate [15]. A CN is formed by a concatenation of

confusion bins, each containing a list of word hypotheses with

related posterior probabilities. Basically, a CN is generated

from a given WG by: 1) identify CN bins inside the WG

corresponding to the non-overlapped time windows, 2) merge

all the transitions inside a bin that share the same word (word

posterior in a bin is the sum of all the corresponding link

posterior in the original WG). In this work, the CNs are

produced using the algorithm described in [15] and the

software package described in [17].

3. Iterative CN decoding

The method of iterative Confusion Network decoding has

already been proposed by A. Deoras [4]. Thus, for further

details, we refer the readers to this paper. Here, we briefly

describe this method with some variations in our own work.

As mentioned above, a confusion network is a

concatenation of bins. The process of iterative decoding, starts

from the first bin, re-orders the arcs and shifts to the next one.

In each bin, the decoder generates some hypotheses. The

number of these hypotheses is equal to the number of the arcs

in that bin. Different hypotheses are created by changing a

word in the sentence with the words of the bin. Thus, all the

hypotheses in each bin differ in just one word. To each

hypothesis, the feature functions assign a score. The feature

functions, in our case, are RNNLM, N-gramLM, Posterior and

Length (the number of the words). The lengths of the

hypotheses may differ if there is a null arc in the bin. Then, the

scores are interpolated and the resulted score is used to re-

order the arcs. After finishing processing a bin, the decoder

moves to the next bin and repeats this step. By reaching at the

last bin, the score of the best hypothesis (the one which is

obtained by concatenating the first arcs) is computed. If this

score is better than the one obtained from the previous

iteration, the decoder continues this step, otherwise, it stops.

To illustrate the process, we assume a confusion network

(CN) consisting of four bins (A, B, C and D):

]}..[],..[],..[],..[{: 1111 dcba nnnn ddDccCbbBaaACN

Here, na is the number of the arcs in the bin A, and so on.

Each bin contains a number of arcs and some contents which

are assigned to the arcs. These contents are: a word, a

posteriori score, an LM score and an acoustic model score.

Thus, each arc can be seen as a structure:





















scoreodelmacousticanama

scoredelmolanguagealma

scoreposterioriapa

wordawa

i

i

i

i

.

.

.

.

The arcs in each bin are ordered according to their

posteriori scores. Hence, the 1-best hypothesis (e*) in CN is

made by concatenating the first arcs:

wdwcwbwae .,.,.,. 1111

* 

a1.w is the word assigned to the first arc of the bin A. When

the decoder starts processing the first bin (A), it will generate

na different hypotheses:

































wdwcwbwae

wdwcwbwae

wdwcwbwae

e

aa nn .,.,.,.

...

.,.,.,.

.,.,.,.

111

11122

11111

Note that the hypotheses are different in just one word. In

order to compare them, we need to compute the new scores.

The RNNLM and NgramLM scores can be computed by

applying the LMs on this set of sentences. For the posteriori

scores, we can sum up the posteriors of all the words in each

sentence or just consider the posteriori of the changing words.

Finally, the total score of a sentence is computed by (i=1..na):

)(

)(

)(

)()(

ilength

iposter

ingram

irnnlmi

elength

eposteriori

engramlm

ernnlmescore

















 (1)

The length function should be taken into account to avoid

being biased towards the short/long sentences. The weights (λ)

can be estimated on a development set and by using the

optimization techniques.

The critical parts of this method are: selection of the feature

functions, and estimation of the weights. In the next section,

we describe the MERT algorithm which is a type of machine

learning approach for estimating the weights.

4. Minimum Error Rate Training

The MERT algorithm was first introduced by F. Och [6] for

using in a statistical machine translation (SMT) task. The

algorithm is based on training a parameter model on a set of

N-best targets and optimizing the model. The optimized

model generates a new set of N-best targets. This set is

merged with the one from the previous iteration.

For a reference instane like fs we aim at finding a candidate

in e (that is the corresponding N-best list) which maximizes

the total score.









 


M

m

smm
Ce

M

s fehfe
s 1

1)|(maxarg);(ˆ  (2)

In the equation, Cs is the N-best list suggested for fs. The

parameters hm and λm are the function and weight of the mth

feature, respectively. In our case, we have four feature

functions: RNNLM, N-gramLM, Posterior and length.

