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Abstract

Research into the translation of the output of automatic
speech recognition (ASR) systems is hindered by the dearth
of datasets developed for that explicit purpose. For Spanish-
English translation, in particular, most parallel data available
exists only in vastly different domains and registers. In order
to support research on cross-lingual speech applications, we
introduce the Fisher and Callhome Spanish-English Speech
Translation Corpus, supplementing existing LDC audio and
transcripts with (a) ASR 1-best, lattice, and oracle output pro-
duced by the Kaldi recognition system and (b) English trans-
lations obtained on Amazon’s Mechanical Turk. The result
is a four-way parallel dataset of Spanish audio, transcrip-
tions, ASR lattices, and English translations of approximately
38 hours of speech, with defined training, development, and
held-out test sets.

We conduct baseline machine translation experiments us-
ing models trained on the provided training data, and validate
the dataset by corroborating a number of known results in the
field, including the utility of in-domain (information, conver-
sational) training data, increased performance translating lat-
tices (instead of recognizer 1-best output), and the relation-
ship between word error rate and BLEU score.

1. Introduction

The fields of automatic speech recognition (ASR) and ma-
chine translation (MT) share many traits, including simi-
lar conceptual underpinnings, sustained interest and atten-
tion from researchers, remarkable progress over the past two
decades, and resulting widespread popular use. They both
also have a long way to go, with accuracies of speech-to-
text transcription and text-to-text translation varying wildly
across a number of dimensions. For speech, these variables
determining success include properties of the channel, the
identity of the speaker, and a host of factors that alter how an
individual speaks (such as heartrate, stress, emotional state).
Machine translation accuracy is affected by different factors,
such as domain (e.g., newswire, medical, SMS, speech), reg-
ister, and the typological differences between the languages.

Because these technologies are imperfect themselves,
their inaccuracies tend to multiply when they are chained to-
gether in the task of speech translation. Cross-lingual speech
applications are typically built by combining speech recog-
nition and machine translation systems, each trained on dis-
parate datasets [1, 2]. The recognizer makes mistakes, pass-
ing text to the MT system with vastly different statistical
properties from the parallel datasets (usually newswire or
government texts) used to train large-scale translation sys-
tems, which are then further corrupted with the MT system’s
own mistakes. Errors compound, and the results are often
Very poor.

There are many approaches to improving this speech-to-
text pipeline. One is to gather training data that is closer to
the test data, perhaps by paying professionals or using crowd-
sourcing techniques. The latter has been repeatedly demon-
strated to be useful for collecting relevant training data for
both speech and translation [3, 4, 5, 6], and in this paper we
do the same for speech-to-text translation, assembling a four-
way parallel dataset of audio, transcriptions, ASR output,
and translations. The translations were produced inexpen-
sively by non-professional translators using Amazon’s popu-
lar crowdsourcing platform, Mechanical Turk (§2).

A second approach is to configure the ASR system to ex-
pose a portion of its search space by outputting more than just
the single best output. Previous in speech-to-text translation
have demonstrated success in translating ASR n-best lists [7]
and confusion networks' [8], and lattices [9, 10]. In this pa-
per, we apply similar techniques in the context of a machine
translation, demonstrating consistent improvements over the
single-best ASR translation in two different speech corpora.

The contributions of this paper are as follows:

* We extend two LDC Spanish speech sets with En-
glish translations and ASR recognizer output (in the
form of lattices, ASR 1-best output, and lattice ora-
cle paths) providing the community with a 3.8 million

1A confusion network, colloquially referred to as a sausage, is a restricted
form of lattice in which all of a node’s outgoing arcs go to the same head
node.



word dataset for further research in Spanish-English
speech-to-text translation.?

* We demonstrate improvements of up to 11.1 BLEU
points in translating ASR output using this in-domain
dataset as training data, compared to standard machine
translation training sets (of twenty times the size) based
on out-of-domain government and newswire text.

* We show further improvements in translation quality
(1.2 absolute BLEU points) when translating the lat-
tices instead of ASR 1-best output.

