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Abstract

We present our systems for the machine translation evalua-
tion campaign of the International Workshop on Spoken Lan-
guage Translation (IWSLT) 2013. We submitted systems
for three language directions: German-to-English, Russian-
to-English and English-to-Russian. The focus of our ap-
proaches lies on effective usage of the in-domain parallel
training data. Therefore, we use the training data to tune pa-
rameter weights for millions of sparse lexicalized features us-
ing efficient parallelized stochastic learning techniques. For
German-to-English we incorporate syntax features. We com-
bine all of our systems with large language models. For
the systems involving Russian we also incorporate more data
into building of the translation models.

1. Introduction

This paper describes Heidelberg University (HDU)’s ma-
chine translation (MT) systems built for the IWSLT 2013 MT
evaluation campaign. We submitted results for three transla-
tion directions: German-to-English, Russian-to-English and
English-to-Russian.

Our German-to-English system does not use any parallel
data other than the data provided by the organizers. Hence,
we try to use this small amount (as compared to data avail-
able for other domains) of parallel data as effectively as pos-
sible by using the full training data to tune models with mil-
lions of features, e.g. lexicalized features derived from trans-
lation rules. The model parameters are learned by a percep-
tron algorithm in a pairwise-ranking framework with shard-
ing for parallelization. See subsection [I.2] for a full expla-
nation of this learning framework and a brief description of
the features. For German-to-English we additionally experi-
mented with the soft-syntactic constraints of L] to determine
whether or not they can improve spoken language translation.

The systems for the Russian-to-English and English-to-
Russian directions were built using the same techniques, but
with additional parallel training data for the translation model
estimation, as the baseline systems are of low quality — with
BLEU scores far below the 20% mark.

All systems make use of large language models (LM) at
test-time. We do not use any data filtering or domain adap-
tion techniques for any of our systems.

1.1. Technical System Commonalities

The systems described in this paper are all based on the hier-
archical phrase-based paradigm for statistical machine trans-
lation [2] using the cdec[ﬂ [3] decoding framework.

Pre- and post-processing, i.e. (de-)tokenization and re-
casing were done using the moses toolkiﬂ The recaser was
always trained with default parameters using solely the tar-
get side of the provided parallel data (parallel transcriptions
of TED talks) — even if the rest of the system was trained
using more data.

Word alignments for the parallel data were built accord-
ing to a variant of IBM’s model 2 as described in [4] using the
associated implementatiorﬂ To obtain many-to-many align-
ments, models for both directions were built and the resulting
alignments were symmetrized using the grow-diag-final-and
heuristic. We applied a Dirichlet prior on the lexical transla-
tion distributions and favored alignments that are close to the
monotonic diagonal using default parameters for all language
pairs.

Hiero-style grammars — allowing only a single type of
non-terminal X — were built using the suffix array technique
described in [|5] with parameters as in [2].

All Language models use modified Kneser-Ney smooth-
ing and are estimated using the implementatiorﬂ of [6].

System-selection was carried out using either a
tournament-like subjective evaluation of several annotators
on a random sample of 30 translations for each round; or
simply based on automatic scoring results on the develop-
ment test set, which was t st 2010 for all language pairs.

Evaluation scores reported in this paper are calculated
with cased and tokenized text using MultEvalE], so that our
results are comparable to the official results of the evaluation
campaign of IWSLT 2012. All MERT results we report are
averaged scores over three runs, to overcome optimizer in-
stability (see [7]). All other methods discussed in this paper
are stable in this respect.

'http://www.cdec—decoder.org/
Zhttps://github.com/moses-smt/mosesdecoder
3https://github.com/clab/fast_align
4http://kheafield.com/code/kenlm/estimation/
Shttps://github.com/jhclark/multeval
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Figure 1: Pairwise ranking-optimization algorithm with
£1 /€5 regularization that enables the use of large tuning sets
and millions of sparse features. The data is divided into
evenly sized shards, which can then be processed in parallel.
The core of the algorithm is the stochastic gradient update in
the innermost loop. After all shards are finished, the regular-
ization selects the top K features by ¢5 norm of weights over
shards for another epoch.

1.2. Tuning on the Training Set

To effectively make use of the limited in-domain parallel
training data we employ the technique of [8]] to train mod-
els with a large number of features using the full training
set. The parameters of the translation and language models
as well as other dense features are trained simultaneously.

While the amount of in-domain parallel data provided is
small compared to other data sets, tuning on this amount of
data is a non-trivial task, as most approaches are tailored to
use a few thousand parallel segments.

