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ABSTRACT. This paper presents an investigation on using four types of contextual information 

for improving the accuracy of automatic correction of single-token non-word misspellings. 

The task is framed as contextually-informed re-ranking of correction candidates. Immediate 

local context is captured by word n-grams statistics from a Web-scale language model. The 

second approach measures how well a candidate correction fits in the semantic fabric of the 

local lexical neighborhood, using a very large Distributional Semantic Model. In the third 

approach, recognizing a misspelling as an instance of a recurring word can be useful for re-

ranking. The fourth approach looks at context beyond the text itself. If the approximate topic 

can be known in advance, spelling correction can be biased towards the topic. Effectiveness 

of proposed methods is demonstrated with an annotated corpus of 3,000 student essays from 

international high-stakes English language assessments. The paper also describes an 

implemented system that achieves high accuracy on this task. 

RÉSUMÉ. Cet article présente une enquête sur l’utilisation de quatre types d’informations 

contextuelles pour améliorer la précision de la correction automatique de fautes 

d’orthographe de mots seuls. La tâche est présentée comme un reclassement contextuellement 

informé. Le contexte local immédiat, capturé par statistique de mot n-grammes est modélisé à 

partir d’un modèle de langage à l’échelle du Web. La deuxième méthode consiste à mesurer à 

quel point une correction s’inscrit dans le tissu sémantique local, en utilisant un très grand 

modèle sémantique distributionnel. La troisième approche reconnaissant une faute 

d’orthographe comme une instance d’un mot récurrent peut être utile pour le reclassement. 

La quatrième approche s’attache au contexte au-delà du texte lui-même. Si le sujet 

approximatif peut être connu à l’avance, la correction orthographique peut être biaisée par 

rapport au sujet. L’efficacité des méthodes proposées est démontrée avec un corpus annoté de 

3 000 travaux d’étudiants des évaluations internationales de langue anglaise. Le document 

décrit également un système mis en place qui permet d’obtenir une grande précision sur cette 

tâche. 

KEY WORDS: automatic spelling correction, context, n-grams, language models. 

MOTS-CLÉS : correction automatique de l’orthographe, contexte, n-grammes. 
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1. Introduction 

Misspellings are pervasive. They are found in all kinds of writing, including in 

student essays. Lunsford and Lunsford (2008) found that spelling errors constituted 

about 6.5% of all types of errors found in a US national sample of college 

composition essays, despite the fact that writers had access to spellcheckers. Desmet 

and Balthazor (2005) found that spelling errors are among the five most frequent 

errors in first-year college composition of US students. Misspellings are even more 

ubiquitous in texts written by non-native speakers of English, especially English 

language learners (ELL) (Flor and Futagi, 2012). The types of misspellings 

produced by ELL writers are typically different from errors produced by native 

speakers (Hovermale, 2010; Okada 2005; Cook, 1997). 

In the area of automatic assessment of writing, detection of misspellings is 

utilized in computer-aided language learning applications and in automatic scoring 

systems, especially when feedback to users is involved (Dikli, 2006; Warschauer 

and Ware, 2006) – both for aggregate evaluations and for specific feedback on 

spelling errors (ETS, 2007). Yet spelling errors may have a deeper influence on 

automated text assessment. As noted by Nagata et al. (2011), sub-optimal automatic 

detection of grammar and mechanics errors may be attributed to poor performance 

of NLP tools over noisy text. 

Presence of spelling errors also hinders systems that require only lexical analysis 

of text (Landauer et al., 2003; Pérez et al., 2004). Granger and Wynne (1999) have 

shown that spelling errors can affect automated estimates of lexical variation, such 

as type/token ratio, which in turn are used as predictors of text quality (Yu, 2010; 

Crossley et al., 2008). In the context of automated preposition and determiner error 

correction in L2 English, De Felice and Pulman (2008) noted that the process is 

often disrupted by misspellings. Futagi (2010) described how misspellings pose 

problems in development of a tool for detection of phraseological collocation errors. 

Rozovskaya et al. (2012) note that automatic correction of spelling errors enhances 

automatic correction of preposition and determiner errors made by non-native 

English speakers. Spelling errors are also problematic for automatic content scoring 

systems, where the focus is on evaluating the correctness of responses rather than 

their language quality (Sukkarieh and Blackmore, 2009; Leacock and Chodorow, 

2003). 

Classic approaches to the problem of spelling correction of non-word errors were 

reviewed by Kukich (1992) and Mitton (1996). Basically, a non-word misspelling is 

a string that is not found in dictionary. The standard approach for error detection is 

using good spelling dictionaries. The typical approach for correction of non-word 

errors is to include modules for computing edit distance (Damerau, 1964; 

Levenshtein, 1966) and phonetic similarity. These are used for ranking generated 

suggestions by their similarity to the misspelled word. A more recent feature utilizes 

word frequency data as an additional measure for candidate ranking. Mitton (2008) 



Spelling correction and context     63 

and Deorowicz and Ciura (2005) described state-of-the-art approaches to non-word 

correction without contextual information. The use of noisy channel model for 

spelling correction was introduced by Kernighan et al. (1990). An early approach for 

using contextual data for non-word error correction was described by Brill and 

Moore (2000). The use of Google Web1T n-gram corpus (Brants and Franz, 2006) 

for context-informed spelling correction of real-word and simulated non-word errors 

was described by Carlson and Fette (2007). Use of text data from the Web for 

spelling correction was described by Whitelaw et al. (2009) and Chen et al. (2007). 

This paper provides an outline of research exploring specific contextual 

influences for improving automatic correction of non-word misspellings. Consider a 

misspelling like forst. Candidate corrections could include first, forest, frost, and 

even forced. But which one is the right one? In a context like “forst fires in 

Yellowstone”, forest is a likely candidate. For “forst in line”, first seems more 

adequate. In a context like “...ice crystals ... forst...”, frost is quite plausible. We 

present systematic ways to exploit such information. The rest of this paper is 

structured as follows. First, the corpus of texts used in this study is described in 

some detail, since the research was conducted with a focus on automatically 

correcting spelling errors in student essays. Then, the spelling correction system is 

described. We present the data on error detection, then baseline results for error 

correction without context. Next, four types of contexts and specific algorithms that 

use them are described: 1) n-grams – which candidate correction fits better in the 

sequence of words where misspelling is found; 2) word associations – which 

candidate correction has better semantic fit with the words around the misspelling; 

3) word repetitions – words occurring multiple times in a text can help finding 

adequate corrections; 4) topical bias – correction candidates can be preferred by 

considering words that are especially relevant to the topic of the text. Results are 

presented for each type of context separately, and for combinations of the methods. 

2. The corpus 

The ETS Spelling Corpus is a collection of essays, annotated for misspellings by 

trained annotators. It is developed for evaluation of spellcheckers, and for research 

on patterns of misspellings produced by both native English speakers and English 

language learners. 

The corpus comprises essays written by examinees on the writing sections of 

GRE® (Graduate Record Examinations) and TOEFL® (Test of English as a Foreign 

Language) (ETS, 2011a,b). The TOEFL test includes two different writing tasks. On 

the Independent task, examinees write a short opinion essay, on a pre-assigned topic. 

On the Integrated writing task, examinees write a summary essay that compares 

arguments from two different sources (both supplied during the test). The GRE 

Analytical Writing Section also includes two different writing tasks. On the GRE 

Issue task, test takers write a short argumentative essay by taking a position on an 

assigned topic. On the GRE Argument task, test takers read a short argument text 
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and then write an essay evaluating the soundness of the prompt argument. Both 

TOEFL and GRE are delivered on computer (at test centers around the world and 

via Internet), always using the standard English language computer keyboard 

(QWERTY). Editing tools such as a spellchecker are not provided in the test-

delivery software (ETS, 2011a). All writing tasks have time constraints. 

To illustrate the kind of errors encountered, the excerpt presented below was 

taken from a low scoring essay. In addition to spelling errors, it also involves 

multiple grammar errors and anomalous word order. 

the person who is going to be take a movie to saw the 

film is to takn to pass the star heroes movies . iam 

suppose to takn that is not valied is to distroy to 

take all heroneos 

 

The corpus includes 3,000 essays, for a total of 963K words. The essays were 

selected equally from the two programs (4 tasks, 10 prompts per task, 75 essays per 

prompt), also covering full range of essay-scores (as a proxy for English proficiency 

levels) for each task. The majority of essays in this collection were written by 

examinees for whom English is not the first language. Out of the 1,500 TOEFL 

essays, 1,481 were written by non-native speakers of English (98.73%). Out of 

1,500 GRE essays, 867 were written by non-native speakers of English (57.86%). 

The annotation scheme for this project provides five classes of misspellings, as 

summarized in Table 1. The annotation effort focused specifically on misspellings, 

rather than on a wider category of orthographic errors in general. In annotation we 

deliberately ignored repeated words (e.g. the the), missing spaces (e.g. 

...home.Tomorrow...) and improper capitalization (e.g. BAnk). Many of the essays in 

our corpus have inconsistent capitalization. Some essays are written fully in capital 

letters. Although issues of proper capitalization fall under the general umbrella of 

orthographic errors, we do not consider them “spelling errors”. In addition, in the 

annotated corpus, different spelling variants were acceptable. This consideration 

stems from the international nature of TOEFL and GRE exams – the examinees 

come from all around the world, being accustomed to either British, American, or 

some other English spelling standard; so, it is only fair to accept all of them. 

Compilation and annotation of the corpus is a multi-stage project. At current 

stage, the exhaustive annotation effort focused on non-word misspellings. An in-

house annotation software was developed for the project, as described by Flor and 

Futagi (2013). It automatically highlighted all non-words in a given text. The 

annotators were required to check all highlighted strings, and also scan the whole 

text for additional misspellings. They were encouraged to mark real-word 

misspellings as well (but that effort was not exhaustive). Classification of annotated 

strings was automatic. An annotated string was auto-marked as non-word if it was 

not found in the system dictionaries, and as a real-word misspelling if it was found 

in the system dictionaries. Annotators also marked multi-token errors, and the 
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annotation software automatically tagged them as “multi-token with non-word” (if at 

least one of the tokens was a non-word) or “multi-token real-words”. 