The optimized weights for the feature functions can be

obtained by solving a minimization problem over the error

function E(rs,es).









 


S

s

M

ss

M ferE
M

1

11));(ˆ,(minargˆ

1




 (3)

The value S is equal to the number of the sentences in the

development set.

In the extended version of MERT developed by N. Bertoldi

et al. [12], the algorithm is run in two loops: the outer loop and

the inner loop. Starting from initial weights in the outer loop,

the decoder processes the input instances and generates the

corresponding N-best list. This list is used to feed the inner

loop where the weights are optimized. The inner loop

continues optimizing the weights till the time that there is no

big change in the weights.

The new weights are again used to run the decoder and

generate the new N-best lists. In order to make sure that there

is enough diversity among the N-best lists, the new list is

combined with the previous one. The outer loop is iterated

until the time that no considerable change is observed in

WER.

4.1. The M-best Extraction Method

The decoder that is used in our work has been explained in the

Section 2.1. The output of this decoder is an N-best list which

is extracted from the confusion network. Given a confusion

network, one could use a simple A* search algorithm to

extract the N-best list from the network. This method that is

already embedded in SRI toolkit uses the posterior scores of

the arcs in order to output the N-bests. Since, the value of N is

limited, the number of the hypotheses will be limited.

Therefore, there would be some words in some bins that can

never be seen among the hypotheses. It means that, the

rescoring process might be again entangled in the lack of

hypotheses. This is exactly the problem that is existed with

simply rescoring the N-best lists.

In this paper, we propose an efficient method for extracting

the candidate list for MERT and we call it “M-best list”. In

this method, all the possible hypotheses that can be generated

in each bin are merged and considered as the N-best list of that

step. Therefore, assuming CN as the decoded confusion

network, the extracted M-best list includes:

































































wdwcwbwae

wdwcwbwae

wdwcwbwae

wdwcwbwae

wdwcwbwae

wdwcwbwae

e

d

c

b

a

nM

ni

ni

i

ni

.,.,.,.

...

.,.,.,.

...

.,.,.,.

...

.,.,.,.

.,.,.,.

...

.,.,.,.

111

1112

1111

11211

111

11111

Note that the maximum size of M would be equal to:

)1()1()1( dcba nnnn

While, the maximum number of the hypotheses is:

dcba nnnn 

The advantages of this method are: 1) the MERT algorithm

can see and process all the possible words in its inner loop; 2)

there is no boundary for the size of M. According to the size of

the confusion network, the number of the sentences could be

different, while in the traditional method, this size is limited to

N.

The scores of each of these sentences are computed as

before. The posterior score of a sentence is also computed by

summing up all the posteriors of the words in the sentences.

5. Experiments and Results

In this section, we first describe the details of the corpus that is

exploited in this work. Then, we go through the experiments.

The reported experiments are arranged as follows:

 Generating the confusion networks on the

development and test instances.

 Using Grid search approach for estimating the weights

 Using MERT approach for estimating the weights

We perform these experiments on two sets of confusion

networks: one generated using the Bi-gramLM and the other

generated using the 4-gramLM.

5.1. The Corpus

The dataset that we have used to analyze and evaluate our

approaches is in the domain of weather forecast news,

provided for the EU-BRIDGE project. As mentioned in the

Section 2, in this dataset there is an in-domain text set that is

around 1 Million words. This data has been used to train the

RNNLM and also to select the auxiliary data from the out-of-

domain resource. There is also a domain-related text set about

100 MW that has been selected automatically (see Section 2

for the method of selection). The latter set is used to train the

Bi-gramLM and 4-gramLM that are used along with the pre-

trained acoustic models to generate the ASR output and also

the Confusion Networks.

The development and test sets contain 32 and 650

utterances, respectively. The MERT algorithm is run over the

development set, in order to estimate and optimize the desired

weights for rescoring. Obtaining the optimized weights, the

iterative decoding is performed on the test set to rescore the

confusion networks.

