The Speech Recognition and Machine Translation System of IOIT for IWSLT 2013

Ngoc-Quan Pham, Hai-Son Le
Tat-Thang Vu, Chi-Mai Luong

Institute of Information and Technology (IOIT),
Vietnamese Academy of Science and Technology (VAST)

(quanpn, lehaison, vtthang, lcmai) @ioit.ac.vn

Abstract

This paper describes the Automatic Speech Recognition
(ASR) and Machine Translation (MT) systems developed
by IOIT for the evaluation campaign of IWSLT2013. For
the ASR task, using Kaldi toolkit, we developed the system
based on weighted finite state transducer. The system is con-
structed by applying several techniques, notably, subspace
Gaussian mixture models, speaker adaptation, discriminative
training, system combination and SOUL, a neural network
language model. The techniques used for automatic seg-
mentation are also clarified. Besides, we compared different
types of SOUL models in order to study the impact of words
of previous sentences in predicting words in language mod-
eling. For the MT task, the baseline system was built based
on the open source toolkit /N-code, then being augmented by
using SOUL on top, i.e., in N-best rescoring phase.

1. Introduction

This paper describes the two systems developed by IOIT,
serving the two tasks in the IWSLT 2013 evaluation cam-
paign, namely Automatically Speech Recognition (ASR) and
Machine Translation (MT).

The English ASR task focuses on translating TED talks
which are a collection of public lectures on a variety of top-
ics, ranging from Technology, Entertainment to Design. Ap-
parently, the hindrances in the track are the spontaneous and
natural way of speech, interruption of invalid noises such as
music or applauses or dealing with topic adaptation. This
year, since the evaluation data is no longer provided with
manual sentence segmentation, dividing the long audio files
into short utterances properly becomes a new challenging ob-
stacle. For this task, we use Kaldi [1] to construct the sys-
tem based on state-of-the-art techniques, notably, subspace
Gaussian mixture models, speaker adaptation, discrimina-
tive training, system combination and SOUL [2], a neural
network language model (NNLM). Finally, the system is a
combination of two systems differing in acoustic model, aug-
mented by rescoring the output N-best list with SOUL lan-
guage models. Besides, we study the impact when SOUL
language models take into account words of previous sen-
tences in the context.

On the English to French MT task, since it is our first
participation, our aim is to build a whole system from scratch
using open source toolkits for normalization, tokenization,
tagging, data filtering, system construction. .. which will be
served as a baseline system for future research. The system
is based on N-code!, a bilingual n-gram approach for MT
and the use of SOUL in N-best rescoring.

The organization of the paper is as follows: Section 2 is
the description of our ASR system. While acoustic model
training procedure is presented in Section 2.1, the automatic
segmentation process is described in Section 2.2. The lan-
guage modeling with three types of SOUL models are de-
scribed in Section 2.3. Then, in Section 2.4, the decoding
procedure will be presented in detail. Section 2.5 is devoted
to ASR experimental results and our analyses . Section 3
is concentrated on the MT task. It consists of three parts:
Section 3.1 for data preprocessing, Section 3.2 for the de-
scription of our system and Section 3.3 for the experimental
evaluation.

2. Automatic Speech Recognition Task
2.1. Acoustic Modeling
2.1.1. Training corpus

We decided to collect TED lectures as training materials, in
order to guarantee the homogeneity of training and devel-
opment data in terms of speaking environment and speaking
style. Approximately 220 hours of audio, distributed among
920 talks, were crawled with their subtitles, which were de-
liberately used for making transcripts. However, the pro-
vided subtitles do not contain the correct time stamps cor-
responding with each phrase as well as the exact pronunci-
ation for the words spoken, which lead to the necessity for
long-speech alignment.

Proved to be effective for long-speech alignment task,
SailAlign [3, 4] is applied to extract text-aligned speech seg-
ments, which helps us to not only acquire the transcript with
exact timing, but also to filter non-spoken sounds such as
music or applauses. A part of these noises are kept for noise
training while most of them are abolished. After that, the re-
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mained audio used for training consists of around 175 hours
of speech, distributed among nearly 175K utterances.

The lexicon was built based on the Carnegie Mellon Uni-
versity (CMU) Pronouncing Dictionary v0.7a, in which the
phoneme set contains 39 phonemes and the word set contains
131,137 words. The vowels may also vary in lexical stress,
ranging from no stress, primary stress to secondary stress.