 

Type Description Count in 

corpus 

1 single token non-word misspelling (e.g. “businees”) 

also includes fusion errors (e.g. “niceday” for “nice day”) 

21,113 
 (87.04%) 

2 misspelling (non-word token) for which no plausible 

correction was found 

52 
 (0.21%) 

3 multi-token non-word misspelling  

(e.g. “mor efun” for “more fun”) 

383 
 (1.58%) 

4 single token real-word misspelling (e.g. “they” for “then”) 2,284 
 (9.42%) 

5 multi-token real-word misspelling (e.g. “with out” for 

“without”) 

425 
(1.75%) 

 Total 24,257 

Table 1. Classification of annotated misspellings in the ETS spelling corpus 

Each text was independently reviewed by two annotators, who are native English 

speakers experienced in linguistic annotation. Each misspelling was marked and the 

adequate correction was registered in annotation. A strict criterion was applied for 

agreement – two annotations had to cover exactly the same segment of text and 

provide same correction. Among all cases initially marked by annotators, they 

strictly agreed in 82.6% the cases. Inter-annotator agreement was then calculated 

over all words of the corpus. Agreement was 99.3%, Cohen’s Kappa=0.85, p<.001. 

For all cases that were not in strict agreement, all differences and difficulties were 

resolved by a third annotator (adjudicator). 

Overall, the annotated corpus of 3,000 essays has the following statistics. 

Average essay length is 321 words (the range is 28-798 words). 142 essays turned 

out to have no misspellings at all. Total spelling error counts are given in Table 1. 

Average error rate is 2.52% for all spelling errors, 2.2% for single-token non-words.  

For each essay in this study, we obtained final essay scores as assigned by the 

TOEFL or GRE program. TOEFL essays are scored on a 1-5 scale. GRE essays are 

scored on a 1-6 scale. Using them as proxy “English proficiency scores”, we divide 

the corpus into two subsets – essays of “higher quality” (HQ, score 4 and higher) 

and lesser quality (LQ, scores 1-3). Breakdown of counts for misspellings for two 

subsets is presented in Table 2. Proportion of misspellings (by token counts) is much 

higher among the LQ essays than among the HQ essays. Notably, both TOEFL and 
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GRE scoring guides do not require penalizing essays for spelling errors (ETS 2008, 

2011a). In general, lower quality essays often involve many Spelling, Mechanics 

and Grammar errors, though their holistic scores also take into account their 

“narrative” and topical/argumentative quality (Ramineni et al., 2012a,b; Quinlan et 

al., 2009). 

One additional aspect is error “severity”, as indicated by the edit distance 

between the misspelled string and the correct form provided in the annotations. 

Table 3 provides such breakdown for single-token non-word misspellings in the 

corpus. Although the majority of misspellings are “minimal errors” (edit distance of 

1), the amount of more severe errors is quite considerable. The lesser quality essays 

have a larger proportion of severe errors. To illustrate some of the more severe 

errors from this corpus: foremore (furthermore), clacenging (challenging), 

QCCUPTION (occupation, the error was originally in all caps), naiberhouad 

(neighborhood), lungich (language). 

We did not attempt to classify the misspellings by classes of potential causes of 

errors. Traditional classifications consider typing errors vs. writer’s ignorance of the 

correct spelling (including errors due to phonetic similarity). Since most of the 

essays in this corpus were written by non-native speakers of English, writer’s 

knowledge was most probably involved. Two other factors may have contributed to 

proliferation of typing errors: the timed nature of the writing tasks and the fact that 

many examinees from around the world may not be sufficiently accustomed to a 

QWERTY keyboard.  

Some researchers distinguish between “pure spelling errors” (e.g. typos) and 

“morphological errors” (e.g. unpossible when “impossible” was intended, or plural 

forms of words that do not have a marked plural – e.g. knowledges). In the annotated 

corpus, all such errors were marked as misspellings, without further sub-

classification. 

 

Essays Higher Quality Lesser Quality All essays 

Number of essays 1,342 1,658 3,000 

Total word count 559,108 404,108 963,216 

Misspellings (tokens) 6,829 14,284 21,113 

Error rate 1.22% 3.53% 2.19% 

Table 2. Proportions of single-token non-word misspellings in ETS spelling corpus 
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Edit distance Higher Quality essays Lesser Quality essays All essays 

1 5,812  (85.11%) 11,222  (78.56%) 17,034  (80.68%) 

2 779  (11.41%) 2,120  (14.84%) 2,899  (13.73%) 

3 158    (2.31%) 622    (4.35%) 780    (3.69%) 

4+ 80    (1.17%) 320    (2.24%) 400    (1.89%) 

Total 6,829 14,284 21,113 

Table 3. Counts of single-token non-word errors by edit distance to correct form 

3. ConSpel system 

The ConSpel system was designed and implemented as a fully automatic system 

for detection and correction of spelling errors. The current version is focused on 

single token non-word misspellings (including fusions). The system has two 

intended uses. One is to serve as a component in NLP systems for automatic 

evaluation of student essays. The other use is to facilitate automation for research on 

patterns of misspellings in student essays. This section describes the architecture and 

logic of the system. 

3.1. Dictionaries and error detection 

ConSpel has a rather simple policy for detection of non-word misspellings. A 

token in a text is potentially a misspelling if the string is not in the system 

dictionaries. Notably, a text may include some non-dictionary tokens that 

systematically should not be considered as misspellings. ConSpel has several 

parameterized options to handle such cases. By default, the system will ignore 

numbers, dates, Web and email addresses, and mixed alpha-numeric strings (e.g. 

“80MHz”).  

ConSpel spelling dictionaries include about 360,000 entries. The core set 

includes 240,000 entries, providing a comprehensive coverage of modern English 

vocabulary. This lexicon includes all inflectional variants for a given word (e.g. 

“love”, “loved”, “loves”, “loving”), and international spelling variants (e.g. 

American and British English). Additional dictionaries include about 

120,000 entries for international surnames and first names, and names for 

geographical places. Inclusion of person and place names is particularly important 

for an international setting, such as TOEFL and GRE examinations – essays written 

on these tests often include names of famous people and places from all over the 

world. 
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The use of a large lexicon of names drives down the rate of false alarms in error 

detection. However, it introduces a potential for misses – a misspelling may be 

undetected because such string is on the list of names. For example, “hince” is a 

misspelling of “hence”, but “Hince” is also a common surname. In the past, 

inclusion of rare words and large lists of names was considered inadequate for spell-

checkers, due to potential for misses in error-detection (Mitton, 1996). However, for 

modern NLP systems, in international settings, such as large scale language 

assessments, false alarms are detrimental, and high-coverage lexicons are essential. 

In principle, misspellings that happen to be identical to rare words or names, can be 

handled by real-word error detection (also known as “contextual spelling 

correction”). Similar issues arise in the domain of web query spelling correction 

(Whitelaw et al., 2009). While this shifts the burden toward real-word error 

detection, it is better than having a high rate of false alarms. 

Detection of errors is also influenced by text tokenization. The ConSpel 

tokenization subsystem tokenizes around punctuation, even if punctuation is 

“incorrect”. For example, for a sequence like “...travelled all nigt.They never...”, 

where a space is missing after the period, the system never presumes that nigt.They 

is a token – these are two tokens, and the first of them is misspelled. In the same 

vein, hyphenated forms (e.g. semi-detached) are also treated as multiple tokens. 

Abbreviations, such as e.g. are recognized as single tokens. 

In the current version of ConSpel system, detection of non-word misspellings is 

implemented as a separate module – detection of errors is not related to any potential 

corrections. Thus the system can be used to flag errors without attempting to correct 

them. This also means that error detection rate is the same for whatever algorithms 

we choose to use for error correction (as presented further in this paper). 

For evaluation against an annotated “gold standard” dataset, success rates are 

usually reported using measures of precision, recall and F1 score (Leacock et al., 

2010). Recall is defined as proportion of relevant materials retrieved, and precision 

is defined as proportion of retrieved materials that are true or relevant (Manning and 

Schütze, 1999). In this study, we use the standard definitions:  

Recall: # of annotated misspellings flagged by the system  /  # of all annotated  

misspellings 

Precision: # of annotated misspellings flagged by the system  /  # of all tokens flagged  

by the system 

F1 score: 2 * precision * recall / (precision + recall)  

 

Table 4 presents ConSpel error detection rates for single-token non-word 

misspellings over 3,000 essays of the ETS Spelling Corpus. Recall is very high, but 

not perfect. The small number of misses were due to a) a few errors of tokenization, 

and b) the system ignored some “words with digits” – for example “10times” 

(annotated as misspelling in the corpus). Precision of error detection is also very 

high. ConSpel makes some false alarms, especially in the set of better-quality 

essays. False alarms are mostly due to names that are not yet in the dictionary, some 
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ad-hoc acronyms, and also due to some creative uses of language, like the term 

Coca-Cola-ization (reproduced here verbatim, ConSpel flagged ization as a 

misspelling, which it is not). 

 

Essays 
Corpus count of 

misspellings 
Recall Precision F1 

Whole corpus 21,113 99.84 98.79 99.31 

Lesser quality 14,284 99.79 99.16 99.47 

Higher quality  6,829 99.94 98.03 98.98 

Table 4. Error detection rates for single-token non-word misspellings in the ETS 

spelling corpus 

4. Correction of misspellings 

For correction of single-token non-word misspellings, we use the following 

approach. For each detected misspelling, generate a set of candidate corrections, 

then rank the corrections – either in isolation, or by adding some contextual 

information.  