5.2. Experiments

By using the IRSTLM toolkit [13], we train a Bi-gram and a 4-

gram back-off, modified shift beta smoothed language models

on the domain-related set (100MW) and we used them in the

ASR decoder for generating two different sets of word graphs

(one with Bi-gram and one with 4-gram LM). The ASR

engine, used for this task is described in [14]. Afterwards, we

use the SRI toolkit [17] to convert the word graphs into the

confusion networks. At the end, we have two different sets of

confusion networks: one created by using the Bi-gramLM and

the other by 4-gramLM. The motivation of generating these

two sets is to assess the performance of the iterative decoding

approach (by the Bi-gram CNs), and improving the results (by

the 4-gram CNs).

The confusion networks created in this way contain lots of

useless bins with null arcs. This number of useless bins

dramatically increases the computational cost. Hence, we filter

the confusion networks according to the posterior of the null

arcs, i.e. all the bins containing null arcs with higher posterior

than 0.99 are eliminated. This filtering decreases the average

number of the bins per CN up to 92 percent (without changing

the WER).

The resulted CNs yield 16.4% and 10.4% WER on the

development set and 20.2% and 14.3% WER on the test set for

both Bi-gram and 4-gram CN sets, respectively (see Table 1

and 2).

In order to rescore the confusion networks, we use a

RNNLM trained on the in-domain data. The RNNLM is built

by the toolkit developed by T. Mikolov, et al [5]. For

combining the scores from RNNLM, 4-GramLM, posterior

and length, a simple linear interpolation is applied. In order to

estimate the weights of these feature functions, we chase two

different methods: Grid search and MERT.

For applying the Grid search algorithm, we simply consider

an interval from zero to one to assign a weight to each feature

function:

 










1..

]1:1.0:0[,,,:

lengthposteriorngramlmrnnlm

lengthposteriorngramlmrnnlm

ts 


 (4)

By each set of the values, we decode the development

confusion networks and the best set is selected to be used on

the test set. One could find the results of this method in the

second row of the Tables 1 and 2.

Furthermore, we use the MERT algorithm on the

development set. In this way, we exploit the proposed method

for extracting the M-best lists at the end of each iteration of

the decoder. Then, MERT is run to process the M-best list and

optimize the weights. On this development set, MERT usually

stops at the fourth of fifth iteration. A reason could be the lack

of the feature functions. Here, we have just four functions that

might not be sufficient. Another reason is the lack of the

development data. Nevertheless, in order to validate the

weights, suggested by MERT, we ran the algorithm several

times on the development set and we selected the best one.

The results of this method can be found in the third row of the

Tables 1 and 2.

Table 1: The WER results on the confusion networks created

by the Bi-gramLM

 Dev Test

Baseline 16.4 20.2

RNNLM-Grid-ItDec 14.1 18.9

RNNLM-MERT-ItDec 13.5 18.3

Table 2: The WER results on the confusion networks created

by the 4-gramLM

 Dev Test

Baseline 10.4 14.3

RNNLM-Grid-ItDec 10.2 14.3

RNNLM-MERT-ItDec 9.5 14.0

As it can be seen from the tables, the results of the

confusion networks created by using the 4-gramLM are

apparently better, because the 4-gramLM is more accurate.

Note, that the training set and the procedure of training these

two LMs are completely the same. Exactly because of the

same reason, the improvement in the experiment on the Bi-

gramLM is higher. Again, note that the RNNLM used for

rescoring both sets of confusion networks is the same.

Therefore, one could evaluate the performances of the

iterative decoding and the MERT algorithm. Finally, we can

see a slight improvement by using the MERT algorithm over

the Grid search. It means that the weights suggested by MERT

are more efficient than the Grid search. Moreover, the number

of iterations taken by MERT is fewer. For example, in MERT,

the weights are estimated in 4 or 5 iterations, while for Grid

search, we need 66 iterations (according to the intervals

considered for the weights in Eq. 4).

There are some deficiencies in the experiments:

 The size of the development set is small and

insufficient to have a better weight estimation.

 There are a few feature functions that are not enough

for MERT to give a reliable estimation.

 The size of the training set of the RNNLM (1MW) is

not comparable with the N-gramLM (100MW).

Considering these deficiencies, we are designing the future

experiments, in particular by using more RNNLMs. Due to

the complexity of the RNNLM structure, it’s not efficient to

build it on the big training sets. A wise solution would be to

train several RNNLMs on the separated parts of the training

set, and then use them as the new feature functions.