2.1.2. Front-end

The front-end of the system is based on the conventional
Mel-frequency cepstral coefficients (MFCC) features. The
initial feature vectors, which contain 39 coefficients includ-
ing 12 cepstral coefficients, 1 energy coefficient added with
delta and double-delta features were extracted after window-
ing with the window size of 25 milliseconds and frame shift
of 10 milliseconds. After that, Ceptral Mean and Variance
Normalization (CMVN) was applied for normalization.

2.1.3. Training Procedure

The acoustic models were based on Hidden Markov Model
(HMM), using Gaussian Mixture Models (GMM) for emis-
sion probabilities. In order to model context dependency, we
used the tri-phone setup, with three states per phoneme and
the topology was left-to-right. The model was trained with
the expectation-maximization (EM) algorithm with a split-
ting procedure according to the maximum likelihood crite-
rion. After splitting, the total number of gaussians, which
are initiated at 2000, reached 200000. Furthermore, Maxi-
mum Likelihood Linear Regression (MLLR) technique was
used to adapt the acoustic models with speaker information,
for which we assumed that each TED talk in the training data
is corresponding to one speaker.

Figure 1 reveals that we developed the systems in two di-
rections after the baseline. On one hand, the acoustic model
was strengthened throughout further training with subspace
GMM, which was proved to significantly increase the system
performance [5]. The SGMM model was then enhanced with
discriminative training, producing the SGMM-MMI system.
On the other hand, feature space discriminative training was
implemented on top of the baseline system, to create the
fMMI system. In order to display the progressive result, the
error rates on dev2010 and tst2010 data are illustrated in Ta-
ble 1. It is notable that the language model used in the ex-
periments is the 3-gram LM described in Section 2.3. The
SGMM was able to improve the performance of our sys-
tem by 8% relatively, while discriminative training on top
of the SGMM system showed its effectiveness by reducing
the error rates by 13%. Feature space MMI training over the
baseline system was efficient enough to reduce 18% of er-
rors relatively. In brief, the SGMM+MMI training on top of
the baseline system was slightly better than the counterpart
trained with fMMI.

Feature
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Tri-phone GMM Training Training
training -
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Figure 1: Training Procedure diagram

Table 1: Progressive results shown by consecutively trained
systems

System WER
dev2010 | tst2010
MFCC+LDA+SAT (baseline) 26.6 26.4
baseline+SGMM 24.9 24.2
baseline+SGMM-+MMI 21.8 21.1
baseline+fMMI 21.9 21.6

2.2. Auto-segmentation

Since the evaluation data in 2013 is no longer provided with
timing information for segmentation, we utilize the LIUM
Diarization toolkit [6] in order to divide the talk into small
sentence-like segments,

Figure 2 provides a general description on the diarization
process. First, 13 MFCC features are extracted from the long
audio file. Subsequently, the long talk is segmented based on
Viterbi Decoding, producing shorter segments which are at
least 20 seconds long. After that, 8 one-state HMMs are used
to remove music and jingle regions, leaving only speech seg-
ments. Detection of gender and bandwidth is then done using
a GMM for each of the 4 combinations of gender (male / fe-
male) and bandwidth (narrow / wide band). Finally, GMM-
based speaker clustering is carried out to map each speech
segment to the corresponding speaker. Apparently, one TED
talk can be given by only one or several speakers.

The disparity in word error rates is disclosed in Table 4,
in Section 2.4. It is notable that the automatic speech detec-
tion caused approximately 2 percent loss of the spoken audio,
resulted in inevitably decreasing the error rates, presented by
deletions. Experiments conducted with tst2010 and dev2010
data illustrated that the WER increased 10% relatively, com-
pared with the same data sets which are manually segmented.
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Figure 2: Diarization Process.

Due to the fact that the segmentation cannot be guaran-
teed to be precise at the beginning (end) of the sentence, the
output segments are almost incomplete sentence, or incom-
plete phrases, which affects recognition results. The influ-
ence of language models on this problem will be analyzed
later in Section 2.3.2.

2.3. Language Modeling
2.3.1. Overview

We used the in-domain data provided by organizer. In ad-
dition, we utilize % of Giga corpus by filtering it according
to the Moore-Lewis approach [7]. Both two datasets were
normalized using the normalization toolkit from CMU?Z. The
statistics of training data is summarized in Table 2. The vo-
cabulary used to train language models is the same as in the

lexicon. It consists of 131,137 words.

Table 2: Training data for language modeling for English
ASR Task
Data | Number of sentences | Number of tokens \

TED 156,460 2,708,316
1 Giga 2,565,687 56,488,064

The final model is the combination of two models trained
on these datasets using SRILM toolkit with the modified in-
terpolated Knesey-Ney smoothing technique [8].

