
A Discriminative Reordering Parser for IWSLT 2013

Hwidong Na and Jong-Hyeok Lee

Department of Computer Science and Engineering
Pohang University of Science and Technology (POSTECH), Republic of Korea

{leona, jhlee}@postech.ac.kr

Abstract
We participated in the IWSLT 2013 Evaluation Campaign for
the MT track for two official directions: German↔English.
Our system consisted of a reordering module and a statisti-
cal machine translation (SMT) module under a pre-ordering
SMT framework. We trained the reordering module using
three scalable methods in order to utilize training instances as
many as possible. The translation quality of our primary sub-
missions were comparable to that of a hierarchical phrase-
based SMT, which usually requires a longer time to decode.

1. Introduction
Word reordering is one of the most difficult problems in ma-
chine translation. Formally, word reordering refers to arrange
the source words into a target-like order, i.e. finding a permu-
tation of the source words. Because searching for all possible
permutations is an NP-complete problem, statistical machine
translation (SMT) systems have restricted their search space
for efficiency. For example, the simple distortion model in
phrase-based SMT (PBSMT) prohibit a long distance jump
beyond a window size during translation. Therefore, PBSMT
suffers from the lack of ability for word reordering at a long
distance.

Pre-ordering is one of the most prevailing approaches to
overcome this limitation of PBSMT. It is a pre-processing
method that reorders the source sentence in advance to
the later translation using PBSMT. We categorize previous
works into three categories. First, pre-ordering using local
information reorders either a (flat) word or chunk sequence
[1, 2, 3, 4]. Second, pre-ordering using syntactic information
manipulates a syntactic tree so that yield a reordered sentence
[5, 6, 7, 8, 9]. Third, pre-ordering using an ad-hoc structure
for word reordering induces a discriminative parser trained
from a parallel corpus, and apply the parser to obtain a re-
ordered source sentence [10, 11].

Both the second and third approaches work with hierar-
chical structures of the source sentence. While the second ap-
proach requires a syntactic parser which might not be avail-
able for resource-poor languages, the third one requires only
a small manual word aligned corpus in addition to a large par-
allel corpus. Hereinafter, therefore, we focus on the third ap-
proach. Because of the efficiency, the hierarchical structures
of the third approach restrict word reordering within a con-

Figure 1: The overall architecture of our system, consisting
of a reordering module (reordering parser) and a SMT mod-
ule

tinuous sequence under a sub-structure, i.e., the hierarchical
structures obey Inversion Transduction Grammar (ITG) [12]
constraints.

We participated in the IWSLT 2013 Evaluation Cam-
paign for the MT track, and submitted runs for two official
directions: German↔English. As German and English have
different word orders, we applied a pre-ordering method to
resolve the difference requires word reordering.

2. System description

Our system consists of two modules: a reordering module
and a SMT module. The reordering module rearranges the
words in the source sentence, and the SMT module translates
the reordered sentence into the target sentence. The overall
architecture of our system is shown in Figure 1. Because
we utilized an off-the-shelf SMT system [13] as the SMT
module, we focus on the reordering module here.

2.1. Discriminative reordering parser

We briefly summarize the discriminative reordering parser
in this section. The most relevant work of this paper was
proposed to induce a tree for word reordering produced by
a discriminative parser [11]. The goal of their method is to
find the best permutation π̂ for a given source sentence F ,
according to the following discriminative model.

Algorithm 1: Online learning for a training instance

1 procedure UpdateWeight(F, A, w)
2 D ← Parse(F, w)
3 Ḋ ← argmaxD∈D Score(D|F,w) + L(D|F,A)
4 D̂ ← argminD∈D L(D|F,A)− αScore(D|F,w)

5 if L(D̂|F,A) 6= L(Ḋ|F,A) then
6 w← β(w + γ(φ(D̂, F)− φ(Ḋ, F)))
7 end

π̂ = argmax
π

Score(π|F)

Score(π|F) = Score(D|F,w)

=
∑
i

wiφi(D,F) (1)

where D is a reordering tree for word reordering which yields
π, and wi and φi are the ith feature weight and function,
respectively.