The same dictionaries that are used for error detection are also the source of 

suggested corrections. Candidate suggestions for each detected misspelling are 

generated by returning all dictionary words that differ from the misspelling by a 

certain number of characters, up to a given threshold. We use the efficient Ternary 

Search Trie data structure (Bentley and Sedgewick, 1997) for candidate generation. 

The threshold is dynamic (depending on the length of a misspelled token), with a 

default value of 5. In addition to single-token candidates, ConSpel also generates 

multi-token candidates. This allows the system to correct fusion errors (e.g. “cando” 

when “can do” was intended). As noted by Mitton (2008), failures may occur at the 

candidate-generation stage – when the required word is not included among the 

initial set retrieved from the dictionary. Since ConSpel is intended to work on ELL 

data, and ELL misspellings can be quite dissimilar from the intended words, starting 

with a large number of candidates is a deliberate strategy to ensure that the adequate 

correction will be included in the candidate set. For each misspelled token, ConSpel 

typically generates more than a hundred correction candidates, and in some cases 

beyond a thousand candidates. Candidates are pruned during the re-ranking process, 

so that only a few candidates from the initial set survive to the final decision-making 

stage. 

Candidate suggestions for each detected misspelling are ranked using a varied set 

of algorithms. ConSpel correction system is structured as a weighted ensemble of 

independent rankers. This allows researchers to switch certain algorithms on and off, 

so as to explore their effect and usefulness for the overall performance. For each 
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misspelling found in a text, each algorithm produces raw scores for each candidate. 

Then, scores for all candidates of a given misspelling are normalized into a 0-1 

range, separately for each ranker. Finally, for each candidate, normalized scores are 

summed across rankers, using a set of constant weights. Thus, the score for a 

particular candidate correction is a linear combination of real-valued features: 

Total score for a Candidate Correction = 
A Aw S  

where wA is the constant weight assigned to a particular algorithm (ranker, e.g. edit 

distance), and SA is the score that that algorithm computed for the candidate, 

normalized vis-à-vis other candidate corrections of same misspelling. The 

coefficients (weights for rankers) used in this study were found experimentally (in 

the future we may use machine learning to optimize the process of assigning 

coefficients). 

An error-model is often used to model the probability that certain words are 

typically misspelled in particular ways, e.g. “department” may be misspelled as 

“departmant” but rarely as “deparzment”. Various approaches have been proposed 

to capture such regularities. An error model can be rule based, and can even be 

tuned to particular errors made by speakers of a specific L1 (Mitton and Okada, 

2007). Other approaches (noisy channel models) include statistical character-

confusion probabilities (Kernighan et al., 1990; Tong and Evans, 1996) and 

substring confusion probabilities (Brill and Moore, 2000). To train an error model, a 

training set is needed consisting of string pairs – misspelling paired with the correct 

spelling of the word (Ristad and Yianilos, 1998). Whitelaw et al. (2009) 

demonstrated building an error model by leveraging Web services to automatically 

discover the misspelled/corrected word pairs. Given a misspelling to correct, a 

program can use such rules or probabilities to prefer certain corrections over other 

correction candidates. The ConSpel system does not use any error model. This was 

in part motivated by lack of resources to build a high-confidence error model, and in 

part due to our focus on the role of context in error-correction. Using context-

informed re-ranking of candidate suggestions, without an error model, the ConSpel 

system accurately corrects spelling errors generated by non-native English writers, 

with almost the same rate of success as it does for writers who are native English 

speakers (Flor and Futagi, 2012).  

4.1. Baseline 

A set of algorithms in ConSpel perform “traditional” error correction – i.e. each 

misspelling is corrected in isolation, without considering the context. The backbone 

of the system is an edit distance module that computes orthographic similarity 

between each candidate and the original misspelling. Without an error model, simple 

unweighted edit distance is calculated (Levenstein, 1966; Damerau, 1964). Phonetic 
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similarity is calculated as edit distance between phonetic representation of the 

misspelling and phonetic representation of a candidate correction, which are 

produced using the Double Metaphone algorithm (Philips, 2000). Word frequency is 

computed for each candidate using a very large word-frequency data source 

(unigrams frequencies from Google Web1T corpus). For multi-token candidates, 

their n-gram frequency is retrieved from the n-gram database. 

The direct way to evaluate automatic spelling correction is to consider how often 

the adequate target correction is ranked on top of all other candidates – a “Top1” 

evaluation. Another way is to consider how often the adequate target correction is 

found among the k-best candidate suggestions (Mitton, 2008; Brill and Moore, 

2000). This allows to get an impression on how well a system approximates to the 

desired level of performance. We use k=5. In the following we report both “Top1” 

and “InTop5” evaluation results. 

Table 5 presents evaluation results for error correction without context. The 

combination of orthographic edit distance, phonetic similarity and word frequency 

produces a very strong result – above 74% correct for Top1 evaluation. In 90% of 

the cases the adequate correction is among the top five corrections produced by the 

system. These results are used as baseline in evaluation of context-sensitive 

algorithms. Breakdown by essay quality reveals that the baseline algorithm performs 

better in HQ essays than in LQ essays (p<.01 for both Top1 and InTop5), which is 

expected given that LQ essays have more errors and more severe errors. 

 

Algorithms 

involved 

Top1 InTop5 

Recall Precision F1 Recall Precision F1 

Orthographic 

Similarity 

54.45 

50.47 

62.78 

53.96 

50.25 

61.61 

54.20 

50.36 

62.19 

84.98 

82.62 

89.91 

84.22 

82.27 

88.24 

84.60 

82.44 

89.07 

Orthographic  

+ Phonetic  

64.28 

61.02 

71.09 

63.70 

60.76 

69.78 

63.99 

60.89 

70.43 

87.29 

85.46 

91.13 

86.51 

85.10 

89.44 

86.90 

85.28 

90.28 

Orthographic  

+ Phonetic  

+ Word 

Frequency 

74.72 

72.52 

79.32 

74.06 

72.21 

77.85 

74.39 

72.36 

78.58 

90.71 

89.32 

93.62 

89.90 

88.94 

91.88 

90.30 

89.13 

92.74 

Table 5. Evaluation results for spelling correction without context. In each cell:  

top – for whole corpus, middle – Low Quality essays, bottom – High Quality essays 
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4.2. Word n-grams 

Local context (several words around the misspelled word in the text) provides a 

lot of information for choosing the adequate correction. There is a long history of 

using word n-gram language models for spelling correction, for non-words – 

typically coupled with noisy-channel error-correction models (Brill and Moore, 

2000, Zhang et al., 2006; Cucerzan and Brill, 2004; Kernighan et al., 1990), and for 

real-word errors (Wilcox-O’Hearn et al., 2008; Mays et al., 1991). 

For a misspelling in text, we wish to choose a correction from a set of generated 

candidates. The misspelling occurs in a sequence of context tokens (see Figure 1), 

and words adjacent to the misspelling may help in choosing the adequate correction. 

Following Carlson & Fette (2007) and Bergsma et al. (2009), we want to utilize a 

variety of context segments, of different sizes and positions, that span the misspelled 

token. We look not only at the words that precede the misspelling in the text, but 

also at words that follow it. For a given misspelled token, there may be up to 

2 bigrams that span it, up to 3 trigrams, etc. For each candidate correction, we check 

the frequency of its co-occurrence (in a language model) with the adjacent words in 

the text. With the advent of very large word n-gram language models, we can utilize 

large contexts (about 4 words on each side of a misspelling). Our current language 

model uses a filtered version of the Google Web1T collection, containing 

1,881,244,352 word n-gram types of size 1-5, with punctuation included. Using the 

TrendStream tool (Flor, 2013), the language model is compressed into a database 

file of 11GB. During spelling correction, the same toolkit allows fast retrieval of 

word n-gram frequencies from the database. 

 

 

Figure 1. Schematic illustration of capturing local context of a misspelling with 

overlapping n-grams 

Two particular details require more elaboration: how exactly are contexts 

defined and how we combine evidence (frequency counts) from n-grams of different 

sizes. Given a misspelling M in a context xyzMefg (here each letter stands 

symbolically for a word), for a candidate correction word C, the contextual word 
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bigrams are zC and Ce, trigrams are yzC, zCe, Cef, four-grams are xyzC, yzCe, etc. A 

competing correction candidate word D will have n-grams zD, De, yzD, zDe, Def, 

etc. How do we compare the total “support” for C with the total “support” for D, and 

other candidates? We have adopted the approach proposed by Bergsma et al. (2009), 

to sum the unweighted log-counts of all n-grams with a given candidate, even 

though those n-grams are of different sizes
1
. Thus, in the example above, the total 

evidence for candidate C (using just bigrams and trigrams) would be 

log(count(zC))+log(count(Ce))+log(count(yzC))+log(count(zCe))+log(count(Cef)) 

and similarly when using higher order n-grams. In the end, for each candidate 

correction we get a single numeric value. Figure 2 presents a simplified schema of 

our algorithm. Using evidence from all around a misspelled word eliminates the 

need for language-model smoothing. If a candidate correction in combination with 

some context words results in an n-gram that is not found in the language model, 

then that combination gives no support to the candidate. 