2. Collecting Translations

Here we describe the procedure used to obtain the transla-
tions, based on the current best practices for the collection of
crowd-sourced translations.

The source data are the Fisher Spanish and Callhome
Spanish datasets, comprising transcribed telephone conver-
sations between (mostly native) Spanish speakers in a va-
riety of dialects. The Fisher Spanish corpus® consists of
819 transcribed conversations on a variety of provided topics
primarily between strangers, resulting in approximately 160
hours of speech aligned at the utterance level, with 1.5 mil-
lion tokens. The Callhome Spanish corpus* comprises 120
transcripts of spontaneous conversations primarily between
friends and family members, resulting in approximately 20
hours of speech aligned at the utterance level, with just over
200,000 words (tokens) of transcribed text. The combined
dataset features a large variety of dialects, topics, and famil-
iarity level between participants.

2.1. Crowdsourced Translations

We obtained translations using the popular crowdsourcing
platform Amazon Mechanical Turk (MTurk), following a
widespread trend in scientific data collection and annotation
across a variety of fields [11, 12, 13, 14, 15, 3], and in partic-
ular the translation crowdsourcing work of [16].

We began by lightly preprocessing the transcripts, first to
remove all non-linguistic markup in the transcriptions (such
as annotations for laughter or background noise), and sec-
ond to concatenate sequential utterances of a speaker during
a single turn. Many utterances in the original transcript con-
sisted only of single words or in some cases only markup,
so this second step produced longer sentences for translation,
enabling us to provide more context to translators and reduce
cost. When the length of a combined utterance exceeded 25
words, it was split on the next utterance boundary.

We present sequences of twenty of these combined utter-
ances (always from the same transcript) in each individual
translation task — human intelligence tasks (HIT), in MTurk
terminology. The utterances in each HIT were presented to

2j oshua-decoder.org/fisher-callhome-corpus
3LDC2010801 and LDC2010T04
4LDC96835 and LDCI6T17

each translator in the original order alongside the speaker
name from the source transcript, thereby providing the trans-
lators with context for each utterance. HITs included the in-
structions taken from [16].

2.2. Quality Control Measures

MTurk provides only rudimentary tools for vetting workers
for a specialized task like translation, so following estab-
lished practice, we took steps to deter wholesale use of au-
tomated translation services by our translators.

 Utterances were presented as images rather than text;
this prevented cutting and pasting into online transla-
tion services.?

* We obtained translations from Google Translate for the
utterances before presenting them to workers. HITs
which had a small edit distance from these translations
were manually reviewed and rejected if they were too
similar (in particular, if they contained many of the
same errors).

* We also included four consecutive short sentences
from the Europarl parallel corpus [17] in each HIT.
HITs which had low overlap with the reference trans-
lations of these sentences were manually reviewed and
rejected if they were of low quality.

We obtained four redundant translations of sixty ran-
domly chosen conversations from the Fisher corpus. In to-
tal, 115 workers completed 2463 HITs, producing 46,324
utterance-level translations and a little less than half a mil-
lion words.

2.3. Selection of Preferred Translators

We then extended a strategy devised by [16] to select high-
quality translators from the first round of translations. We de-
signed a second-pass HIT which was used to rate the above
translators; those whose translations were consistently pre-
ferred were then invited to subsequent Spanish-English trans-
lation tasks.

For this voting task, monolingual English-speaking work-
ers were presented with four different translations of an input
sentence or utterance and asked to select the best one. As with
the first HIT, users were presented with a sequence of twenty
utterances from the same conversation, thereby providing lo-
cal context for each decision. Each HIT was completed by
three workers; in total, 193 workers completed 1676 assign-
ments, yielding 31,626 sentence-level comparisons between
4 alternative translations.

From this data, we qualified 28 translators out of the ini-
tial 115. This set of translators produced 45% of the first-pass

3Some online translation engines now provide optical-character recog-
nition from images, reducing the potential effectiveness of this control for
future work.