To learn the weight vector w, they used the loss-driven
large-margin training [14] by finding Ḋ with the highest
model score (Eq. 1) and D̂ with the smallest loss. A loss
function L(D|F,A) is defined by word alignment A, where
[11] suggested two kinds of loss functions. Finally, the
weight is updated using the difference between the model
parse Ḋ and the oracle parse D̂. It is computationally
intractable to search over all possible permutations for π.
Hence, Ḋ and D̂ are selected among K-best parses encoded
in a hyper graph D. To break the tie, Score(D|F,w) and
L(D|F,A) are mutually augmented when selecting Ḋ and
D̂. The online learning for a training instance 〈F,A〉 with
the current weight vector w is shown in Algorithm 1 (taken
from [11]).

2.2. Scalable training method

We illustrate three methods to scale up the online learning
method which iterates several epochs over the training in-
stances. First, we adopted a faster search algorithm known
as Cube Growing, and integrated it into a parallel CYK pars-
ing method. Second, the feature generation process run in
parallel because it is a major bottleneck of parsing efficiency.
Third, the features generated at the first iteration are stored
on disk and used in the remaining epochs. In a consequence,
our proposed methods enable us to utilize tens of thousands
training instances in our experiments.

2.2.1. Cube Growing in parallel CYK parsing

Cube Growing is a dynamic programming algorithm for
searching over a hyper graph, proposed by [15]. It pro-
duces the kth-best parse on-the-fly, and thus does not enu-
merate unnecessary hypotheses during the search process.
More specifically, two data structures manage the hypothe-

Algorithm 2: Cube Growing in parallel CYK parsing

1 procedure Parse
input : A sentence w1 . . . wN

output: A hyper graph with K-best parses
2 for L ∈ [1, N] do
3 for l ∈ [0, N − L] // in parallel
4 do
5 r ← l + L
6 ModifiedCubeGrowing(l, r)
7 end
8 wait for terminating the cell-level parallelization
9 end

10 root← The root cell
11 for k ∈ [1,K] do
12 LazyKthBest(root.q, k)
13 end
14

15 procedure ModifiedCubeGrowing
input : A cell covering [l, r]
output: A priority queue q with candidates

16 for m ∈ (l, r] do
17 left← cell [l,m]
18 right← cell [m,r]
19 L← peek(left.q)
20 R← peek(right.q)
21 push(q, Hyp(L, R)) // straight
22 push(q, Hyp(R, L)) // inverted
23 end
24

25 procedure LazyKthBest
input : A priority queue q and the demanded k
output: The kth hypothesis in b

26 b← the list of best hypothesis
27 while size(b) < k + 1 and size(q) > 0 do
28 best← pop(q)
29 LazyNext(q, best)
30 push(b, best)
31 end
32

33 procedure LazyNext
input : A priority queue q and the hypothesis best
output: An extended priority queue q’
/* best.L and best.R are the left

and right children of best,
respectively */

34 L← LazyKthBest(left, rank(best.L)+1)
35 if L exists then
36 push(q, Hyp(L, best.R)) // straight
37 push(q, Hyp(best.R, L)) // inverted
38 end
39 R← LazyKthBest(right, rank(best.R)+1)
40 if R exists then
41 push(q, Hyp(best.L, R)) // straight
42 push(q, Hyp(R, best.L)) // inverted
43 end

ses: a list of best hypotheses and a priority queue of can-
didates for the next best hypothesis. If the kth-best parse is
already produced, it is the kth hypothesis in the best list. Oth-
erwise, Cube Growing enumerates hypotheses by taking the
best candidate from the priority queue until the kth hypothe-
sis can be found. Whenever the best candidate is taken from
the priority queue, successors of the candidate are pushed
on the priority queue, if possible. To obtain the successors,
Cube Growing is recursively performed.