 

int position = Misspelling.getPositionInDocument();  //position of misspelled token in document 
int maxwindow = Settings.getMaxWindowSize();  //max number of words on either side of misspelling 
for (int window=2; int<=maxwindow; window++) {  //try all allowed window sizes 
     //get local context: 
    List<String> context = TextDocument.getLocalContext(position-window+1, position+window-1);  
    for (Candidate candi : Misspelling.getListOfCandidateSuggestions()) {  
         limit = Misspelling.putCandidateInContext(candi, context); //return limit for window slide 
         for(int i=0; i<=limit i++) { //sliding window within local context 
             //add to sum of contextual support: 
             candi.ngramsSumLC += log(NgramsDatabase.getCount(context.subList(i, i+window));  
         }       }      } 
double topscore=Misspelling.getHighestLCscore(); 
for (Candidate candi : Misspelling.getListOfCandidateSuggestions()) {  //Normalization of scores 
            candi.ngramsSumLC = candi.ngramsSumLC / topscore; } 

Figure 2. Algorithm (simplified Java pseudo-code) computing n-grams contextual 

support (by log counts) for correction candidates of one misspelling 

Table 6 presents evaluation results for a combination of baseline algorithms with 

the contextual algorithm that uses word n-gram frequencies (sum of log counts). For 

Top1 evaluation, bigrams provide about 6.35% improvement in the overall 

correction rate of the system, relative to the baseline. Adding trigrams raises the 

improvement to 8.74% above baseline. The added contribution of four-grams raises 

the improvement by another percent, to 9.86%. All differences from baseline are 

                              
1. There exists a different rationale, presented by Stehouwer and van Zaanen (2009): to sum 

evidence separately for each n-gram order and then sum across orders with some per-order-

weights. We have tested both approaches and found that Bergsma et al. (2009) approach 

works better in our system. For another method, see Carlson & Fette (2007). 
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statistically significant, and each additional contribution is also statistically 

significant (p<.01). Adding five-grams raises improvement over baseline to 9.93%, 

but the addition is not statistically significant. The trend is quite clear. When 

utilizing n-gram frequencies as contextual support, bigrams provide the large 

improvement, and adding trigrams and four-grams significantly improves correction 

performance. Adding five-grams doesn’t improve much. The results of InTop5 

evaluation have a similar pattern. Substantial improvement over the strong baseline 

is achieved when extending to four-grams (each addition is statistically significant, 

p<.02). The small improvement with five-grams is not significant.  

Breakdown of the results by essay quality (Table 7) reveals some interesting 

patterns (see also Figure 3.A). In both groups there is incremental improvement as 

high-order n-grams are added, and the LQ group consistently benefits more than the 

HQ group. All differences relative to respective baselines are statistically significant 

(p<.01). Top1 evaluation shows that in both groups adding trigrams provides 

significant improvement (p<.01). In the LQ group, adding four-grams significantly 

improves accuracy (more than 1%, p<.01). In the HQ group, adding four-grams is 

also beneficial (0.95%) and barely significant (p<.05). In both groups, adding five-

grams provides very small improvement, which is not statistically significant. 

Continuous improvement of accuracy due to adding higher-order n-grams is also 

apparent in InTop5 evaluation. In the LQ group, adding trigrams over bigrams is 

significant (p<.01), adding four-grams is barely significant (p<.05) and adding five-

grams is not significant. In the HQ group, only adding trigrams over bigrams is 

significant (p<.02).  

 

 
Top1 InTop5 

Recall Precision F1 Recall Precision F1 

Baseline 74.72 74.06 74.39 90.71 89.90 90.30 

+n2 81.10  6.38 80.39  6.33 80.74  6.35 93.21  2.50 92.40  2.50 92.80  2.50 

+n3 83.49  8.77 82.77  8.71 83.13  8.74 94.90  4.19 94.07  4.17 94.48  4.18 

+n4 84.62  9.90 83.88  9.82 84.25  9.86 95.34  4.63 94.52  4.62 94.93  4.63 

+n5 84.69  9.97 83.95  9.89 84.32  9.93 95.61  4.90 94.78  4.88 95.19  4.89 

Table 6. Evaluation results for spelling correction that uses n-grams with log 

counts. Values in italics indicate improvement over the baseline. “+n2” means 

bigrams were used in addition to the baseline algorithms. “+n3” means bigrams 

and trigrams were used. “+n4” means four-grams were added, “+n5” means five-

grams were added. All differences from baseline are significant (p<.01) 
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Top1 InTop5 

Recall Precision F1 Recall Precision F1 

Lesser Quality essays 

Baseline 72.52 72.21 72.36 89.32 88.94 89.13 

+n2 79.62  7.10 79.28  7.07 79.45  7.08 92.99  3.67 92.59  3.65 92.79  3.66 

+n3 81.76  9.24 81.40  9.19 81.58  9.21 94.25  4.93 93.84  4.90 94.04  4.91 

+n4 82.95  10.43 82.59  10.38 82.77  10.40 94.72  5.40 94.31  5.37 94.51  5.38 

+n5 83.05  10.53 82.69  10.48 82.87  10.50 95.06  5.74 94.65  5.71 94.85  5.72 

Higher Quality essays 

Baseline 79.32 77.85 78.58 93.62 91.88 92.74 

+n2 84.81  5.49 83.31  5.46 84.05  5.48 95.52  1.90 93.83  1.95 94.67  1.93 

+n3 87.13  7.81 85.59  7.74 86.35  7.78 96.25  2.63 94.55  2.67 95.39  2.65 

+n4 88.09  8.77 86.54  8.69 87.31  8.73 96.65  3.03 94.94  3.06 95.79  3.05 

+n5 88.11  8.79 86.55  8.70 87.32  8.74 96.78  3.16 95.07  3.19 95.92  3.18 

Table 7. Evaluation results for spelling correction that uses n-gram frequencies, for 

LQ and HQ essays. Values in italics indicate improvement over the respective 

baseline 

4.3. Using n-grams with PMI 

Using contextual n-gram frequencies has a long tradition for spelling correction. 

The logic is quite simple – a candidate correction that has higher co-occurrence with 

surrounding context is probably a better candidate. However, there can be a 

different, competing rationale. A better candidate might not be the one that occurs 

more often with context words, but one that has better affinity or “significance” of 

occurring in that context. This can be estimated by using statistical measures of 

association. There is an extensive literature on use of such measures for NLP, 

especially for detection/extraction of collocations (Pecina, 2009; Evert, 2008). After 

some experimentation, we found that normalized pointwise mutual information 

(Bouma, 2009) works rather well for spelling correction. It is defined as: 

Normalized PMI = 2 2

( , )
log log ( , )

( ) ( )

p a b
p a b

p a p b

 
 

 
 



76     TAL. Volume 53 – n° 3/2012 

where p(a,b) is the observed probability of the sequence (a,b) in the corpus.
2
 The 

formula extends to longer word sequences as well. Unlike the standard PMI 

(Manning and Schütze, 1999), normalized PMI (nPMI) has the property that its 

values are mostly constrained in the range {-1,1}, it is less influenced by rare 

extreme values, which is convenient for summing evidence from multiple n-grams. 

Additional experiments have shown that ignoring negative nPMI values works best 

(non-positive nPMI values are mapped to zero).
3
 We define contextual n-grams in 

the same way as described in previous section, but for each n-gram, instead of using 

the n-gram frequency (log count), we calculate positive normalized PMI (PNPMI). 

For a given misspelling, for each candidate correction we sum PNPMI values from 

all relevant contextual n-grams.  

Evaluation results are presented in Table 8. In Top1 evaluation of PNPMI, using 

just bigrams provides 7.8% improvement over the baseline (statistically significant, 

p<.01), towards an overall F1=82.2. Adding trigrams improves the performance by 

additional 2% (also statistically significant, p<.01). Adding four-grams adds 0.65% 

(this addition p<.04). Adding five-grams reverses the trend (p<.03). The InTop5 

evaluation shows a similar trend – strong improvement over the baseline is achieved 

with bigrams, and adding trigrams and then four-grams provides fully 4.4% 

improvement over the baseline (each contribution is significant, p<.01). Addition of 

five-grams does not reverse the trend like in Top1, rather there is small 

improvement, but it is not statistically significant. 

A breakdown by essay quality (Table 9) shows that the algorithm that uses n-

grams with PNPMI is beneficial for each group: best improvement is 10.67% in LQ 

group, and 9.79% in the HQ group. Adding four-grams does not improve over 

trigrams in the LQ group, and only insignificant improvement in the HQ group. In 

both groups, adding five-grams reduces accuracy (although the reduction is not 

significant). For InTop5 evaluation, n-grams-with-PNPMI seem to have a stronger 

impact for LQ essays (up to 5.2% improvement over the strong 89% baseline) than 

for HQ essays (up to 3.3% improvement over the strong 92% baseline). In both 

cases, the differences are significant, p<.01. Here, improvement continues even with 

addition of five-grams – in both groups statistically significant (p<.02) relative to 

trigrams, but not significant relative to four-grams. The overall trend of the 

improvement is different in Top1 and InTop5 evaluations. With Top1, improvement 

in LQ group peaks with three-grams, an in the HQ group it peaks with four-grams. 

In the InTop5 evaluation, improvement keeps rising even when five-grams are 

added, in both groups. Using long n-grams helps promoting the adequate candidates 

into the top five. 

                              
2. The corpus is our filtered version of the Google Web1T, the same one mentioned in the 

previous section. The database computes unigram probabilities, joint probabilities p(a,b), etc., 

on the fly, based on stored count values. For technical details see Flor (2013). 

3. This kind of practice is described by Bullinaria and Levy (2007), also Mohammad and 

Hirst (2006), and was first suggested by Church and Hanks (1990).  
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Figure 3 plots F-scores of Top1 evaluation for spelling correction with n-grams, 

comparing the use of log counts and PNPMI. Overall, the results for both measures 

are similar. Both measures provide a very strong improvement over the baseline. For 

both measures the improvement rises when longer n-grams are added, up to four-

grams. Both approaches seems to level at that point (the slight degradation with 

PNPMI five-grams is not significant). One pattern to note is that results achieved 

with PNPMI seem to be slightly better than those achieved with log counts. It is 

particularly pronounced for the set of high quality essays. In the HQ set, PNPMI 

achieves F1=86.15 with bigrams, 88.22 when trigrams are added, and 88.37 when 

four-grams are added. Log counts achieve 84.05, 86.35 and 87.31 respectively (the 

respective differences are statistically significant with p<.03). The differences 

between PNPMI and log counts are not significant in the set of lower quality essays. 