Source Data Docs. Segments Spanish words Translations English words Cost

Fisher (set one) 60 11,581 121,484 4 (avg) 118,176 $2,684
Fisher (set two) 759 138,819 1,503,003 1 1,440,727  $10,034
Callhome 120 20,875 204,112 1 201,760  $1,514
Combined 939 171,275 1,828,599 1 1,760,663  $14,232
Voting +$1,433
Total $15,665

Table 1: Corpus size and cost. Counts of segments and words were computed after pre-processing (§2).

Split Words Sentences
Fisher/Train 1,810,385 138,819
Dev 50,700 3,979
Dev2 47,946 3,961
Test 47,896 3,641
Callhome/Train 181,311 15,080
Devtest 47,045 3,966
Evltest 23,626 1,829
Europarl + NC | 44,649,409 1,936,975

Table 2: Data splits for Fisher Spanish (top), Callhome Span-
ish (middle), and Europarl + News Commentary (bottom; for
comparison). Words is the number of Spanish word tokens
(after tokenization). The mean number of words per sen-
tences ranges from 11.8 to 13.1.

translations. As a sanity check, we computed different accu-
racy thresholds for the voters, and the downstream ratings of
the translators turned out to be relatively stable, so we were
reasonably confident about the group of selected translators.

2.4. Complete Translations

The preferred translators were invited to translate the remain-
ing Fisher data and all of the Callhome data at a higher wage,
using the same strategy as the first round of translations. We
obtained only one translation per utterance. Table 1 gives
the size and cost of the entire translation corpus. To the best
of our knowledge, the resulting corpus is the largest parallel
dataset of audio, transcriptions, and translations. We antici-
pate that this data will be useful for research in a variety of
cross-lingual speech applications, a number of which we ex-
plore ourselves in the following sections.

3. Collecting Speech Output

After collecting translations, we split the data into training,
development, and test sets suitable for experimentation (Ta-
ble 2). Callhome defines its own data splits, organized into
train, devtest, and evltest, so we retained them. For Fisher, we
produced four data splits: a large training section and three
test sets (dev, dev2, and test). These test sets correspond to
portions of the data where we have four translations.

The above procedures produced a three-way parallel cor-

pus: Spanish audio, Spanish transcripts, and English transla-
tions. To this, we added speech recognizer output produced
with the open-source Kaldi Automatic Speech Recognition
System [18].6

In order to get output for the entire data set, we built mul-
tiple independent recognition systems:

* For Fisher/Dev2 and Fisher/Test, and all of the Call-
home data, we used a recognition system built from
Fisher/Train and tuned on Fisher/Dev.

e For Fisher/Train and Fisher/Dev, we used a 10-fold
training and decoding scheme, where each fold was
trained, tuned, and tested on a distinct 80/10/10 split.
We then assembled these portions of the data set by
taking the corresponding data from the test portions of
these splits.

Each ASR system was built in the following manner. The
phonetic lexicon included words from the training corpus,
pronunciations for which were created using the LDC Span-
ish rule-based phonetic lexicon (LDC96L16). We then be-
gan with one round of monophone training, which was used
for alignment and subsequent training with triphone Gaussian
mixture models, which incorporated linear discriminant anal-
ysis with Maximum Likelihood Linear Transforms (MLLT)
[19]. The results of triphone training were then used for
Speaker Adaptive training [20, SAT]. Alignment and decod-
ing for the SAT training step incorporated fMLLR [21]. We
used a trigram language model derived solely from the train-
ing corpus and created with Kaldi tools.’

Along with the 1-best output, we extracted lattices rep-
resenting the recognition hypotheses for each utterance. We
applied epsilon-removal and weight-pushing to the lattices,
and pruned them with a beam width of 2.0. All of these op-
erations were performed using the OpenFST toolkit [22].

Finally, we also extracted and provide the oracle path
from these lattices. These are useful in helping to quantify
the missed performance in both the ASR and MT systems.
Statistics about the lattices are presented in Table 3.

kaldi. sourceforge.net
"The procedures, parameters, and design decisions of this process are
captured in a custom Kaldi recipe, now distributed with Kaldi.