[16] proposed that the original CYK parsing algorithm
can be parallelized in three levels: sentence-level, cell-level,
and grammar-level. Although they reported the grammar-
level parallelization achieved the fastest result using thou-
sands of GPUs, we adopted the cell-level parallelization. It is
possible to parallelize the original CYK parsing at cell-level
because the hypotheses in different chart cells covering same
number of words in the sentence do not affect each other.
Unfortunately, this property does not hold anymore in Cube
Growing because k-best hypotheses are enumerated on de-
mand. Therefore, a race condition arises if we directly apply
Cube Growing in the cell-level parallelization.

We modified Cube Growing to fit in the cell-level paral-
lelization. To avoid the race condition, the modified Cube
Growing directly accesses to the priority queue for the first
best hypothesis. It is postponed to move the first best hy-
pothesis to the best list until the second best hypothesis is
requested. From the second best parses, the modified Cube
Growing does not run in parallel, which is identical to the
original one. Algorithm 2 shows the entire procedures for
the cell-level parallelization with the modified Cube Grow-
ing.

2.2.2. Parallel feature generation

The feature function φ in the discriminative model (Eq. 1) is
further decomposed into the edge level in a reordering tree.

φi(D,F) =
∑
d∈D

φi(d, F) (2)

Score(D|F,w) =
∑
d∈D

∑
i

wiφi(d, F) (3)

where d is a hyper edge in the hyper graph. Because most
of feature functions φi(d, F) involve string operations, the
feature generation becomes a major bottleneck of parsing ef-
ficiency. In a pilot study of our experiments, the feature gen-
eration is the most time-consuming process, which takes over
80% of the total parsing time.

Our proposed method parallelizes the feature generation
in advance to produce a reordering tree. For a length-N sen-
tence, there are N(N − 1)/2 hyper edges in the hyper graph
D. For each hyper edge, there are two possible orientations
straight and inverted. Hence, the feature generation is per-
formed N(N − 1) times in total.

With careful design of the feature function, the feature
generation can be parallelized: If the feature function is de-

Table 1: The statistics of corpora. Figures are the number
of sentences. The first column shows the number of par-
allel sentences, and the second and third column show the
numbers of monolingual sentences in German and English,
respectively.

Data source Parallel German English
WIT3 [17] 138,499 146,206 158,641
Newswire 58,908 Not Used
Europarl 2,399,123 Not Used

Comman Crawl 1,920,209 Not Used
News Commentary 178,221 204,276 247,966
News Crawl 2007 0 1,965,298 3,782,548
News Crawl 2008 0 6,690,332 12,954,477
News Crawl 2009 0 6,352,613 14,680,024
News Crawl 2010 0 2,899,914 6,797,225
News Crawl 2011 0 16,037,788 15,437,674
News Crawl 2012 0 20,673,844 14,869,673

Total 4,694,960 54,970,271 68,828,228

fined only in a single level of the tree, in other words, a fea-
ture set generated from the feature function for a hyper edge
is independent from that for the other edge. Therefore, two
feature sets for two orientations are stored for each hyper
edge, and thus N(N − 1) feature sets in the hyper graph in
total.

2.2.3. On disk feature

For each iteration, the feature sets generated by the fea-
ture function are identical, and the feature weights are only
updated. To avoid redundant feature generation processes,
reusing the generated features help the later iteration speed
up. As the number of generated features is usually huge,
however, it might be impossible store them in memory.

Our proposed method writes the features on disk after
the generation instead of keeping them in memory. We sim-
ply create a file for each sentence with a identification of the
sentence in the file name. At the actual parsing time, the gen-
erated features are recovered from the file for each sentence.
Then the parser begins to search the best permutation π us-
ing the features according to the discriminative model. For
each iteration, in other words, we skip the feature generation
process and reuse the generated features at the first time.