Simultaneously, we trained SOUL language models on
the same training data following exactly the procedure de-
scribed in [9]. We use 300 as the dimension projection,
600; 300 as the size of 2 hidden layers and 1000; 1000 as
the size of the shortlist and the number of classes for the out-
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of-shortlist words. For each type of SOUL models presented
below, only one model is trained and used while decoding.

2.3.2. Auto-segmentation and sentence boundary problem

As auto-segmentation presented in Section 2.2 is based
solely on acoustic features, each resulting segmentations
does not correspond to a “normal” sentence but rather a
phrase. For example, in dev2010, the audio for this sentence:

Now there are many of us who sort of forget that when [
say. ..

is segmented into three parts corresponding to:

Now
there are many of us who sort of
forget that when I say. ..

If we train language models on data containing normal
sentences, there will be a mismatch between test data and
training data. The question is to what extent this mismatch
affects the final performance. To partially answer this ques-
tion, we proposed to use three types of SOUL models that
differ in the way of treating sentence boundary. The detailed
explanation of each model will be presented as follows:

Standard model Supposing that we use 4-gram language
models and have a couple of sentences in a document:

Music can be the food of love
Let’s do this

In the traditional way, the probability of the second sentence
is:

p(Let’s|<s> <s> <s>).p(do| <s> <s> Let’s).
p(this|<s> Let’s do).p(</s>|Let’s do this), (1)

where <s>, </s> stand for the start (end) of the sentence.
<s> is repeated at the beginning of the sentence to better
represent the context in SOUL structure because the number
of input tokens of SOUL is fixed to 3. So, sentence boundary
is introduced by using these two special tokens. Each sen-
tence in the document is independent which means that there
is no information between consecutive sentences that is taken
into account. This type of SOUL model is call “standard”.

Cross model If we assume that there does not exist any
negligible information between sentences, we can still follow
an n-gram approach by considering the whole document as
one long sentence and using </s> to mark sentence bound-
ary. The probability of the second sentence turns out to be as
follows:

p(Let’s|of love </s>).p(do|love </s> Let’s).
p(this|</s> Let’s do).p(</s>|Let’s do this),  (2)



By doing this, we obtained the “cross” SOUL model.
Theoretically, by increasing the order n, the model could take
almost all words of the previous sentences into the context to
predict words in the current sentence. Note that, there exists
other ways to take all previous words into account, such as a
“cache” maximum entropy language model [10], a recurrent
neural network language model (RNNLM) [11].

Intuitively, it is evident that the information between sen-
tences in the document is helpful. However, in practice, it is
often difficult to take this type of information into account to
improve the system performance, especially on large scale
tasks. Conclusions for the literature for this problem are
mixed at best. In [12], RNNLM was shown to work better
than any other methods including n-gram NNLM. However,
it is unclear that RNNLM is more efficient due to the dif-
ference in structure of the two models, or the capacity of
RNNLM to take into account a long-range dependency be-
tween words (possible to be in different sentences), or both.
Measuring the influence between words was once imple-
mented in [13]. In this article, a recurrent SOUL model is
shown to work only on par with a standard 10-gram SOUL
models on a large scale WMT English to French translation
task. The problem for this comparison is that two types of
models don’t have the same architecture.

For this reason, we used the same n-gram SOUL struc-
ture with large n (10) to investigate whether the words in
previous sentences which have the distance to the predicted
word not further than 9 is helpful in prediction.

Cross-wo-boundary model Both standard and cross
SOUL models could not deal with the mismatch between
training and test data. To clarify, supposing that after em-
ploying auto-segmentation, we have two phrases:

Music can be the food
of love Let’s do this

The probability of the new second sentence estimated by
a cross SOUL model becomes:

p(of]the food </s>).p(love|food </s> of).
p(Let’s|<s> of love).p(do|of love Let’s).
p(this|love Let’s do).p(</s>|Let’s do this) 3)

Compared to Equation (2), the sentence boundary is
moved two positions to the left. It leads to poor probabil-
ity estimation because typically the training data do not have
any sentence boundary placed in similar position.

One solution is to carry out the same auto-segmentation
procedure with the acoustic training data, then using the cor-
responding transcriptions of the resulting audio segmentation
as the training data. In this case, the training data and test
data are guaranteed to be drawn from the same distribution,
i.e., no mismatch exists. But now the training data does not
contain “real” sentences but rather phrases. The main prob-
lem is that since the audio is required, the size of the training

data for language modeling is restricted. Moreover, this so-
lution hinders the use of out-of-domain data because there is
now the mismatch between in-domain data having the asso-
ciated audio from the same source as the test data and out-of-
domain data often composed of “real” sentences.