WER
1-best Oracle \ # Paths

Fisher/Dev 41.3 19.3 28k
Fisher/Dev2 40.0 19.4 168k
Fisher/Test 36.5 16.1 48k

Callhome/Devtest 64.7 36.4 | 6,119k
Callhome/Evltest 65.3 37.9 | 1,328k

Table 3: Lattice statistics for the three Fisher and two Call-
home test sets. Word error rates correspond to the 1-best and
oracle paths from the lattice, and # Paths denotes the average
number of distinct paths through each lattice. The average

node density (the number of outgoing arcs) is 1.3 for Fisher
and 1.4 for Callhome.

4. Experimental Setup

Our main interest is in the downstream performance of the
MT system, and we report experiments varying different
components of the ASR-MT pipeline to examine their effect
on this goal. For Fisher, we use Dev for tuning the parame-
ters of the MT system and present results on Dev2 (reserving
Test for future use); for Callhome, we tune on Devtest and
present results on Evltest. Because of our focus on speech
translation, for all models, we strip all punctuation (except
for contractions) from both sides of the parallel data.

For machine translation, we used Joshua, an open-source
hierarchical machine translation toolkit written in Java [23].
Our grammars are hierarchical synchronous grammars [24].
Decoding proceeds by parsing the input with the source-side
projection of the synchronous grammar using the CKY+ al-
gorithm and combining target-side hypotheses with cube-
pruning [24]. This algorithm can easily be extended to lattice
decoding in a way that permits hierarchical decomposition
and reordering of words on the input lattice [25].

The decoder’s linear model comprises these features:

* Phrasal probabilities (p(e| f) and p(f|e))
* Lexical probabilities (w(e|f) and w(f|e))
* Rarity penalty, exp(1 — count(rule))

* Word penalty

¢ Glue rule penalty

* Out-of-vocabulary word penalty

* 5-gram language model score

+ Lattice weight (the input path’s posterior log probabil-
ity; where appropriate)

The language model is always constructed over the target side
of the training data. These features are tuned using k-best
batch MIRA [26], and results are reported on the average of
three runs. Our metric is case-insensitive BLEU-4 [27] with
four references (for Fisher) and one reference (for Callhome).

Training set

LDC
Interface Euro LDC ASR +ASR
Transcript 41.8 587 54.6 58.7
1-best 243 354 347 355
Lattice - 371 359 36.8
Oracle Path | 32.1 46.2 443 46.3

Table 4: BLEU scores (four references) on Fisher/Dev2. The
columns vary the data used to train the MT system, and the
rows alter the interface between the ASR and MT systems.

Training set
LDC
Interface Euro LDC ASR +ASR

Transcript 173 27.8 249 28.0
1-best 73 11.7 107 11.6
Lattice - 123 115 12.3
Oracle Path 9.8 164 152 16.4

Table 5: BLEU scores (one reference) on Callhome/Evltest.

5. Experiments

Our experiments largely center on an exploration varying one
of two major components in the ASR-MT pipeline: (a) the
training data used to build the machine translation engine, and
(b) the interface between the ASR and MT systems.

For (a), we examine four training data sets (Table 2):

* Euro. The version 7 release of the Spanish-English Eu-
roparl dataset [17], a corpus of European parliamentary
proceedings.

* LDC. An in-domain model constructed from paired
LDC Spanish transcripts and their corresponding En-
glish translations, on Fisher Train, as described above.

* ASR. An in-domain model trained on pairs of Spanish
ASR outputs and English translations.

* LDC+ASR. A model trained by concatenating the train-
ing data for LDC and ASR.

For (b), we vary the interface in four ways:

* Transcript. We translate the LDC transcripts. This
serves as an upper bound on the possible performance.

o [-best. We translate the 1-best output as presented by
the speech recognizer.

 Lattices. We pass a pruned lattice from the recognizer
to the MT system.

* Oracle Path. The oracle path from the lattice, repre-
senting the best transcription found in the ASR sys-
tem’s hypothesis space (subject to pruning).