3. Experimental result
In our experiments, we developed a reordering parser based
on [11], LADER1, and utilized a phrase-based SMT system
Moses [13] for a reordering module and SMT module, re-
spectively. The tokenize.perl2 segmented German and
English sentences into words. Word alignment of the seg-
mented sentence pairs was performed using MGIZA++ [18]
for both German↔English directions, and refined using the

1https://github.com/hwidongna/lader
2http://statmt.org/wmt08/scripts.tgz

Table 2: The official evaluation results. XYZ in the first col-
umn refers the source X, the target Y and the priority of our
run, where 1 is the primary and 2 is the contrastive. tst2013*
denotes the results are measured on the reference with disflu-
ency.

Case-sensitive Case-insensitive
Run Data BLEU TER BLEU TER
DE1 tst2013* 0.2126 0.6760 0.2174 0.6671
DE1 tst2013 0.2117 0.6890 0.2165 0.6804
ED1 tst2011 0.2348 0.5370 0.2406 0.5289
ED1 tst2012 0.2043 0.5913 0.2102 0.5805
ED1 tst2013 0.2243 0.5757 0.2300 0.5657
ED2 tst2011 0.2370 0.5337 0.2432 0.5256
ED2 tst2012 0.2036 0.5892 0.2105 0.5780
ED2 tst2013 0.2237 0.5764 0.2296 0.5665

grow-diag-final-and heuristics. A reordering parser
utilized words and their automatically derived classes in the
feature function. The training instances of the reordering
parser were randomly selected among the word-aligned sen-
tence pairs that licensed under ITG (around 3.5M sentences).
For each iteration, the feature weights were updated using
10K instances according to Algorithm 1 and the maximum
number of iterations was set to 100. We used the data sup-
plied by the organizers of listed on the IWSLT 2013 Evalua-
tion Campaign site. Table 1 summarizes the data statistics.

We submitted three runs: one for German-to-English
(DE1) and two for English-to-German (ED1 and ED2). Our
primary runs (DE1 and ED1) were the results of the pre-
ordering framework explained in Section 2. ED2 was a con-
trastive run using a hierarchical phrase-based SMT, which
requires a longer time to decode. The decoding time of ED1
is almost half of ED2 excluding the reordering time. Table 2
shows the official results of the evaluation. The results from
the other participant can be found in the overview paper [19].

Acknowledgement This work was partly supported by the
IT R&D program of MSIP/KEIT (10041807), the CSLi
corporation, the BK 21+ Project, and the National Korea
Science and Engineering Foundation (KOSEF) (NRF-2009-
0075211).

4. References
[1] Y. Zhang, R. Zens, and H. Ney, “Chunk-level reorder-

ing of source language sentences with automatically
learned rules for statistical machine translation,” in
Proceedings of SSST, NAACL-HLT 2007/AMTA Work-
shop on Syntax and Structure in Statistical Translation,
2007, pp. 1–8.

[2] R. Tromble and J. Eisner, “Learning linear ordering
problems for better translation,” in Proceedings of the
2009 Conference on Empirical Methods in Natural

Language Processing: Volume 2-Volume 2. Associ-
ation for Computational Linguistics, 2009, pp. 1007–
1016.

[3] K. Visweswariah, R. Rajkumar, A. Gandhe, A. Ra-
manathan, and J. Navratil, “A word reordering model
for improved machine translation,” in Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Lin-
guistics, 2011, pp. 486–496.

[4] M. M. Khapra, A. Ramanathan, and K. Visweswariah,
“Improving reordering performance using higher or-
der and structural features,” in Proceedings of the
2013 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Atlanta,
Georgia: Association for Computational Linguis-
tics, June 2013, pp. 315–324. [Online]. Available:
http://www.aclweb.org/anthology/N13-1032

[5] F. Xia and M. McCord, “Improving a statistical mt
system with automatically learned rewrite patterns,” in
Proceedings of the 20th international conference on
Computational Linguistics. Association for Computa-
tional Linguistics, 2004, p. 508.