Another solution is to completely ignore the sentence
boundary, so the probability of the second sentence becomes:

p(of|be the food ).p(love|the food of).
p(Let’s|food of love).p(do|of love Let’s).
p(this|love Let’s do) 4)

The underlying idea is simple: Since there is no trivial
solution for detecting sentence boundary when testing, we
completely ignore it in the training phase to guarantee the ho-
mogeneity between the training and test data. In equations,
sentence boundary is not in the context neither in the pre-
dicted position. So we have a “cross-wo-boundary” model.
It is worth noting that three types of SOUL models presented
above have the same architecture. They differ only in the
way of constructing the context, see Table 3 for an example
about the probability of the word “of”’.

Table 3: Example for three types of SOUL models

SOUL probability
standard plof|<s> <8> <s>)
cross p(of]|the food </s>)
cross-wo-boundary p(of|be the food)

In Section 2.5, these three types of SOUL models will
be compared experimentally in both cases where long audio
signals are automatically segmented into phrases or where
they are segmented manually into sentences.

2.4. Decoding Procedure

As can be seen from Figure 3, there are three main phrases
constituting the decoding process. The first phase begins
with the feature extraction step, followed by decoding with
the baseline system (MFCC+LDA+SAT) in order to esti-
mate the transformations for speaker adaptation (fMLLR al-
gorithm). In the second phase, Viterbi decoding is conducted
with the SGMM-bMMI model and the fMMI model sepa-
rately, with fMLLR adaption using the pre-estimated trans-
formations, resulted in one set of lattice for each system.
These two lattice sets are then re-scored with the 4-gram lan-
guage model. Afterward, system combination is carried out
to reduce the error rates from both above systems, by exploit-
ing lattice interpolation. In our experiment, the two systems
are equally treated, by setting their lattice weights to 0.5.
The last phase is where our NNLM is applied for rescor-
ing N-best results from the lattices. Specifically, each lattice
is decoded for 1000 best outputs, in which the best output is
chosen based on NNLM rescoring. To do N-best rescoring
with SOUL, we follow the same scheme for RNNLM pro-
vided by Kaldi [1], i.e., we adapt related scripts for SOUL.
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manual | auto | manual | auto
SGMM+MMI+4gram(1) 21.6 23.6 20.9 23.4
Basically, it is done as follows. First, N-best is extracted fMMI+4gram(2) 21.4 23.0 21.3 23.8
from lattices. Then the probability estimated by SOUL mod- combine(1+2) 20.8 29.9 20.0 29.5

els for each sentence is computed. Language model scores
are updated as the interpolation of the scores provided by
the back-off language model and the SOUL model. The co-

efficient is optimized on the development data. After that, Table 5: ASR results for different types of SOUL models

N-best is converted back into lattices. Finally, any standard System WER
decoding method can be employed on the output lattices to dev2010 tst2010
have final results. In our case, consensus decoding is used at manual \ auto | manual | auto
this step. combine(1+2) 208 [ 222 ] 200 | 225
So the scripts we need to modify is for using SOUL mod- + standard SOUL (inter) 18.8 | 20.5 18.1 20.9
els to compute probability for each line of a text file and com- + standard SOUL 18.9 | 204 | 181 | 206
bining scores of language models. For the first task, it is one + cross-wo-boundary SOUL 18.9 20.1 18.6 20.6
of basic inference functions of standard SOUL models which + cross SOUL 19.0 | 204 18.4 | 208

can be done efficiently by using several speed-up techniques
such as multi-threading, context grouping...3. Therefore,

the computational time of N-best rescoring phase is dom-
inated by the other steps concerning N-best extraction and Table 6: Official results for English ASR task. Note that,
lattice construction. In case of cross or cross-wo-boundary results in tst2013 column is with auto-segmentation
models, the computational time is similar. The only differ- System WER

ence is that we need to use words from previous sentences tst2011 ‘ tst2012 ‘ tst2013

while we don’t have true previous sentences but their best combine(1+2) 168 185 300

lists. Fgr simplification, we decide to use the be'tst hypothe;es + standard SOUL 14.6 16.2 97 4
of previous sentences provided by original lattices to predict
words in a current sentence.