The approach described in [8]] enables the use of millions
of sparse features using hundreds of thousands parallel seg-
ments. The algorithm is shown in Figure[I] The core of this
algorithm is the stochastic gradient update in the innermost
loop. With this, the algorithm seeks to minimize the follow-
ing loss in a pairwise-ranking setup (see e.g. [9]]):

where X = x(1) —x(?); x are feature representations of trans-
lations; x(1) is preferred over x() by a local approximation
of the BLEU score as discussed in detail in [10ﬂ Taking the
derivative of this loss function leads to a standard perceptron
update.

As [[11] show, the theory behind the perceptron algorithm
still holds — as an instance of stochastic gradient descent —

SQur variant is grounded and BP-smoothed, as we found superior perfor-
mance compared to other variants.

when training data is sharded and resulting parameters are
averaged. [8] extend this by adopting ¢; /¢5 regularization,
which limits the number of features in the model and thus
improves efficiency. For use with a single set of parallel seg-
ments (e.g. a standard development set) the whole algorithm
reduces to the innermost loop. In this case, the weight vec-
tors of all epochs are averaged to obtain the final model, see
[12] for a theoretical and empirical background.

Several sparse feature templates are used, all of which are
derived from translation rules:

e rule id: Each rule is a feature in the new model.

e rule n-grams: n-grams of source and target side of
rules (including non-terminals); we use bigrams for
both source and target.

e rule shape: Each rule is represented by its shape de-
fined by its composition of terminal and non-terminals,
see [8] for an example.

We call this method “dtrain”, no matter what amount of
training data is used for tuning. Please note that in this paper
dtrain is always combined with the sparse feature set as listed
above.

To prevent overfitting on the training set, we employ the
“folding” method described in [13]] when building translation
and language models for shards. For each shard, separate
language and translation models are built from all available
data, but excluding the data of the current shard.

2. German-to-English

For German-to-English we only use the provided parallel
TED data for estimation of the translation model: 138,499
parallel segments, with 2,639,101 German and 2,762,380
English tokens after pre-processing. German compound
words were split using the empirical approach described in
[L4]. The compound splitting model was trained on the Ger-
man side of the parallel corpus using the defaults of the im-
plementation in the moses toolkit.

As English is the prevalent language in machine trans-
lation evaluation campaigns, there is a wide range of freely
available English corpora to build large language models. We
used the data listed in Table [2] to build a 5-gram language
model, which was only used for evaluation at test time. An-
other 5-gram LM was built from the LDC2011T07 corpus
(English Gigaword Fifth Edition, “Giga”) alone. For tun-
ing and development we used a 4-gram language model built
from the provided monolingual TED data.

2.1. Syntax Features

In decoding with the hierarchical phrase-based approach
there is the possibility to reward proper use of syntax on
source- or target-side, as hierarchical derivations are built for
both sides during the process. [1l] introduce soft-syntactic
constraints to reward partial derivations which correspond



System | TED 4-gram LM | Giga 5-gram LM | Large 5-gram LM
baseline 26.7 - -
mert-dev 26.7 28.1 28.4
dtrain-dev 27.6 28.8 28.8
dtrain-train(clustered)* 28.0 29.4 29.6
dtrain-train+soft-syntax 28.1 28.9 -
dtrain-train™ 28.1 29.2 29.6

Table 1: German-to-English evaluation results on tst2010 in % BLEU-4. MERT was used to tune the dense weights of
the hierarchical phrase-based system using the dev2010 set. dtrain exploits the full sparse feature set for dev2010. Systems
below the double dash are large-scale experiments utilizing the full training set for tuning. We submitted three systems: * primary,
T contrastive #1, T contrastive #2. Our best results are marked in bold.

Corpus Segments Tokens

10° FR-EN Release2 22,520,400 575,667,242
Europarl v7 (merged) 2,342,410 58,567,624
News Comm. v8 (merged) 272,508 6,363,229
News Crawl 2007 3,782,548 77,701,721
News Crawl 2008 12,954,477 265,801,031
News Crawl 2009 14,680,024 300,118,377
News Crawl 2010 6,797,225 136,709,612
News Crawl 2011 15,437,674 309,687,553
News Crawl 2012 14,869,673 299,023,941
UN corpus 14,118,662 343,386,910
LDC2011T07 187,848,540  4,872,200,262

> 295,624,141 7,245,227,502

Table 2: Counts of corpora used for the large English lan-
guage model. English sides of parallel data sets and corre-
sponding monolingual data were merged by repeating each
unique segment the maximum number of times it has oc-
curred in any of the files involved in the process.

to syntactic constituents on the source side. This is done
through features which indicate proper syntactic structures
in the parse of the source sentence. This way, the system can
learn whether or not it is beneficial to the evaluation metric
optimized in tuning to match or crossﬂ syntactic constituents
(e.g. NP, VP etc.). For each rule application, the feature
searches a pre-computed syntax tree for a constituent match-
ing its span. We used the Stanford Parselﬁ for pre-computing
the German parses. This approach is considered “soft”, as it
is feature-based and therefore only encodes preferences, not
enforcing hard constraints.