 

 
Top1 InTop5 

Recall Precision F1 Recall Precision F1 

Baseline 74.72 74.06 74.39 90.71 89.90 90.30 

+n2 82.57  7.85 81.85  7.79 82.21  7.82 93.21  2.50 92.40  2.50 92.81  2.50 

+n3 84.49  9.77 83.75  9.69 84.12  9.73 93.95  3.24 93.13  3.23 93.54  3.23 

+n4 85.14  10.42 84.40  10.34 84.77  10.38 95.14  4.43 94.31  4.41 94.72  4.42 

+n5 84.47  9.75 83.74  9.68 84.10  9.71 95.30  4.59 94.47  4.57 94.88  4.58 

Table 8. Evaluation results for spelling correction with n-grams using positive 

normalized PMI. Values in italics indicate improvement over the baseline. All 

differences from baseline are significant (p<.01) 
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Top1 InTop5 

Recall Precision F1 Recall Precision F1 

Lesser Quality essays 

Baseline 72.52 72.21 72.36 89.32 88.94 89.13 

+n2 80.48  7.96 80.13  7.92 80.30  7.94 92.28  2.96 91.88  2.94 92.08  2.95 

+n3 83.23  10.71 82.87  10.66 83.05  10.68 93.77  4.45 93.36  4.42 93.56  4.43 

+n4 83.22  10.70 82.86  10.65 83.04  10.67 94.40  5.08 93.99  5.05 94.19  5.06 

+n5 82.53  10.01 82.18  9.97 82.35  9.99 94.54  5.22 94.13  5.19 94.33  5.20 

Higher Quality essays 

Baseline 79.32 77.85 78.58 93.62 91.88 92.74 

+n2 86.92  7.60 85.39  7.54 86.15  7.57 95.17  1.55 93.48  1.60 94.32  1.58 

+n3 89.02  9.70 87.44  9.59 88.22  9.64 96.22  2.60 94.52  2.64 95.36  2.62 

+n4 89.16  9.84 87.59  9.74 88.37  9.79 96.69  3.07 94.98  3.10 95.83  3.09 

+n5 88.52  9.20 86.95  9.10 87.73  9.15 96.90  3.28 95.18  3.30 96.03  3.29 

Table 9. Evaluation results for spelling correction with n-grams and PNPMI, for 

LQ and HQ essays. Values in italics indicate improvement over respective baseline.  

All differences from baseline are significant (p<.01) 

 

Figure 3. F-score values from evaluation results (Top1) of spelling correction with 

n-grams, (A) using log-counts, (B) using PNPMI. LQ: lower quality essays, HQ: 

higher quality essays, All: all essays 
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4.3. Semantic relatedness for spelling correction 

Semantic relatedness between words, as exhibited in the lexical content of a text, 

can be useful for spelling correction. Consider a misspelling and some candidate 

suggestions. A candidate may be considered more plausible (i.e. ranked higher than 

other candidates) if it is semantically related to some other words in the text that is 

being corrected. Intuitively, a good correction candidate should “fit” into the 

semantic fabric of the text, and the better the “fit” is, the higher ranking it should 

achieve. Basically, we can take each candidate and measure how well it fits with 

each word in the text (in the vicinity of the misspelling). 

The idea of checking “semantic fit” was proposed by Budanitsky and Hirst 

(2006) for detecting and correcting real-word misspellings. They used WordNet for 

measuring semantic relatedness. To the best of our knowledge, there is no prior use 

of “semantic relatedness” for improving correction of non-word misspellings.  

The current proposal requires two components – a measure of fit and a resource 

that can provide pairwise estimations of semantic relatedness. For example, if the 

misspelling is carh and one of the candidate corrections is car, this correction may 

look more plausible if the text around the misspelling includes such words as engine, 

automobile and roads. On the other hand, a correction candidate card may gain 

plausibility if the surrounding words include aces and casino, or payment and 

expired. Note that such semantic fit is not restricted to semantically similar words 

(e.g. car-automobile), but can benefit from any semantic relatedness (e.g. card-

payment), even without knowing what exactly the relation is or how to label it. 

WordNet is often used as a resource for obtaining estimates for semantic relations 

and similarity (Zhang, Gentile and Ciravegna, 2012). However, WordNet lacks 

enough coverage. For example it is quite difficult to obtain from WordNet such 

thematic relations as dog-bark, card-expire, or city-traffic.  

To attain a wide-coverage resource, we use a first-order co-occurrence word-

space model (Turney and Pantel, 2010; Baroni and Lenci, 2010). The model was 

generated from a corpus of texts of about 2.5 billion words
4
, counting co-

occurrences in paragraphs. The (largely sparse) matrix of 2.1x2.1 million word types 

and their co-occurrence frequencies, as well as single-word frequencies, is 

efficiently compressed using the TrendStream tool (Flor, 2013), resulting in 

database file of 4.7GB. During spelling correction, the same toolkit allows fast 

retrieval of word probabilities and statistical associations for pairs of words.5  

With a wide-coverage word-association resource, there are two more parameters 

to consider. We need to consider which statistical association measure to use. As 

                              
4. About 2 billion words come from the Gigaword corpus (Graf and Cieri, 2003), which is a 

news corpus. Additional 500 million words come from an internal corpus at ETS, with texts 

from popular science and fiction genres. 

5. The database storing the distributional word-space model includes counts for single words 

and for word pairs. Association measures are computed on the fly. 
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with the n-grams approach, we have found that normalized PMI (Bouma, 2009) 

works rather well. Note that unlike n-grams, where we consider the probabilities or 

strength of whole sequences, here we consider pair-wise strengths: for each 

correction candidate (of a given misspelling), we want to sum the pair-wise 

strengths of its association with “every” word in the context. One important 

observation is that even a good candidate need not be strongly related to every word 

in its context – even in a cohesive text, a word is typically strongly related only to 

some of the neighboring words (Hoey 2005, 1991). With a measure like nPMI, some 

pairwise associations have negative values. Here again, we have found that it is 

beneficial to disregard negative association values, and sum only the positive 

evidence. Our choice measure is positive normalized PMI (PNPMI). In addition we 

disregard context words that belong to a stoplist (e.g. determiners and common 

prepositions). The schematic version of the algorithm is presented in Figure 4.  

Evaluation results on the corpus data are presented in Table 10. Semantic 

relatedness provides 3.8% improvement in the overall correction rate of the system, 

relative to the baseline. The improvement is slightly better for lower quality essays 

(3.9%) than for higher quality texts (3.6%). All improvements are statistically 

significant (p<.01). InTop5 evaluation shows that semantic relatedness also has 

about 1% contribution (p<.01) for promoting candidates into the top five, relative to 

a strong baseline, as we have with this corpus. 

Another consideration was how far to look around the misspelling – the 

possibilities ranging from the whole text to just the few neighboring words. We have 

experimented with a context window of k words to the left and to the right of the 

misspelled word in the text, with k values of 5 to 40 (in increments of 5), thus using 

neighborhoods of 10, 20, 30 to 80 words. The results were very similar to those 

presented in Table 10 and the tiny differences were not statistically significant. The 

F-scores from these runs are plotted in Figure 5. The improvement over the baseline 

is clearly visible. As for context size, it seems the valuable information is contained 

within the window of ±5 words around the misspelling, expanding the context 

beyond that does not help (but does not harm either). 

 

int position = Misspelling.getPositionInDocument();  //ordinal position of misspelled token in document 
int quota = Settings.getQuota();  //max num. of words to search on either side of misspelling. 
List<String> contextualList = TextDocument.generateContextList(position,quota); 
//For each candidate, sum evidence from all contextual words: 
for (Candidate candi : Misspelling.getListOfCandidateSuggestions()) { 
    for(String contextWord : contextualList) { 
        candi.SRsupport += WordAssociationsDatabase.getPNPMI(candi.word, contextWord);      } } 
double topscore=Misspelling.getHighestSRscore(); 
for (Candidate candi : Misspelling.getListOfCandidateSuggestions()) {  //Normalization of scores 
           candi.SRsupport = candi.SRsupport / topscore; } 

Figure 4. Algorithm (Java pseudo-code) computing Semantic Relatedness 

contextual support for correction candidates of one misspelling 
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Top1 InTop5 

Recall Precision F1 Recall Precision F1 

All essays 

Baseline 74.72 74.06 74.39 90.71 89.90 90.30 

+SR 78.54  3.82 77.86  3.80 78.20  3.81 91.73  1.02 90.93  1.03 91.33  1.03 

Lesser Quality essays 

Baseline 72.52 72.21 72.36 89.32 88.94 89.13 

+SR 76.45  3.93 76.12  3.91 76.28  3.92 90.49  1.17 90.10  1.16 90.29  1.16 

Higher Quality essays 

Baseline 79.32 77.85 78.58 93.62 91.88 92.74 

+SR 82.91  3.59 81.44  3.59 82.17  3.59 94.32  0.70 92.65  0.77 93.48  0.74 

Table 10. Evaluation results for spelling correction with Semantic Relatedness, 

using context size of up to 20 words (10 on each side of a misspelling). Values in 

italics indicate improvement over the baseline. All differences from respective 

baselines are significant (p<.01) 

 

Figure 5. F-score values from evaluation results of spelling correction with 

Semantic Relatedness (word associations), using different sizes of context 

4.5. Déjà vu – taking advantage of recurring words 

Here we present another context-sensitive algorithm that utilizes non-local 

context in an essay. Content words have some tendency of recurrence in same text 

(Halliday and Hasan, 1976; Hoey, 1991). This tendency of lexical repetition is 

utilized, for example, for computing a type/token ratio (Yu, 2010). Lexical repetition 
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is also the backbone for constructing lexical chains (Morris and Hirst, 1991). In 

student essays, it often happens that the same word (type) is used several times in a 

text, and that some of those tokens are misspelled. This can have a direct implication 

for re-ranking of correction candidates. Given a misspelled token in a text and a set 

of correction-candidates for that token, for each candidate we check whether same 

word (or inflectional variant) occurs elsewhere in the text. Consider this example: 

… We wanted to look at the stars. … the stard was … 

Misspelling stard may have several candidate corrections, including star, start 

and stand (for illustration we list those having same edit distance, but it is not a 

prerequisite). The presence of the word stars in the text may be used to promote star 

in the ranking of candidates in this case. It might be wrong, and the adequate 

correction in this case could be stand, but in general this “Dejavu” approach can be 

useful. 