For the second task, it is in fact straightforward to use
the script provided by Kaldi where for each sentence, a fi-
nal score is the weighted average of its scores estimated by
two language models. However, the interpolation in this way
is only at sentence level while a (more) traditional way is
to interpolate models at word level, i.e., for each word, its
probability is computed as a combination of scores provided
by language models. Therefore, we add scripts in order to

In Table 5, we summarize WER results for different types
of SOUL models which are used in /N-best rescoring. There
are some remarks drawn from these results. First, interpola-
tion at sentence level is slightly better than at n-gram level.
It supports the idea that two types of language models (back-
off, SOUL) have different characteristics, so it is better to
combine them at sentence level.

Second, cross model under-performs significantly stan-
dard model in both cases (manual and auto). It means that

30n lattices tst2013 of ~ 33 million n-grams, it costs around 4 minutes within the SOUL structure, taking into account words of pre-
on Intel(R) Core(TM) i7-3770K CPU with Intel(R) Math Kernel Library. vious sentences seems to be harmful rather than useful.




Third, concerning manual segmentation, the cross-wo-
boundary model performed worst than the standard model.
It shows that to predict a word, while words in previous sen-
tences seems unnecessary, the role of sentence boundary is
undeniable. On the contrary, in the case of auto segmen-
tation, as the sentence boundaries for test data are not reli-
able, cross-wo-boundary model can potentially bring bene-
fit. The experiments with development data showed this im-
provement, but unfortunately the improvement is not carried
over test data. There are several possible reasons behind this
phenomenon. First, we used only the best original hypothe-
ses of the previous sentences to predict the words in the con-
text. Second, the automatic segmentation caused the high
rate of word deletion so the continuity of segmentations is
not guaranteed.

Finally, all types of SOUL models bring significant im-
provements over the baseline system. As seen in Table 6, on
all test data (tst2011, tst2012, tst2013), the standard SOUL
model achieves improvements of about 10% relatively. Note
that, the achievements could be more considerable if we use
more than one SOUL model for [V-best rescoring.

3. Machine Translation Task

In this section, we present our system used for the English
to French Machine Translation task. The baseline system
is based on the bilingual n-gram approach for Statistical
MT [14, 15, 16]. This system is then enhanced with a SOUL
language model [2]. The experimental evaluation shows that
the system achieves competitive results, therefore it can be
served as a baseline system for our further research.

3.1. Data setup and preprocessing

We used the training TED data provided by the cam-
paign [17] and several datasets from the evaluation campaign
of Workshop for Machine Translation (WMT) 2013*. We
don’t use Common-Crawl or any data from LDC. Consider-
ing the TED data as the in-domain data, half of the parallel
dataset Giga is filtered out by applying a technique described
in [7] on the French side. Note that, in our configuration, we
use tst2010 as the development set and dev2010 as the test
set. The reason behind this substitution is simple: We want
to have more sentences in the development set than in the
test set. This development data is used in the optimization
procedure for the log-linear framework as well as optimizing
other hyper-parameters such as the interpolation weights for
language modeling, data filtering. . . The (internal-)test data is
used to choose the best system for evaluation. The final par-
allel data consist of TED, NewsCommentary, Europarl and %
Giga. The monolingual data contain TED, News2008-2012,
Europarl, Giga, UN for a total of 58,793,286 sentences and
1,744,768,777 tokens.

The preprocessing step was done as follows. As data sets
are obtained from several sources, notably Internet. In order

“http://www.statmt.org/wmt13/translation-task html

to have a clean and homogeneous data in terms of format,
we decided to delete unnecessary characters, especially mal-
form unicode ones, then converted texts into standard pre-
composed unicode format. We treated cases as is.

For the English side, we followed Penn Treebank style
and used the script provided by Penn®. As we need Part-
Of-Speech (POS) tags on the source side, we use TreeTag-
ger [18] toolkit applied on the tokenized data. For the French
side, the tokenization process was done by using BonSai
toolkit well adapted for French® [19]. It separates common
French phrases such as “donnez-le-nous” into three words:
“donnez -le -nous”. Another point of this process is that it
matches compounds in a text, then replacing the space that

separates the components by a “_”. Compounds were taken
from a built-in list, which contains phrases such as “a for-
tiori”, “au lieu de”, “ partir de” ... As there is not any avail-

able scripts in Bonsai toolkit to convert tokenized texts back
to original texts, we implement that task ourselves by break-
ing out compound words and then applying detokenization.