INCORPORA
CORTAR

ESCOGER

DE < ) CUAL
—

CORTAN

TENEMOS

. PROGRAMAS ° QUE < )UTILIZAR

INCORPORAMOS

Transcript

si hablar de cudles y cosas pero tenemos que utilizar la palabra matrimonio supongo

1-best  si habla de cudl incorporamos que utilizar la palabra matrimonio supongo

Lattice

si habla de cual escoger tenemos que utilizar la palabra matrimonio supongo

Reference  yes [we can] talk about anything but we have to use the word marriage i guess

1-best — MT
Lattice - MT
1-best — Google

yes speaking of which incorporamosgoy to use the word marriage i suppose
yes speaking of which to choose we have to use the word marriage i suppose
does speak of what we incorporate to use the word marriage guess

Figure 1: A subgraph of a lattice (sentence 17 of Fisher/Dev2) representing an ASR ambiguity. The oracle path is in bold. With
access to the lattice, the MT system avoids the untranslatable word incorporamos, found in the 1-best output, producing a better
translation. Above the line are inputs and the reference, with the Lattice line denoting the path selected by the MT system. The
Google line is suggestive of the general difficulty in translating conversational speech.

Tables 4 and 5 contain results for the Fisher and Callhome
datasets, respectively. The rest of this section is devoted to
their analysis.

5.1. Varying the interface

The Transcript and Oracle Path interfaces represent upper
bounds of different sorts. Transcript is roughly how well we
could translate if we had perfect recognition, while Oracle
Path is how well we could translate if the MT system could
perfectly capitalize on the speech recognition lattice. From
these baseline scores, it’s clear that the quality of the speech
recognition is the biggest hindrance to downstream machine
translation quality, and therefore improving recognition ac-
curacy qualifies as the best way to improve it.

However, there is significant room for MT improve-
ment from the lattices themselves. Translating ASR lattices
produces consistently better results than translating ASR 1-
best output, corroborating an already well-attested finding
for speech translation. Interestingly, these results hold true
across the translation models, whether in-domain or out-of-
domain, and when built from both LDC and ASR training
data. It seems that the lattices truly contain paths that are
better-suited to the translation engine, regardless of what was
used to train the model. Figure 1 contains examples where
lattice translation improves over translation of the ASR 1-
best for this corpus.

In general, these numbers establish a relationship be-
tween word error rate and BLEU score. Figure 2 visualizes
this relationship, by breaking out the data from Fisher/Dev
and Fisher/Dev2 into its original twenty conversations, and
plotting WER and BLEU for each of them.
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Figure 2: Conversation-level WER and BLEU, for conver-
sations found in Fisher/Dev (open points) and Fisher/Dev2
(solid points). The Pearson’s correlation coefficient is -0.72.

5.2. Varying the training data

The BLEU scores between columns 1 and 2 clearly demon-
strate lessons well-known in the domain-adaptation litera-
ture. In our case, small, in-domain models built on the
Fisher/Train significantly outperform the much larger (by a
factor of twenty) but less relevant Europarl data. The test
sentences in the Fisher and Callhome corpora, with their in-
formal register and first-person speech, are a poor match for
models trained on Parliamentary proceedings and news text.



While unsurprising, these results demonstrate the utility of
the Fisher and Callhome Translation corpus for translating
conversational speech, and are a further footnote on the con-
ventional wisdom that “more data” is the best kind of data.

As an additional experiment, we tried building MT trans-
lation models from the Spanish ASR output (pairing the En-
glish translations with the ASR outputs instead of the Spanish
LDC transcripts on Fisher/Train), based on the idea that errors
made by the recognizer (between training and test data) might
be regular enough that they could be captured by the trans-
lation system. Columns 3 and 4, which show worse BLEU
scores than with the LDC translation model, provide prelim-
inary evidence that this is not the case. This is not to claim
that there is no utility to be found in training translation mod-
els on ASR output, but finding improvements from such will
require something more than simply concatenating the two
corpora.

6. Summary

We described the development and release of The Fisher and
Callhome Spanish-English Speech Translation Corpus. The
translations and ASR output (in the form of lattices and 1-
best and oracle paths) complement their corresponding LDC
acoustic data and transcripts, together producing a valuable
dataset for research into the translation of informal Span-
ish conversational speech. This dataset is available from the
Joshua website.
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