Given a candidate correction for a specific misspelled token in a text, the Dejavu 

Algorithm looks over the whole essay. When same word type, or its inflectional 

variant, is encountered, the candidate is strengthened. The amount of strengthening 

is inversely proportional to distance between the encountered word and the 

misspelled token. This stems from a conjecture that a repetition close to the site of 

misspelling may be more relevant (for that misspelling) than a distant repetition (say 

a hundred words away). We use 1/sqrt(1+distance) as the score that a candidate gets 

when encountering each related instance in the text (all such scores for a given 

candidate are summed; summed scores for all candidates of a given misspelling are 

normalized). Schematic version of the algorithm is presented in Figure 6. 

The idea of utilizing repeated words is somewhat similar to the notion of cache-

based language-model adaptation (Kuhn and De Mori, 1990), which was proposed 

in the domain of speech recognition. However, our current approach is different – 

we do not use a statistical language model in this case, and we extend lexical 

coverage with inclusion of inflectional variants. 

An additional variant of Dejavu Algorithm is useful for treating systematic 

misspellings. Those may occur due to mistyping, but it also often happens when a 

writer does not know how to properly spell a given word in English, and so all (or 

most) intended instances of that word in an essay are misspelled. For example:  

the responsibility of the ex-finance mininster to 

argue ,but he will not respond ,but the other member 

will argue ,asif the mininster ...  

In our corpus, there are even essays where all instances of the same word are 

misspelled in different ways. For example, in one essay the word “knowledge” was 

used four times, misspelled as knowlege, knowleges and knowledges (twice). 

The advanced handling is as follows. For a given misspelled token, for each 

candidate correction, the Dejavu Algorithm searches not only in the essay text (for 
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“repetitions”), but also looks into the lists of candidate corrections of other 

misspelled tokens in the text. If a corresponding word (or its inflectional variant) is 

found in such list, our candidate is strengthened with a score of SCC/sqrt(1+distance), 

where SCC is current normalized overall strength of the “corresponding candidate” in 

the other list.6 Thus, if a word is systematically misspelled in a document, Dejavu 

will considerably strengthen a candidate correction that appears as a (good) 

candidate for multiple misspelled tokens – a kind of mutual optimization across the 

whole text. The advanced part of the algorithm is also presented in Figure 6. 

Evaluation results for Dejavu Algorithm on the corpus data are presented in 

Table 11. In Top1 evaluation, the algorithm improves the correction rate by 3.8% 

(p<.01) relative to the baseline. The results are similar in the breakdown by essay 

quality: about 3.89% correction improvement for LQ essays, and above 3.73% 

correction improvement for HQ essays (in both cases p<.01). The InTop5 evaluation 

shows a small improvement over the baseline, 1% (p<.01). The improvement is 

larger in the LQ group (1.1%, p<.01) and very small in the HQ group (0.7%, p<.04).  

 

 Top1 InTop5 

Recall Precision F1 Recall Precision F1 

All essays 

Baseline 74.72 74.06 74.39 90.71 89.90 90.30 

+Dejavu 78.58  3.86 77.88  3.82 78.23  3.84 91.71  1.00 90.89  0.99 91.30  0.99 

Lesser Quality  ssays 

Baseline 72.52 72.21 72.36 89.32 88.94 89.13 

+Dejavu 76.42  3.90 76.10  3.89 76.26  3.89 90.44  1.12 90.06  1.12 90.25  1.12 

Higher Quality essays 

Baseline 79.32 77.85 78.58 93.62 91.88 92.74 

+Dejavu 83.09  3.77 81.55  3.70 82.31  3.73 94.36  0.74 92.61  0.73 93.48  0.73 

Table 11. Evaluation results for spelling correction with Dejavu algorithm. Values 

in italics indicate improvement over the baseline 

                              
6. The better the rank of the candidate is in other lists, the stronger the candidate gets for the 

current misspelling. This presumes that candidates are already ranked and sorted by the other 

algorithms. There is no issue of infinite loops – the advanced part of the Dejavu algorithm 

runs after all other ranking algorithms – it uses the other rankings for its calculations. 
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int position = Misspelling.getPositionInDocument();//ordinal position of misspelled token in document 
double val; 
//For each candidate, find matching words in the text and sum evidence (Basic Dejavu): 
//loop on all candidate corrections of the Misspelling: 
for (Candidate candi : Misspelling.getListOfCandidateSuggestions()) {  
    for(Token tokenword : TexDocument.getAllWordTokens()) { //loop on all words in document 
        if (tokenword.position == position) continue; 
        if (tokenword.isSameWord(candi.word)) { val = Settings.getDejavuScoreForIdentical(); } 
        else if (tokenword.isInflectionalVatiant(candi.word)) { val=Settings.getDejavuScoreForInflectional();} 
        else { val=0.0; } 
        val = val / sqrt( 1+ abs(tokenword.position - position)) //weight by distance 
        candi.DejavuSupport += val; //add to sum of support values 
    }    } 
//For each candidate, peek into the candidate lists of other misspelled tokens (Advanced Dejavu): 
for(MisspellingObject MO : TexDocument.getAllMisspellings()) { //loop on all Misspellings in document 
    if (Misspelling==MO) continue; 
    //loop on all candidate corrections of the Misspelling 
    for (Candidate candi : Misspelling.getListOfCandidateSuggestions()) {  
        //loop on all candidates in other misspellings 
        for(Candidate candiElsewhere : MO.getListOfCandidateSuggestions()) {  
           if ( isSameWord(candi.word, candiElsewhere.word)) {val=Settings.getDejavuScoreForIdentical(); } 
           else if ( isInflectionalVatiant(candi.word, candiElsewhere)) {  
                   val=Settings.getDejavuScoreForInflectional(); } 
            else { val=0.0; } 
            //weight by distance: 
            val = val * candiElsewhere.getTotalScore / sqrt( 1+ abs(position - MO.getPositionInDocument()));  
            candi.DejavuSupport += val; //add to sum of support values 
        }     }    } 
double topscore=Misspelling.getHighestDejavuScore(); 
for (Candidate candi : Misspelling.getListOfCandidateSuggestions()) {  //Normalization of scores 
     candi.DejavuSupport = candi.DejavuSupport / topscore; } 

Figure 6. Algorithm (Java pseudo-code) computing Dejavu contextual support for 

correction candidates of one misspelling 

5. Biased correction 

A different approach to the notion of “context” is the idea of biasing error-

correction to the particular topic of the text. If the topic of a text is known, a list of 

topic-specific words may be given preferential status when correcting misspellings 

for that text. Strohmaier et al. (2003) demonstrated post-correction of OCR output, 

with topic-specific dictionaries. In that study, dictionaries where automatically 

generated from the vocabulary of Web pages from given topical domains, but 

selection of topics was manual. Wick, Ross, and Learned-Miller (2007) described 

the use of dynamic topic models to post-correct (simulated) OCR output. In that 

study, topic models were learned from collections of newsgroup documents. Some 

of held-out documents were artificially “corrupted” and used as correction-test 

cases. In both studies, topical words were given extra weight in candidate ranking, 

leading to improved overall correction rate. 
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In current work, we use a weak notion of topical bias. Essays written to TOEFL 

and GRE prompts are prompt-specific. The prompts are open-ended and only 

weakly-constrained, and the essays may exhibit considerable variability, some are 

even off-topic. However, the text of the prompt itself is a very strong anchor for 

each essay. Thus, we use the content words of a prompt (and their inflectional 

variants), as a biasing list for error correction of essays written to that prompt. For 

example, suppose there is a text with misspelling pawer and one of the candidate 

corrections is power. If power (or powers) appeared in the corresponding prompt, 

then the candidate may be strengthened in the ranking of candidates for pawer. 

Schematic version of the algorithm is presented in Figure 7. 

Evaluation results for topical biasing algorithm, on the corpus data, are presented 

in Table 12. The contribution of biased spelling correction was negligible and never 

statistically significant. One possible reason for this result may be that many of the 

40 prompts included in this study were quite short, generic and open-ended. The 

following prompt (not in the corpus, from ETS 2011a) illustrates this: 

As people rely more and more on technology to solve 

problems, the ability of humans to think for 

themselves will surely deteriorate. [Write a response in 

which you discuss the extent to which you agree or disagree with the 

statement and explain your reasoning for the position you take. In 

developing and supporting your position, you should consider ways in 

which the statement might or might not hold true and explain how these 

considerations shape your position.]  

However, there is one particular kind of task where prompts are rich and include 

plenty of “context words”. The TOEFL Integrated task (ETS, 2011b) is posed as 

follows. The examinee is presented with a reading passage that presents some 

arguments on a given topic. After reading the passage, the examinee listens to an 

audio recording, where a narrator presents some contrary arguments on the same 

topic. The task is to summarize and relate both opinions. The ETS Spelling Corpus 

contains 750 essays written to 10 prompts from the TOEFL Integrated task. For each 

of these prompts, “prompt vocabulary” was obtained, including words from the 

reading passage and the audio lecture. For these prompts, the bias lists include about 

240 unique content words (types) per prompt, whereas for the other prompts in the 

corpus, bias lists have fewer than 70 unique content words (types) per prompt. 

Moreover, due to the nature of the TOEFL Integrated task (essentially a 

summarization/retelling task), it seems more plausible that words from the prompt 

will be reused in a response essay.  