2.2. Experiments

We conducted several preliminary experiments with this lan-
guage pair, the results were carried over to our other systems:
A search for a good trade-off between speed and performance
for the shard size (we found 2,200 segments per shard to

TTwo features are defined for each non-terminal label.
Shttp://nlp.stanford.edu/software/lex-parser.
shtml

be a good value) and a coarse grid search for the optimal
learning rate of the pairwise-ranking optimization (dtrain).
Our main results for German-to-English are shown in Table
[[l “mert-dev” is a simple recreation of the official baseline
using our hierarchical phrase-based system, including our
pre- and post-processing. “dtrain-dev” uses our method for
pairwise-ranking optimization on the same development set
(dev2010) with the full sparse feature set, i.e. rule id, rule
bigrams and rule shape features. We see that this already
gives an improvement of about 1.0 BLEU% point over mert-
dev. Adding the large language model when evaluating leads
to further improvements.

For each of the experiments conducted on the training set
(“dtrain-train*”") the full sparse feature set was used. “dtrain-
train(clustered)” is a system where we clustered the talks in
the training set according to their assigned keywords, fol-
lowing the intuition of [15] that data should be divided by
natural “tasks” for optimal learning. We chose the number
of clusters such that the shard size was comparable to the
optimal shard size found in preliminary experiments. This
resulted in a use of about 70% of the original training data,
as some clusters were just too small to be included. The sec-
ond system (““dtrain-train+soft-syntax”) utilized the training
set, partitioned into equally sized shards (2,200 segments per
shard), including the soft-syntactic constraint features as de-
scribed in subsection [2.1] in addition to the sparse features.
We used all available 20 non-terminal symbols, resulting in
40 features overall. Our third submitted system for German-
to-English, “dtrain-train”, is equivalent to the previous de-
scribed system, but does not make use of the soft-syntactic
constraints. We find very similar performance in all of our
training set experiments, with the exception that the system
with syntax features is falling behind when scaling to larger
language models (we did not use the largest language model
with this system due to time constraints).

Using the large language model and our best system we
see an improvement of 2.9 BLEU% points over the official
baseline.
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Corpus Segments RU Tokens EN Tokens

Common Crawl 878,386 17,399,366 18,772,065
Yandex 1M corpus 1,000,000 20,237,417 22,796,278
News Commentary v8 150,217 3,269,668 3,488,752
Wiki Headlines 444,532 917,277 1,045,416

TED parallel data 128,592 2,218,547 2,575,289

> 2,601,727 44,042,275 48,677,800

Table 3: Corpora that were combined for the extended
Russian-to-English translation model.

3. Russian-to-English

[[L6] show that translating into or from Russian is harder than
translation of other Romanic or Germanic languages, at least
in the TED domain. The provided parallel and monolin-
gual TED training data is of similar size as for the German-
English language pair. Therefore, we used additional data
besides the official parallel TED data for building the trans-
lation model. The data sets used for this are listed in Table
B] We reused the English language models from the German-
to-English systems.

3.1. Experiments

The cascade of experiments conducted for the Russian-to-
English direction is shown in Table @l We approximately
match the baseline using our standard hierarchical phrase-
based system (mert-dev). There are small improvements us-
ing the sparse feature set and utilizing the pairwise-ranking
optimization (dtrain-dev). When enabling the large language
model while tuning, we achieve additional 0.3 BLEU%
points improvement. We see big gains with the enlarged
translation model, at least 2.0 points for all systems.

Increasing the amount of training data for the pairwise-
ranking optimization does not improve over the best system
on the small development set when using the small transla-
tion model.

The best result, with an improvement of 3.7 BLEU%
points over our baseline, was achieved by scaling up all as-
pects of the machine translation system, the language and
translation models, as well as the training data size for dtrain.
But note that this system only used 42,000 segments of the
available TED training data, as the “folding” technique de-
scribed in subsection[I.2]is very time consuming when used
in combination with larger amounts of parallel data.