6. Conclusion

A set of approaches were introduced and analyzed for

improving the process of rescoring the domain-specific ASR

output. Instead of the common N-best list rescoring, we used

confusion network rescoring that yields better oracle WER.

An iterative decoding approach was used for rescoring the

confusion networks and improving the output. Additionally,

we applied the MERT algorithm to optimize the weights of

the feature functions more efficiently. We also introduced a

novel approach for extracting the N-best list from the

confusion network that improves the affect of MERT

optimization process.

7. Acknowledgement

This work has been partially founded by the European project

EU-BRIDGE, under the contract FP7-287658

8. References

[1] Federico, M. (1999, September). Efficient language

model adaptation through MDI estimation. In

Proceedings of Eurospeech.

[2] Foster, G., & Kuhn, R. (2007). Mixture-model adaptation

for SMT. In Proceedings of the Second Workshop on

Statistical Machine Translation (pp. 128-135), Prague,

Czech Republic

[3] Ruiz, N., Federico, M., & Kessler, F. F. B. (2012). MDI

Adaptation for the Lazy: Avoiding Normalization in LM

Adaptation for Lecture Translation. In Proceedings

IWSLT 2012.

[4] Deoras, A., & Jelinek, F. (2009, November). Iterative

decoding: A novel rescoring framework for confusion

networks. In proceedings of Automatic Speech

Recognition & Understanding (ASRU 2009) (pp. 282-

286).

[5] Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., &

Khudanpur, S. (2010). Recurrent neural network based

language model. In proceedings of INTERSPEECH (pp.

1045-1048).

[6] Och, F. J. (2003, July). Minimum error rate training in

statistical machine translation. In Proceedings of the 41st

Annual Meeting on Association for Computational

Linguistics-Volume 1 (pp. 160-167).

[7] Katz, S. (1987). Estimation of probabilities from sparse

data for the language model component of a speech

recognizer. IEEE Transactions on Acoustics, Speech and

Signal Processing, 35(3), (pp. 400-401).

[8] Witten, I. H., & Bell, T. C. (1991). The zero-frequency

problem: Estimating the probabilities of novel events in

adaptive text compression. IEEE Transactions on

Information Theory, 37(4) (pp. 1085-1094).

[9] Chen, S. F., & Goodman, J. (1999). An empirical study of

smoothing techniques for language modeling.

In Computer Speech & Language, 13(4) (pp. 359-393).

[10] Bengio, Y., Schwenk, H., Senécal, J. S., Morin, F., &

Gauvain, J. L. (2006). Neural probabilistic language

models. In Innovations in Machine Learning (pp. 137-

186), Springer Berlin Heidelberg.

[11] Schwenk, H. (2007). Continuous space language

models. In Computer Speech & Language, 21(3), (pp.

492-518).

[12] Bertoldi, N., Haddow, B., & Fouet, J. B. (2009).

Improved minimum error rate training in Moses. In The

Prague Bulletin of Mathematical Linguistics, 91(1) (pp.

7-16).

[13] Federico, M., Bertoldi, N., & Cettolo, M. (2008,

September). IRSTLM: an open source toolkit for

handling large scale language models. In proceedings of

INTERSPEECH (pp. 1618-1621).

[14] Falavigna, D., Gretter, R., Brugnara, F., & Giuliani, D.

(2012, December). FBK@ IWSLT 2012-ASR track.

In Proceedings of the ninth International Workshop on

Spoken Language Translation (IWSLT).

[15] Mangu, L., Brill, E., & Stolcke, A. (2000). Finding

consensus in speech recognition: word error minimization

and other applications of confusion networks.

In Computer Speech & Language, 14(4) (pp. 373-400).

[16] Ney, H., Ortmanns, S., & Lindam, I. (1997, April).

Extensions to the word graph method for large

vocabulary continuous speech recognition. IEEE

International Conference on Acoustics, Speech, and

Signal, ICASSP-97 (Vol. 3, pp. 1791-1794).

[17] Stolcke, A. (2002, September). SRILM-an extensible

language modeling toolkit. In proceedings

of INTERSPEECH.