Performance of the biasing correction algorithm was evaluated separately on the 

750 essays from the TOEFL Integrated task. Results are given in Table 13. Here, the 

contribution of biased spelling correction becomes evident. The improvement over 

baseline was 5.3% for Top1, and 2.4% for InTop5 evaluation (which has a very 

strong baseline). Breakdown by essay quality confirms that biased correction 
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improves over baseline, for both LQ and HQ essays. In Top1 evaluation, the 

improvement was greater in the HQ group (7.16%) than in the LQ group (4.47%). A 

similar trend is seen in the InTop5 evaluation. 

 

double val; 
//For each candidate, find matching words in the biasing dictionary and sum evidence: 
//loop on all candidate corrections of the Misspelling: 
for (Candidate candi : Misspelling.getListOfCandidateSuggestions()) {  
    for(Word w : BiasingDictionary.getAllWords ()) { //loop on all words in biasing dictionary 
        if ( isSameWord(candi.word, w)) { val = Settings.getBiasScoreForIdentical(); }  //default 1.0 
        else if ( isInflectionalVariant(candi.word, w)) { val = Settings.getBiasScoreForInflectional(); }  //0.8 
        else { val=0.0; } 
        candi.BiasSupport += val; //add to sum of support values 
    }     } 
double topscore=Misspelling.getHighestBiasScore(); // highest BiasSupport among all candidates 
for (Candidate candi : Misspelling.getListOfCandidateSuggestions()){  //Normalization of scores 
     candi. BiasSupport = candi.BiasSupport / topscore; } 

Figure 7. Algorithm (Java pseudo-code) computing Biasing contextual support for 

correction candidates of one misspelling 

 
Top1 InTop5 

Recall Precision F1 Recall Precision F1 

All essays 

Baseline 74.72 74.06 74.39 90.71 89.90 90.30 

+Bias 75.22  0.50 74.55  0.49 74.88  0.49 90.93  0.22 90.12  0.22 90.52  0.22 

Lesser Quality essays 

Baseline 72.52 72.21 72.36 89.32 88.94 89.13 

+Bias 72.95  0.43 72.65  0.44 72.80  0.44 89.50  0.18 89.11  0.17 89.30  0.17 

Higher Quality essays 

Baseline 79.32 77.85 78.58 93.62 91.88 92.74 

+Bias 79.87  0.55 78.40  0.55 79.13  0.55 93.94  0.32 92.21  0.33 93.07  0.33 

Table 12. Evaluation results for biased spelling correction. Values in italics 

indicate improvement over the baseline; none are statistically significant 
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Top1 InTop5 

Recall Precision F1 Recall Precision F1 

All essays (750) 

Baseline 73.91 73.95 73.93 90.14 90.18 90.16 

+Bias 79.29  5.38 79.22  5.27 79.26  5.33 92.62  2.48 92.53  2.35 92.57  2.41 

Lesser Quality essays (452) 

Baseline 73.12 73.22 73.17 89.42 89.55 89.48 

+Bias 77.59  4.47 77.70  4.48 77.64  4.47 91.63  2.21 91.75  2.20 91.69  2.21 

Higher Quality essays (298) 

Baseline 75.49 75.38 75.43 91.56 91.44 91.50 

+Bias 82.65  7.16 82.54  7.16 82.59  7.16 94.57  3.01 94.45  3.01 94.51  3.01 

Table 13. Evaluation results for biased spelling correction, with “rich-prompt” 

subset of the spelling corpus. Values in italics indicate improvement over the 

baseline. All improvements over baseline are statistically significant (p<.01) 

6. Combining contextual algorithms 

We have also experimented with combining the various contextual algorithms: 

n-grams summing log-counts, n-grams summing PNPMI, semantic relatedness, 

word-repetitions (Dejavu) and biasing. All combinations are considered as additions 

to the baseline algorithms.  

Evaluation results are presented in Table 14 and in Figures 8 and 9. The 

combination of Semantic Relatedness and Bias is counterproductive (decreases F1 

score below what is achieved with Semantic Relatedness, p<.01). The combinations 

of Dejavu and Bias and that of Dejavu and Semantic Relatedness are also 

counterproductive, although the respective differences from using just Dejavu are 

not statistically significant. Algorithms that use n-grams are clearly the most 

effective. Adding Bias to n-gram algorithms has no effect. Adding Semantic 

Relatedness to either of the n-grams algorithms provides very little improvement, 

not statistically significant. Adding Dejavu to n-grams-with-log-counts is 

counterproductive (p<.01). However, adding Dejavu to n-grams-with-PNPMI is 

effective, raising F-score from 84.77 to 85.36 (p<.05). Combination of the two n-

grams-based algorithms (F1=85.72) turns out to be more effective than either of 

them alone (84.32 and 84.77), and the added improvement is statistically significant 

(p<.01 in both cases). The best result is achieved by combining the two n-gram-

based algorithms and Semantic Relatedness (F1=85.87), although the addition is not 

statistically significant.  
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Top1 InTop5 

Recall Precision F1 Recall Precision F1 

Baseline 74.72 74.06 74.39 90.71 89.90 90.30 

Baseline with one contextual algorithm 

LC 84.69   9.97 83.95    9.89 84.32   9.93 95.61  4.90 94.78  4.88 95.19  4.89 

PNPMI 85.14  10.42 84.40  10.34 84.77  10.38 95.14  4.43 94.31  4.41 94.72  4.42 

SR 78.54   3.82 77.86   3.80 78.20   3.81 91.73  1.02 90.93  1.03 91.33  1.03 

Dejavu 78.58   3.86 77.88   3.82 78.23   3.84 91.71  1.00 90.89  0.99 91.30  0.99 

Bias 75.22   0.50 74.55   0.49 74.88   0.49 90.93  0.22 90.12  0.22 90.52  0.22 

Baseline with combination of contextual algorithms 

SR & Bias 77.44  2.72 76.75  2.69 77.09  2.70 91.96  1.25 91.14  1.24 91.55  1.24 

Dejavu 

& Bias 

77.90  3.18 77.20  3.14 77.55  3.16 91.78  1.07 90.97  1.07 91.37  1.07 

SR & 

Dejavu 

78.31  3.59 77.61  3.55 77.96  3.57 92.30  1.59 91.48  1.58 91.89  1.58 

LC & 

Dejavu 

83.75  9.03 83.03  8.97 83.39  9.00 95.28  4.57 94.45  4.55 94.86  4.56 

LC & Bias 84.20  9.48 83.48  9.42 83.84  9.45 95.48  4.77 94.65  4.75 95.06  4.76 

PNPMI  

& Bias 

84.62  9.90 83.89  9.83 84.25  9.86 95.42  4.71 94.59  4.69 95.00  4.70 

LC &SR 84.80  10.08 84.06  10.00 84.43  10.04 95.63  4.92 94.80  4.90 95.21  4.91 

PNPMI  

& SR 

85.25  10.53 84.51  10.45 84.88  10.49 95.34  4.63 94.51  4.61 94.92  4.62 

PNPMI & 

Dejavu 

85.74  11.02 84.99  10.93 85.36  10.97 95.34  4.63 94.52  4.62 94.93  4.63 

PNPMI & 

LCL 

86.09  11.37 85.35  11.29 85.72  11.33 95.62  4.91 94.79  4.89 95.20  4.90 

PNPMI & 

LC & SR 

86.25  11.53 85.50  11.44 85.87  11.48 95.69  4.98 94.85  4.95 95.27  4.96 

Table 14. Evaluation results for combined contextual methods, whole corpus. 

Values in italics indicate improvement over the baseline. All improvements over 

baseline are statistically significant (p<.01). LC: n-grams with log counts, PNPMI: 

n-grams with PNPMI, SR: Semantic Relatedness 



Spelling correction and context     89 

 

Figure 8. F-score values from evaluation results (Top1) of spelling correction with 

various combinations of contextual algorithms, over the full corpus of essays 

 

Figure 9. F-score values from evaluation results (Top1) of spelling correction with 

various combinations of contextual algorithms LQ/HQ: lower/higher quality essays 
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Evaluation with breakdown by essay quality (Figure 9) shows similar results. 

Only the combination of two n-grams-based algorithms turns out to be more 

effective than either of them alone, in both lower and higher quality sets, and the 

added improvement is statistically significant (p<.01 in both cases as compared to n-

grams-log-counts algorithm alone). When this combination is compared to n-grams-

PMPMI, the improvement is significant (p<.01) in the HQ set, but not significant in 

the LQ set. The best result is each set is achieved by combining the two n-gram-

based algorithms and Semantic Relatedness, but in both sets the addition of 

Semantic Relatedness is not statistically significant over the combination of the n-

grams-based algorithms. 

7. Discussion 

In a previous study (Flor and Futagi, 2012), we conducted a comparison between 

ConSpel and two widely used spellchecking systems – Aspell (Atkinson, 2011) and 

the speller from MS Office (MS Word) 2007. The ConSpel system showed better 

detection of single-token misspellings than MS Word or Aspell, even when those 

system were given the ConSpel dictionary. In that study, ConSpel with contextual 

algorithms also outperformed MS Word and Aspell in automatic spelling correction. 

For spelling correction, ConSpel had F1=77.93, while MS Word (with ConSpel 

dictionary) had F1=70.56, and Aspell had F1=51.83. The ConSpel version in that 

study used same baseline algorithms in combination with the n-grams-with-

frequencies algorithm and Dejavu algorithm. However, the n-grams-with-

frequencies in that study used a different method of integration – each size n of n-

grams window was considered a separate ranker (similar to Stehouwer and van 

Zaanen, 2009). In present study we investigated a different method of integration – 

summing evidence from all overlapping n-grams and for all window sizes within the 

same ranker (as proposed by Bergsma et al., 2009). This method of integration is 

clearly more effective (F1=84.32), more than 6% better than our previous result.  

We have also considered using a measure of association instead of log counts. 