[6] M. Collins, P. Koehn, and I. Kučerová, “Clause restruc-
turing for statistical machine translation,” in Proceed-
ings of the 43rd Annual Meeting on Association for
Computational Linguistics. Association for Computa-
tional Linguistics, 2005, pp. 531–540.

[7] P. Xu, J. Kang, M. Ringgaard, and F. Och, “Using a de-
pendency parser to improve smt for subject-object-verb
languages,” in Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics. Association for Computational Lin-
guistics, 2009, pp. 245–253.

[8] D. Genzel, “Automatically learning source-side re-
ordering rules for large scale machine translation,” in
Proceedings of the 23rd International Conference on
Computational Linguistics. Association for Computa-
tional Linguistics, 2010, pp. 376–384.

[9] H. Isozaki, K. Sudoh, H. Tsukada, and K. Duh, “Head
finalization: A simple reordering rule for sov lan-
guages,” in Proceedings of the Joint Fifth Workshop
on Statistical Machine Translation and MetricsMATR.
Association for Computational Linguistics, 2010, pp.
244–251.

[10] J. DeNero and J. Uszkoreit, “Inducing sentence
structure from parallel corpora for reordering,” in
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, ser. EMNLP ’11.

Stroudsburg, PA, USA: Association for Computational
Linguistics, 2011, pp. 193–203. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2145432.2145455

[11] G. Neubig, T. Watanabe, and S. Mori, “Induc-
ing a discriminative parser to optimize machine
translation reordering,” in Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natu-
ral Language Learning, ser. EMNLP-CoNLL ’12.
Stroudsburg, PA, USA: Association for Computational
Linguistics, 2012, pp. 843–853. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2390948.2391039

[12] D. Wu, “Stochastic inversion transduction grammars
and bilingual parsing of parallel corpora,” Computa-
tional linguistics, vol. 23, no. 3, pp. 377–403, 1997.

[13] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, et al., “Moses: Open source toolkit
for statistical machine translation,” in Annual meeting-
association for computational linguistics, vol. 45,
2007, p. 2.

[14] K. Crammer, O. Dekel, J. Keshet, S. Shalev-
Shwartz, and Y. Singer, “Online passive-aggressive
algorithms,” J. Mach. Learn. Res., vol. 7, pp.
551–585, Dec. 2006. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1248547.1248566

[15] L. Huang and D. Chiang, “Better k-best parsing,” in
Proceedings of the Ninth International Workshop on
Parsing Technology, ser. Parsing ’05. Stroudsburg,
PA, USA: Association for Computational Linguistics,
2005, pp. 53–64. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1654494.1654500

[16] A. Dunlop, N. Bodenstab, and B. Roark, “Ef-
ficient matrix-encoded grammars and low latency
parallelization strategies for cyk,” in Proceedings
of the 12th International Conference on Pars-
ing Technologies, ser. IWPT ’11. Stroudsburg,
PA, USA: Association for Computational Lin-
guistics, 2011, pp. 163–174. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2206329.2206349

[17] M. Cettolo, C. Girardi, and M. Federico, “Wit3: Web
inventory of transcribed and translated talks,” in Pro-
ceedings of the 16th Conference of the European Asso-
ciation for Machine Translation (EAMT), Trento, Italy,
May 2012, pp. 261–268.

[18] Q. Gao and S. Vogel, “Parallel implementations
of word alignment tool,” in Software Engineering,
Testing, and Quality Assurance for Natural Language
Processing, ser. SETQA-NLP ’08. Stroudsburg,
PA, USA: Association for Computational Linguistics,

2008, pp. 49–57. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1622110.1622119

[19] M. Cettolo, J. Niehues, S. Stker, L. Bentivogli, and
M. Federico, “Report on the 10th iwslt evaluation cam-
paign,” in Proceedings of the 10th International Work-
shop on Speech Language Translation, 2013.