[18] Falavigna, D., & Gretter, R. (2012). Focusing Language

Models for Automatic Speech Recognition. In

Proceedings of the ninth International Workshop on

Spoken Language Translation (IWSLT).

http://dl.acm.org/citation.cfm?id=1626372&CFID=261184711&CFTOKEN=86508982
http://dl.acm.org/citation.cfm?id=1626372&CFID=261184711&CFTOKEN=86508982
http://dl.acm.org/citation.cfm?id=1626372&CFID=261184711&CFTOKEN=86508982

	Index for System Papers
	Index for Scientific Papers
	Report on the 10th IWSLT Evaluation Campaign
	Human Semantic MT Evaluation with HMEANT for IWSLT 2013
	Edinburgh SLT and MT System Description for the IWSLT 2013 Evaluation
	MSR-FBK IWSLT 2013 SLT System Description
	Improving machine translation into Chinese by tuning against Chinese MEANT
	The NICT ASR System for IWSLT 2013
	FBK @ IWSLT 2013 - ASR tracks
	QCRI at IWSLT 2013:Experiments in Arabic-English and English-Arabic Spoken Language Translation
	A Discriminative Reordering Parser for IWSLT 2013
	The RWTH Aachen Machine Translation Systems for IWSLT 2013
	Description of the UEDIN System for German ASR
	NTT-NAIST SMT Systems for IWSLT 2013
	The 2013 KIT IWSLT Speech-to-Text Systems for German and English
	Polish - English Speech Statistical Machine Translation Systemsfor the IWSLT 2013.
	The RWTH Aachen German and English LVCSR systems for IWSLT-2013
	EU-BRIDGE MT: Text Translation of Talks in the EU-BRIDGE Project
	The MIT-LL/AFRL IWSLT-2013 MT System
	The Speech Recognition and Machine Translation System of IOIT for IWSLT 2013
	T¨UB˙ITAK TURKISH-ENGLISH SUBMISSIONS for IWSLT 2013
	FBK’s Machine Translation Systemsfor the IWSLT 2013 Evaluation Campaign
	The Heidelberg University Machine Translation Systems for IWSLT2013
	The UEDIN English ASR System for the IWSLT 2013 Evaluation
	The NAIST English Speech Recognition System for IWSLT 2013
	The KIT Translation Systems for IWSLT 2013
	The CASIA Machine Translation System for IWSLT 2013
	Using Viseme Recognition to Improve a Sign Language Translation System
	The AMARA Corpus: Building Resourcesfor Translating the Web’s Educational Content
	Constructing a Speech Translation Systemusing Simultaneous Interpretation Data
	Improving the Minimum Bayes’ Risk Combination of Machine Translation Systems
	Empirical Study of a Two-Step Approach to Estimate Translation Quality
	The 2013 KIT Quaero Speech-to-Text System for French
	Improving Bilingual Sub-sentential Alignment by Sampling-based Transpotting
	Incremental Unsupervised Training for University Lecture Recognition
	Studies on Training Text Selection for Conversational Finnish Language Modeling
	Assessing Quick Update Methods of Statistical Translation Models
	Analyzing the Potential of Source Sentence Reordering in Statistical MachineTranslation
	CRF-based Disfluency Detection using Semantic Featuresfor German to English Spoken Language Translation
	Maximum Entropy Language Modeling for Russian ASR
	Improved Speech-to-Text Translation with the Fisher and CallhomeSpanish–English Speech Translation Corpus
	Unsupervised Learning of Bilingual Categories inInversion Transduction Grammar Induction
	A Study in Greedy Oracle Improvement of Translation Hypotheses
	Source-Error Aware Phrase-Based Decoding forRobust Conversational Spoken Language Translation
	Evaluation of a Simultaneous Interpretation System andAnalysis of Speech Log for User Experience Assessment
	Parameter Optimization for Iterative Confusion NetworkDecoding in Weather-Domain Speech Recognition
	LoWu_Iwslt2013.pdf
	 Introduction
	 Participating tracks and systems
	 HMEANT
	 Human annotation
	 Semantic role labeling
	 Task description and setup
	 Inter-annotator agreement and time efficiency

	 Semantic role filler alignment
	 Task description and setup
	 Inter-annotator agreement and time efficiency

	 Results
	 Conclusion
	 Acknowledgments
	 References