Using n-grams with positive normalized PMI provides results that are slightly better 

than using log counts. For the full set of 3,000 essays, the best results with PNPMI 

are achieved when using a window of up to four-grams – F1=84.77, and the best 

results with log counts are achieved when using a window of up to five-grams (the 

difference is not statistically significant). Both approaches show similar progression 

when longer n-grams are added – performance improves up to four-grams. When 

evaluation considers only the top correction candidate for each misspelling (for 

automatic correction), addition of five-grams is not helpful. However, when 

evaluation considers the top five correction candidates for a misspelling, addition of 

five-grams provides better results, but not statistically significant (as compared to 

using up to four-grams).  
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Overall, each additional order of n-grams provides a diminishing amount of 

improvement (see Figure 3), as if reaching a plateau. One possible explanation for 

this might be the coverage of n-grams in the database.7,8 We have calculated how 

often the database returns numeric values (rather than “no data”) for n-gram queries 

of different sizes. On average, the database returns valid data for 45% of bigram 

queries, 10% of trigram queries, 2% of four-gram queries and just 0.5% of five-gram 

queries. Note that the n-gram queries that are generated by ConSpel are often 

unnatural – many of them are “artificial n-grams” – a combination of a potential 

candidate correction with real context, so the large proportion of unfulfilled queries 

is quite expected. However, the pattern is suggestive – given the diminishing supply 

of evidence, the effectiveness of longer n-grams diminishes. It is quite surprising 

that with just 2% valid returns, the four-grams do provide a significant improvement 

for overall performance of n-gram-based algorithms. It is also quite surprising that 

with just 0.5% valid returns, the influence of five-grams is discernible (albeit not 

statistically significant).  

Concerning the log-counts and PNPMI n-gram-based approaches, the similarity 

of their results (see Figure 3) may suggest that they are tapping exactly the same 

information. However, there is a surprising finding – when these two approaches are 

combined (see Table 14), the result provides additional improvement (1% over just 

PNPMI, 1.4% over just log counts), which is statistically significant. In addition, 

PNPMI works better than log-counts in the subset of high quality essays. Thus, it 

seems that PNPMI captures a slightly different aspect than frequency.  

In this study we have also considered how the overall quality of an essay text 

influences contextual algorithms. The results are mixed. For the n-grams-with-log-

counts algorithm, correction in lower quality essays (LQ) shows greater 

improvement (10.5%) than in higher quality (HQ) essays (8.7%), and the difference 

is significant (p<.01). For the n-grams-with-PNPMI, the amounts of improvement 

are closer: 10.67% for LQ and 9.79% for HQ, and the difference is significant 

(p<.01). Amounts of improvement are very close with the Dejavu algorithm (3.89% 

for LQ and 3.73 for HQ) and with Semantic Relatedness algorithm (3.92% for LQ 

and 3.59% for HQ). In both cases the differences between LQ and HQ are not 

significant. The Biasing algorithm shows a different pattern. When it works (in the 

subset of 750 essays), the improvement in the HQ set (7.16%) is greater than in the 

LQ set (4.47%), the difference is significant (p<.01). One possible explanation for 

this might be that HQ essays are more topically focused and possibly use more 

vocabulary from the prompt materials. This may be another opening for further 

research. Overall, n-grams-based-algorithms are the most effective, for both low and 

high quality essays and especially effective for lower quality essays. Semantic 

Relatedness and Dejavu are effective to a similar extent for both types of essays. 

                              
7. We thank an anonymous reviewer for pointing this out. 

8. The database for current study was derived from Google Web1T. It contains 1.8 billion  

n-gram types of sizes 1-5. The derivation filtered out irrelevant data (e.g. Web and email 

addresses, non-English words, errors, etc.), as described in Flor (2013). 
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Interestingly, experiments have shown that Semantic Relatedness and Dejavu do not 

combine well together. Uncovering reasons for this may be subject for further 

research. 

8. Conclusions 

This article presented investigations of using four types of contexts for automatic 

correction of spelling errors in student essays, focusing on single-token non-word 

misspellings. We have described an implemented a state-of-the-art system, ConSpel, 

which allows a modular selection of algorithms for spelling correction. The task is 

framed as re-ranking of correction candidates. A baseline system includes 

algorithms that compute edit distance, phonetic similarity and word frequency as 

features for ranking candidates. Contextual algorithms can be engaged as additions 

to the baseline system, for improved, context-sensitive ranking of candidate spelling 

corrections. We have also presented experimental results of automatic error 

correction for a corpus of 3,000 student essays from high-stakes international 

English examinations and demonstrated that all four types of contexts are effective 

for improving the accuracy of error correction, as compared to a baseline that ranks 

correction candidates without context.  

Three types of contexts in this investigation are internal to the text being 

corrected. The first type of context is the exact local context (word sequence) around 

the misspelling, which is captured via word n-grams. The experiments show that 

using n-gram frequencies (from a web-scale n-gram model) is effective for 

improving over the baseline results, and adding longer n-grams provides 

considerable improvement over using only short n-grams. We have also shown an 

alternative to using n-gram frequencies. Using a specific statistical association 

measure – positive normalized pointwise mutual information – over local n-grams, 

provides good improvement of correction accuracy relative to baseline, even slightly 

better than frequency. Moreover, combining the two methods provides additional 

improvement.  

Another type of context is the (unordered) local lexical neighborhood of the 

misspelled token. We have presented a conjecture that the amount of semantic 

relatedness (or lexical cohesion) between each candidate and the lexical 

neighborhood of a misspelling can be useful for candidate ranking. This conjecture 

is similar to the idea of using lexical cohesion for correcting real-word misspellings 

(Budanitsky and Hirst, 2006). Although utilization of lexical cohesion for correction 

of non-word misspellings is a natural extension of that idea, to the best of our 

knowledge, we are the first to propose and implement it. In addition, rather than 

using a structured knowledge-based lexical resource, such as WordNet, we utilize a 

large scale distributional semantic model as wide-coverage resource for estimating 

semantic relatedness. The experiments show that using Semantic Relatedness 

(estimated with PNPMI association measure) provides about 3.8% improvement of 
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correction accuracy over the baseline. This result is a first empirical demonstration 

that Semantic Relatedness is applicable and effective for correction of non-word 

misspellings. 

The third type of intra-textual context is word repetitions in text. A misspelled 

token in a text may be an instance of a word (type) that is used repeatedly in that 

text, and finding such possible repetitions (and inflectional variants) in the text can 

be useful for ranking correction candidates. Moreover, we have introduced a 

modified version of this approach, which can handle even cases when all (or most) 

of the occurrences of an intended word in a text are misspelled. The trick is that 

while ranking candidate corrections for one misspelled token, it can be useful to 

peek into the candidate lists of other misspelled tokens in the same text (global 

mutual optimization). The experiments show that using this “Dejavu” approach 

provides about 3.8% improvement of correction accuracy over the baseline results. 

The fourth type of context is external to the text. If the topic of a text is known, 

or can be confidently estimated, this knowledge can be used to bias the error-

correction towards the topic. Using a weak version of this conjecture, we biased 

error correction for essays, by using word lists from the prompts of the writing tasks. 

The experiments show that using this approach can provide about 5.3% 

improvement of correction accuracy over the baseline results, but only when the 

biasing context is rich enough. 

All four types of contexts presented in this paper show significant improvement 

of automatic spelling correction as compared to baseline (non-contextual) 

algorithms. The baseline performance has F1=74.4%. Using n-grams-with-log-

counts provides a 9.93% improvement over the baseline. Using n-grams-with-

PNPMI provides 10.38% improvement over the baseline. Semantic Relatedness 

provides 3.8% improvement. Word-repetitions (Dejavu) algorithm also provides 

3.8% improvement. Topical biasing (under suitable conditions) provides 5.3% 

improvement. Clearly, the n-grams-based approaches are the most effective and they 

provide the best improvement of performance.  

We have also experimented with combining the various types of contexts. 

Overall, the best combination uses both n-gram-based algorithms and Semantic 

Relatedness and provides about 11.48% improvement over the baseline. With 

context-sensitive algorithms, the ConSpel system achieves 85.87% error correction 

accuracy in evaluation that uses the top-ranked candidate for each error. The system 

places the adequate correction among the five top-ranked candidates in 95% of the 

cases. This can be taken as an indication that there is a potential for additional 

improvements of automatic error-correction via re-ranking of correction candidates. 

The main advantage of the described system is that while being effective it is 

also very generic – it uses general-purpose language models that are derived from 

huge masses of (mostly) correct English text. It works well without an error-model, 

and it can be easily tuned/biased to specific topics by providing rich word lists for 

those topics. Although the system uses Web-scale language models, its practical 
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deployment is not limited to high-end server platforms. Using the TrendStream 

database library (Flor, 2013), the ConSpel system runs locally on laptops and 

desktops. 

The line of research presented in this article naturally extends to other types of 

misspellings. One area of research is correction of multi-token misspellings 

(Cucerzan and Brill, 2004). For some multi-token misspellings, such as mor efun 

(for “more fun”), each component can be corrected by itself. For many other multi-

token misspellings (splits, such as conten t, for “content”), a system must consider 

the parts together, and that is not quite trivial when additional errors are present, e.g. 

adittina lly. Context-sensitive methods might prove to be quite useful in such task. 

There is an obvious affinity of context sensitive methods for correction of both 

real-word and non-word misspellings. In this study, we have adapted the method 

proposed by Bergsma et al. (2009) for real-word misspellings, to non-word 

misspellings. For real-word spelling correction, Fossati and Di Eugenio (2007) have 

shown the usefulness of parts-of-speech contexts, and Xu et al. (2011) have shown 

the usefulness of dependency parsing. Similar approaches may be useful for 

correction of non-word errors. At the same time, we are working on applying the 

contextual methods presented in this paper toward detection and correction of real-

word spelling errors. 
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