3.2. System overview

We used N-code to build a baseline system, hence fol-
lowing exactly the bilingual n-gram approach described
in [14, 15, 16]. Note that, the baseline system construction
is very similar to the one used in [20]. To build a translation
model, word alignments were first obtained by carrying out
MGIZA++[21]. Based on the information from word align-
ment, words in each source sentence were reordered to match
the word order in its target sentence. Tuples were defined as
basic translation units containing source and target phrases.
Each pair of sentences was considered as a sequence of tu-
ples. For each pair, there were maybe more than one pos-
sible sequence. Therefore, some conditions are added [15]
to guarantee that there is a unique sequence of tuples which
can be associated to a pair of sentences. The most important
condition is that each tuple in the sequence cannot be divided
into small tuples. After that, translation models are n-gram
models that estimate the probability of a sequence of tuples.

When inference, translation was broken into two steps: a
source reordering step and a translation step. In the source
reordering step, a source sentence was represented in the
form of word lattices which contains the most likely reorder-
ing hypotheses. These hypotheses were obtained by apply-
ing rewrite rules learned from word alignments and Part-of-
Speech (POS) taggers of the source side. It has been shown
in [16] that learning rules from POS tagger has a better gener-
alization. In the translation step, all hypotheses in the lattice
were translated monotonically using the log-linear frame-
work.

The baseline system is the combination of four trans-
lation models based on lexicalized weighting and relative
frequency (4 features), a monotone-swap-forward-backward
(MSFB) lexicalized reordering model [22, 23] (8 features), a

Shitp://www.cis.upenn.edu/ treebank/tokenizer.sed
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word bonus (1 feature), a tuple bonus (1 feature), a “weak”
distance-based distortion model (1 feature), four 3-gram
translation models trained on TED, NewsCommentary, Eu-
roparl and % Giga (4 features) and a 4-gram language model
(1 feature). It results in 20 feature functions combined in the
log-linear framework. Their optimization weights are ob-
tained by employing the MERT procedure [24]. N-gram
translation models and language models are trained using
SRILM toolkit with the modified interpolated Knesey-Ney
smoothing technique [8].

For language modeling, the vocabulary contains 500,156
most frequent words, which occur more than 15 times in the
training data. The back-off language model is the interpo-
lation of nine 4-gram sub-models trained on each training
dataset with weights optimized on the development data. The
perplexity of the final model computed on the test data is 74.

We trained a 10-gram SOUL model on the same training
data following exactly the procedure described in [9]. We
used 500 as the dimension projection, 1000; 500 as the size
of 2 hidden layers and 2000; 2000 as the size of the short-
list and the number of classes for out-of-shortlist words. It
achieves 59 as the perplexity on the test data (20% better
than the back-off model).

Proved to be helpful [25, 26], SOUL language model was
used on top of this system in the 300-best rescoring phase.
For each hypothesis in the list, a score of the SOUL lan-
guage model is computed, then being added as a new score.
Weights of models are re-optimized following the MERT
procedure on the development data.

3.3. Experimental results

MT systems are evaluated according to BLEU, NIST metri-
ces computed by the script provided by NIST’. The results
are summarized in Tables 7 and 8. Note that the results in
Table 7 are computed on tokenized texts while the results in
Table 8 are the official results provided by organizer. We see
that 300-best rescoring with SOUL improves significantly
the performance (=~ 1.4 BLEU points improvement).

Table 7: Results for English to French MT task. Scores are
case-sensitive with tokenized texts

Systems Scores
dev data test data
BLEU | NIST | BLEU | NIST
baseline 34.9 7.55 28.6 6.60
+ rescoring with SOUL | 35.8 7.69 29.7 6.73

4. Conclusion

In this paper, our systems served for the English ASR and En-
glish to French MT tasks of IWSLT2013 were presented in
detail. On the ASR task, by comparing three types of SOUL

7ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl

Table 8: Official results for English to French MT task.
BLEU is case-sensitive

Systems BLEU
tst2011 | st2012 | tst2013
baseline 37.1 38.6 36.2
+ rescoring with SOUL 38.8 39.9 37.6

language models distinguished in the way of treating sen-
tence boundary, we found that in the SOUL structure, tak-
ing into account words of previous sentences were not effec-
tive, even in the case of auto-segmentation. In both tasks, the
SOUL models were used on top in [V-best rescoring phase.
They were proved to improve significantly the system perfor-
mance with approximately 10% relative WER reduction for
ASR task and an addition of about 1.4 BLEU points for MT
task.

This work was partially supported by National ICT
Project KC.01.03/11-15
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