4. English-to-Russian

English-to-Russian is a very challenging translation direction
in the TED domain, which is reflected by low baseline eval-
uation scores — the baseline reported in [17] is about 12.5
BLEU% points. Hence, we chose to use more parallel train-
ing data for the English-to-Russian system, the same data as
used for the Russian-to-English system. We built a 4-gram
language model from the provided monolingual data and a

Corpus  Segments Tokens

Common Crawl 878,386 17,399,366

News Comm. v8 (Russian tgt) 150,217 3,269,668
News Comm. v8 (Russian) 183,083 3,649,222
Yandex 1M Corpus 1,000,000 20,237,417

News Crawl 2008 38,195 587,775

News Crawl 2009 91,119 1,331,658

News Crawl 2010 47,818 652,288

News Crawl 2011 9,945918 142,629,530

News Crawl 2012 9,789,861 143,407,485

TED Russian data 136,101 1,859,376

> 22,260,698 335,023,785

Table 5: Data for the large Russian language model.

large Russian 5-gram language model from the data listed in
Table

4.1. Experiments

Results for the English-Russian experiments are given in
Table Our MERT-trained baseline with dense features
(“mert-dev”) achieves about the same performance as the of-
ficial phrase-based baseline. Using only the dense feature
set, this system does not benefit strongly from using the en-
larged translation model. We manage to improve over MERT
using sparse features and the pairwise-ranking optimization
on the development set (“dtrain-dev”). If the large Russian
language model is used during tuning and evaluation, we ob-
tain another improvement of 0.2 points. Our best results are
obtained using dtrain on the development set with sparse fea-
tures and the extended translation model. While the improve-
ment using the small 4-gram language model is not large at
0.3 points, the combination of the large translation model and
the large language model for evaluation is very significant
and leads to an overall improvement of 2.4 BLEU% points
over our baseline.

Using the full training data for dtrain leads to inferior
results for this translation direction. The reasons for this re-
main to be investigated. Therefore, we did not try to use the
enlarged translation model with this approach.

5. Conclusions

For all language pairs we considered, our baseline hierar-
chical phrase-based systems perform on a par with the offi-
cial baselines that build upon the phrase-based moses toolkit.
Adding sparse features derived from translation rules helps
for all language pairs, even if their parameters are estimated
on a small development set. Scaling up in terms of training
data for the pairwise-ranking optimization leads to further
improvements, with the notable exception of our English-to-
Russian system, where we have a weak translation model.
Increasing the size of the language model is a trivial but ef-
fective improvement, even more so without applying any fil-
tering or domain adaptation techniques. A drawback to these



System | TED 4-gram LM | Large 5-gram LM
baseline 17.2 -
mert-dev 17.0 17.5
dtrain-dev 17.2 17.8
dtrain+large LM™ - 18.1
dtrain+large TM 19.2 19.8
dtrain+large TM+large LM - 20.1
dtrain-train’ 17.7 18.4
dtrain-train+large LM+large TM* - 20.7

Table 4: Results for Russian-to-English systems on t st 201 0. We submitted three systems: * primary, T contrastive #1, * con-
trastive #2. Our best result is marked in bold. Systems in italics were not available for the submission deadline.

System | TED 4-gram LM | Large 5-gram LM
baseline 12.5 -
mert-dev 12.4 13.1
mert-dev+large TM 12.5 13.5
dtrain-dev 12.8 13.7
dtrain-dev+large LM - 13.9
dtrain-dev+large TM* 13.1 14.8
dtrain-dev+large LM+large TM - 14.6
y dtrain-train’ | 11.8 \ 13.2 \

Table 6: Results for English-Russian systems on t st 2010 in % BLEU-4. * denotes the primary system for this language pair;

t the contrastive system. Our best result is marked in bold.

simple improvements is the strongly increased computational
requirements, although most of the tools we used scale up
nicely.

6. Official Results

Table [/| shows the official results for our submitted systems
for the three translation directions we participated in. All
systems use the largest language model built for their respec-
tive target language. Unlike the development and training
sets, the source for tst2013 contained disfluencies, thus
the organizers calculated BLEU scores using two different
reference sets, one with and one without disfluencies. Our
systems seem robust, as both of the scores are nearly iden-
tical, e.g. our primary system for German-to-English scores
23.06 without disfluencies and 22.91 with disfluencies in the
reference. Our primary submission for Russian-to-English
was erroneous, using a small scale translation model when
the large TM was used for tuning. Corrected, the primary
Russian-to-English system shows good performance, scaling
up in all aspects of the translation system: language model
(used for tuning and evaluation), translation model, feature
set and tuning data size. The English-to-Russian system de-
picts the same gap between small and large tuning set size as
shown on the development test set.
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